1
|
Alonso S, Kaur H, Jia L, Nguyen MU, Laguerta A, Fong A, Skariah N, Argüello RJ, Verzi MP, Swamy M, Lau KS, Edelblum KL. Microbiota promote enhanced CD39 expression in γδ intraepithelial lymphocytes through the activation of TCR and IL-15 signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644616. [PMID: 40196668 PMCID: PMC11974730 DOI: 10.1101/2025.03.22.644616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IEL) provide continuous surveillance of the intestinal epithelium. We report that mice harboring a microbiota-specific hyperproliferative γδ IEL (γδ HYP ) phenotype also upregulate the expression of the ectonucleotidase CD39, a marker of regulatory γδ T cells. Enhanced TCR and IL-15 signaling correlates with a progression from a naïve-like CD39 neg γδ IEL to a more mature, tissue-adapted CD39 hi IEL population. We found that TCRγδ activation drives CD122-mediated CD39 upregulation on γδ HYP IELs and increased mucosal IL-15 further amplifies CD39 expression in these cells. Further investigation revealed that CD39 induction requires sustained exposure to the γδ HYP -associated microbiota. Moreover, CD39 hi γδ IELs exhibit a reduced capacity to produce pro-inflammatory cytokine, which may explain the lack of histopathology in γδ HYP mice. Overall, our study identifies a previously unappreciated mechanism by which an altered microbiota amplifies CD39 expression on γδ HYP IELs, leading to the expansion of γδ IELs with regulatory potential.
Collapse
|
2
|
Moser LM, Heim C, Koschade SE, Wendel P, Bozkurt S, Harenkamp S, Kreyenberg H, Merker M, Münch C, Gradhand E, Vogler M, Ullrich E, Bönig H, Klusmann JH, Bader P, Wels WS, Rettinger E. CAR-CIK vs. CAR-T: benchmarking novel cytokine-induced killer cells as solid tumor immunotherapy in ErbB2+ rhabdomyosarcoma. Front Immunol 2025; 16:1485817. [PMID: 39963129 PMCID: PMC11831232 DOI: 10.3389/fimmu.2025.1485817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction CAR-T cell therapy, though successful in hematologic malignancies, faces challenges in solid tumors due to limitations of autologous T cells. Cytokine-induced killer (CIK) cells can be given safely across allogeneic barriers and constitute alternative effector cells generated from healthy donors. CIK cells are a heterogenous population of predominantly T cells with a mixed natural killer (NK) phenotype and combine non-MHC-restricted cytotoxicity with potent anti-tumor capacity of the adaptive immune system. Here, we characterize and compare efficacy, phenotypic subpopulations and modes of action of CAR-CIK cells and conventional CAR-T cells from same-donor samples in ErbB2+ rhabdomyosarcoma (RMS). Methods To benchmark CAR-CIK against conventional CAR-T cells, effector cells were generated from same-donor samples and lentivirally transduced with a second generation CD28-CD3ζ CAR. Effector subpopulations and their dynamics upon target cell exposure were phenotypically characterized by flow cytometry. Efficacy was assessed in human ErbB2+ RMS cancer cell lines and primary patient samples in vitro and ex vivo using cytotoxicity and spheroid co-incubation assays. Modes of action were assessed by comparing cytokine secretion profiles using bead-based multiplexed flow cytometry and by liquid chromatography mass spectrometry whole cell proteomics. Finally, we used an in vivo model of RMS mimicking minimal metastatic residual disease to compare anti-tumor potency of CAR-CIK vs. CAR-T cells and to assess their target organ infiltration. Results In vitro assays demonstrated superior cytotoxicity of CAR-CIK cells against RMS cell lines and primary tumor samples. Long-term co-incubation with tumor spheroids led to expansion of CAR-CIK cells and enrichment of CD3+CD56+ TNK cells. CAR-CIK cell cytokine signature showed significantly increased secretion of effector molecules like interferon-γ, perforin and granulysin, and lower secretion of Th2 cytokines IL-2, IL-4 and IL-10. Whole cell proteomics showed corresponding upregulation of chemokine signaling and NK-cytotoxicity pathways in CAR-CIK cells. In NSG mice xenografted with ErbB2+ RMS, a single injection of either CAR-effector cells strongly impeded metastatic tumor development and significantly improved survival. Conclusion Our results demonstrate that CAR-CIK cells are at least equipotent to CAR-T cells. Combined with their favorable safety profile and allogeneic applicability, these findings position CAR-CIK cells as promising immune effectors for solid tumors.
Collapse
Affiliation(s)
- Laura M. Moser
- Division for Stem Cell Transplantation and Immunology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
| | - Catrin Heim
- Division for Stem Cell Transplantation and Immunology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sebastian E. Koschade
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Philipp Wendel
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- Experimental Immunology & Cell Therapy, Department of Pediatrics, Goethe University, Frankfurt am Main, Germany
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Süleyman Bozkurt
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Sabine Harenkamp
- Department of Cellular Therapeutics/Cell Processing, Institute for Transfusion Medicine and Immunotherapy, Goethe University, Frankfurt am Main, Germany
| | - Hermann Kreyenberg
- Division for Stem Cell Transplantation and Immunology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael Merker
- Division for Stem Cell Transplantation and Immunology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christian Münch
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Frankfurt am Main, Germany
| | - Elise Gradhand
- Department of Pediatric and Perinatal Pathology, Dr. Senckenberg Institute of Pathology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Meike Vogler
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
- Experimental Immunology & Cell Therapy, Department of Pediatrics, Goethe University, Frankfurt am Main, Germany
| | - Halvard Bönig
- Department of Cellular Therapeutics/Cell Processing, Institute for Transfusion Medicine and Immunotherapy, Goethe University, Frankfurt am Main, Germany
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Jan-Henning Klusmann
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation and Immunology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
| | - Winfried S. Wels
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Eva Rettinger
- Division for Stem Cell Transplantation and Immunology, Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
| |
Collapse
|
3
|
Vuerich M, Nguyen DH, Ferrari D, Longhi MS. Adenosine-mediated immune responses in inflammatory bowel disease. Front Cell Dev Biol 2024; 12:1429736. [PMID: 39188525 PMCID: PMC11345147 DOI: 10.3389/fcell.2024.1429736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Extracellular ATP and its derivates mediate a signaling pathway that might be pharmacologically targeted to treat inflammatory conditions. Extracellular adenosine, the product of ATP hydrolysis by ectonucleotidase enzymes, plays a key role in halting inflammation while promoting immune tolerance. The rate-limiting ectoenzyme ENTPD1/CD39 and the ecto-5'-nucleotidase/CD73 are the prototype members of the ectonucleotidase family, being responsible for ATP degradation into immunosuppressive adenosine. The biological effects of adenosine are mediated via adenosine receptors, a family of G protein-coupled receptors largely expressed on immune cells where they modulate innate and adaptive immune responses. Inflammatory bowel disease (IBD) is a serious inflammatory condition of the gastrointestinal tract, associated with substantial morbidity and often refractory to currently available medications. IBD is linked to altered interactions between the gut microbiota and the immune system in genetically predisposed individuals. A wealth of studies conducted in patients and animal models highlighted the role of various adenosine receptors in the modulation of chronic inflammatory diseases like IBD. In this review, we will discuss the most recent findings on adenosine-mediated immune responses in different cell types, with a focus on IBD and its most common manifestations, Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- Marta Vuerich
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Du Hanh Nguyen
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Chang WK, Chen YT, Lin CP, Wang CJ, Shieh HR, Chi CW, Tsai TH, Chen YJ. Cordycepin Augments the Efficacy of Anti-PD1 against Colon Cancer. Biomedicines 2024; 12:1568. [PMID: 39062140 PMCID: PMC11274779 DOI: 10.3390/biomedicines12071568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Colon cancer has a poor clinical response to anti-PD1 therapy. This study aimed to evaluate the effect of cordycepin on the efficacy of anti-PD1 treatment in colon cancer. The viability of CT26 mouse colon carcinoma cells, cell-cycle progression, morphology, and the expression of mRNA and protein were assessed. A syngeneic animal model was established by implanting CT26 cells into BALB/c mice for in vivo experiments. Multi-parameter flow cytometry was used to analyze the splenic cell lineages and tumor microenvironment (TME). The in vitro data revealed that cordycepin, but not adenosine, inhibited CT26 cell viability. The protein, but not mRNA, expression levels of A2AR and A2BR were suppressed by cordycepin but not by adenosine in CT26 cells. The combination of cordycepin, but not adenosine, with anti-PD1 exhibited a greater tumor-inhibitory effect than anti-PD1 alone as well as inhibited the expression of A2AR and A2BR in splenic macrophages. In the TME, the combination of cordycepin and anti-PD1 increased the number of CD3+ T cells and neutrophils and decreased the number of natural killer (NK) cells. Overall, cordycepin augmented the antitumor effects of anti-PD1 against mouse colon carcinoma cells and inhibited the expression of the adenosine receptors A2AR and A2BR in splenic macrophages and intratumoral NK cells.
Collapse
Affiliation(s)
- Wen-Kuei Chang
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei 252, Taiwan
| | - Yen-Ting Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei 252, Taiwan
| | - Chin-Ping Lin
- Department Medical Research, MacKay Memorial Hospital, New Taipei City 251, Taiwan
| | - Chia-Jung Wang
- Department Medical Research, MacKay Memorial Hospital, New Taipei City 251, Taiwan
| | - Hui-Ru Shieh
- Department Medical Research, MacKay Memorial Hospital, New Taipei City 251, Taiwan
| | - Chih-Wen Chi
- Department Medical Research, MacKay Memorial Hospital, New Taipei City 251, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 404, Taiwan
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Jen Chen
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei 104, Taiwan
| |
Collapse
|
5
|
Vahidi S, Zabeti Touchaei A, Samadani AA. IL-15 as a key regulator in NK cell-mediated immunotherapy for cancer: From bench to bedside. Int Immunopharmacol 2024; 133:112156. [PMID: 38669950 DOI: 10.1016/j.intimp.2024.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Interleukin 15 (IL-15) has emerged as a crucial factor in the relationship between natural killer (NK) cells and immunotherapy for cancer. This review article aims to provide a comprehensive understanding of the role of IL-15 in NK cell-mediated immunotherapy. First, the key role of IL-15 signaling in NK cell immunity is discussed, highlighting its regulation of NK cell functions and antitumor properties. Furthermore, the use of IL-15 or its analogs in clinical trials as a therapeutic strategy for various cancers, including the genetic modification of NK cells to produce IL-15, has been explored. The potential of IL-15-based therapies, such as chimeric antigen receptor (CAR) T and NK cell infusion along with IL-15 in combination with checkpoint inhibitors and other treatments, has been examined. This review also addresses the challenges and advantages of incorporating IL-15 in cell-based immunotherapy. Additionally, unresolved questions regarding the detection and biological significance of the soluble IL-15/IL-15Rα complex, as well as the potential role of IL-15/IL-15Rα in human cancer and the immunological consequences of prolonged exposure to soluble IL-15 for NK cells, are discussed.
Collapse
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
6
|
Zohair B, Chraa D, Rezouki I, Benthami H, Razzouki I, Elkarroumi M, Olive D, Karkouri M, Badou A. The immune checkpoint adenosine 2A receptor is associated with aggressive clinical outcomes and reflects an immunosuppressive tumor microenvironment in human breast cancer. Front Immunol 2023; 14:1201632. [PMID: 37753093 PMCID: PMC10518422 DOI: 10.3389/fimmu.2023.1201632] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Background The crosstalk between the immune system and cancer cells has aroused considerable interest over the past decades. To escape immune surveillance cancer cells evolve various strategies orchestrating tumor microenvironment. The discovery of the inhibitory immune checkpoints was a major breakthrough due to their crucial contribution to immune evasion. The A2AR receptor represents one of the most essential pathways within the TME. It is involved in several processes such as hypoxia, tumor progression, and chemoresistance. However, its clinical and immunological significance in human breast cancer remains elusive. Methods The mRNA expression and protein analysis were performed by RT-qPCR and immunohistochemistry. The log-rank (Mantel-Cox) test was used to estimate Kaplan-Meier analysis for overall survival. Using large-scale microarray data (METABRIC), digital cytometry was conducted to estimate cell abundance. Analysis was performed using RStudio software (7.8 + 2023.03.0) with EPIC, CIBERSORT, and ImmuneCellAI algorithms. Tumor purity, stromal and immune scores were calculated using the ESTIMATE computational method. Finally, analysis of gene set enrichment (GSEA) and the TISCH2 scRNA-seq database were carried out. Results Gene and protein analysis showed that A2AR was overexpressed in breast tumors and was significantly associated with high grade, elevated Ki-67, aggressive molecular and histological subtypes, as well as poor survival. On tumor infiltrating immune cells, A2AR was found to correlate positively with PD-1 and negatively with CTLA-4. On the other hand, our findings disclosed more profuse infiltration of protumoral cells such as M0 and M2 macrophages, Tregs, endothelial and exhausted CD8+ T cells within A2ARhigh tumors. According to the Single-Cell database, A2AR is expressed in malignant, stromal and immune cells. Moreover, it is related to tumor purity, stromal and immune scores. Our results also revealed that CD8+T cells from A2ARhigh patients exhibited an exhausted functional profile. Finally, GSEA analysis highlighted the association of A2AR with biological mechanisms involved in tumor escape and progression. Conclusion The present study is the first to elucidate the clinical and immunological relevance of A2AR in breast cancer patients. In light of these findings, A2AR could be deemed a promising therapeutic target to overcome immune evasion prevailing within the TME of breast cancer patients.
Collapse
Affiliation(s)
- Basma Zohair
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Dounia Chraa
- Team Immunity and Cancer, The Cancer Research Center of Marseille (CRCM), Inserm, 41068, CNRS, UMR7258, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, Marseille, France
| | - Ibtissam Rezouki
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Hamza Benthami
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Ibtissam Razzouki
- Department of Pathological Anatomy, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Mohamed Elkarroumi
- Mohamed VI Oncology Center, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Daniel Olive
- Team Immunity and Cancer, The Cancer Research Center of Marseille (CRCM), Inserm, 41068, CNRS, UMR7258, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, Marseille, France
| | - Mehdi Karkouri
- Department of Pathological Anatomy, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
7
|
Kurago Z, Guo G, Shi H, Bollag RJ, Groves MW, Byrd JK, Cui Y. Inhibitors of the CD73-adenosinergic checkpoint as promising combinatory agents for conventional and advanced cancer immunotherapy. Front Immunol 2023; 14:1212209. [PMID: 37435071 PMCID: PMC10330720 DOI: 10.3389/fimmu.2023.1212209] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/31/2023] [Indexed: 07/13/2023] Open
Abstract
The cell surface enzyme CD73 is increasingly appreciated as a pivotal non-redundant immune checkpoint (IC) in addition to PD-1/PD-L1 and CTLA-4. CD73 produces extracellular adenosine (eADO), which not only inhibits antitumor T cell activity via the adenosine receptor (AR) A2AR, but also enhances the immune inhibitory function of cancer-associated fibroblasts and myeloid cells via A2BR. Preclinical studies show that inhibition of the CD73-adenosinergic pathway in experimental models of many solid tumors either as a monotherapy or, more effectively, in combination with PD-1/PD-L1 or CTLA-4 IC blockades, improves antitumor immunity and tumor control. Consequently, approximately 50 ongoing phase I/II clinical trials targeting the CD73-adenosinergic IC are currently listed on https://clinicaltrials.gov. Most of the listed trials employ CD73 inhibitors or anti-CD73 antibodies alone, in combination with A2AR antagonists, and/or with PD-1/PD-L1 blockade. Recent evidence suggests that the distribution of CD73, A2AR and A2BR in tumor microenvironments (TME) is heterogeneous, and this distribution affects CD73-adenosinergic IC function. The new insights have implications for the optimally effective, carefully tailored approaches to therapeutic targeting of this essential IC. In the mini-review, we briefly discuss the cellular and molecular mechanisms of CD73/eADO-mediated immunosuppression during tumor progression and therapy in the spatial context of the TME. We include preclinical data regarding therapeutic CD73-eADO blockade in tumor models as well as available clinical data from completed trials that targeted CD73-adenosinergic IC with or without PD-1/PD-L1 inhibitors and discuss factors that are potentially important for optimal therapeutic outcomes in cancer patients.
Collapse
Affiliation(s)
- Zoya Kurago
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Gang Guo
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Huidong Shi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Roni J. Bollag
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Michael W. Groves
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Otolaryngology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - J. Kenneth Byrd
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Otolaryngology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yan Cui
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|