1
|
Yu J, Yan N, Gong Z, Ma Q, Liu J, Wu X, Deng G. Mycobacterium manipulate glutaminase 1 mediated glutaminolysis to regulate macrophage autophagy for bacteria intracellular survival. Cell Signal 2024; 124:111422. [PMID: 39307377 DOI: 10.1016/j.cellsig.2024.111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Autophagy plays a vital role in eliminating intracellular mycobacterium. It is regulated by multiple metabolic processes including glutaminolysis. Glutaminase 1 (GLS1) is the rate-limiting enzyme of glutaminolysis and has been reported to control intracellular Gln content. However, its function on regulating autophagy in mycobacterium infected macrophage is still obscure. Hence, the current study hired mycobacterium virulent strain H37Rv or attenuated strain BCG to infect macrophage and detected the changes in cell glutaminolysis. The function of GLS1 on regulating autophagy in mycobacterium infected macrophages was further investigated. The results showed that BCG infection promoted macrophage autophagy, enhanced glutaminolysis, reduced intracellular Gln content, accompanied with the up-regulation of GLS1. Conversely, H37Rv infection resulted in completely opposite effects. Meanwhile, knockdown of GLS1 increased Gln content and attenuated autophagy in BCG infected macrophages. In addition, the deprivation of Gln not only promoted the autophagy of H37Rv infected macrophages, but also abolished the effect of knockdown GLS1 on regulating BCG infection-induced mTOR activation or autophagy. To sum up, our study suggested that different virulent strains of mycobacterium infection have totally opposite effects on glutaminolysis and the expression of GLS1. Specifically, mycobacterium virulent strain reduced GLS1 expression and decreased Gln content but mycobacterium attenuated strain promoted GLS1 expression and enhanced Gln content. Furthermore, GLS1 inhibits the activation of the mTOR signaling pathway and promotes autophagy by decreasing Gln content.
Collapse
Affiliation(s)
- Jialin Yu
- School of Life Science, NingXia University, Yinchuan, NingXia, 750021, China; Key lab of ministry of education for protection and utilization of special biological resources in western China, NingXia University, Yinchuan, NingXia, 750021, China
| | - Na Yan
- School of Life Science, NingXia University, Yinchuan, NingXia, 750021, China; Key lab of ministry of education for protection and utilization of special biological resources in western China, NingXia University, Yinchuan, NingXia, 750021, China
| | - Zhaoqian Gong
- School of Life Science, NingXia University, Yinchuan, NingXia, 750021, China; Key lab of ministry of education for protection and utilization of special biological resources in western China, NingXia University, Yinchuan, NingXia, 750021, China
| | - Qinmei Ma
- School of Life Science, NingXia University, Yinchuan, NingXia, 750021, China; Key lab of ministry of education for protection and utilization of special biological resources in western China, NingXia University, Yinchuan, NingXia, 750021, China
| | - Jing Liu
- The Fourth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Niangxia, 750021, China
| | - Xiaoling Wu
- School of Life Science, NingXia University, Yinchuan, NingXia, 750021, China; Key lab of ministry of education for protection and utilization of special biological resources in western China, NingXia University, Yinchuan, NingXia, 750021, China.
| | - Guangcun Deng
- School of Life Science, NingXia University, Yinchuan, NingXia, 750021, China; Key lab of ministry of education for protection and utilization of special biological resources in western China, NingXia University, Yinchuan, NingXia, 750021, China.
| |
Collapse
|
2
|
Liu X, Jin Y, Zhang M, Jin Y, Cao J, Dong H, Fu X, Jin CY. The RIP3 activator C8 regulates the autophagy flux mediated by p62 and promotes the immunogenic form of cell death in human gastric cancer cells. Bioorg Chem 2024; 153:107937. [PMID: 39520785 DOI: 10.1016/j.bioorg.2024.107937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
There has been growing interest in investigating anti-tumor drugs that not only kill cancer cells but also stimulate the immune system, among them, necroptosis is a classical immunogenic form of cell death. In our study, we discovered that by targeting RIP3, Jaspine B derivative C8 induces necroptosis and initiates cell death, and this effect can be reversed by knockout of RIP3. Furthermore, RIP3 initiates autophagy and binds to p62 to inhibit autophagic flux. Additionally, the autophagy process mediated by RIP3 activates the Nrf2 signaling pathway via the formation of the p62/Keap1 complex. Early autophagy inhibitors enhance necroptosis by impending the accumulation of p62 and restraining the activation of Nrf2, whereas late autophagy inhibitors partially prevent C8-induced necroptosis. Notably, the immunogenic form of cell death induced by C8 did not affect tumor immunity. Overall, C8 functions as a RIP3 activator to suppress the development of gastric cancer. Upon activation, RIP3 regulates p62-mediated autophagic flux and the Nrf2 signaling pathway through the RIP3/p62/Keap1 axis.
Collapse
Affiliation(s)
- Xiaojie Liu
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province 450001, China
| | - Yubin Jin
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province 450001, China
| | - Mengli Zhang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province 450001, China
| | - Yanhe Jin
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province 450001, China
| | - Jie Cao
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province 450001, China
| | - Hangqi Dong
- Hanan Center for Drug Evaluation and Inspection, Henan Center for Vaccine Inspection, 127 Huayuan Road, Zhengzhou, Henan Province 450008, China
| | - Xiangjing Fu
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province 450001, China
| | - Cheng-Yun Jin
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan Province 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, China.
| |
Collapse
|
3
|
Meng L, Ouyang Z, Chen Y, Huang C, Yu Y, Fan R. Low-dose BPA-induced neuronal energy metabolism dysfunction and apoptosis mediated by PINK1/parkin mitophagy pathway in juvenile rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172655. [PMID: 38653419 DOI: 10.1016/j.scitotenv.2024.172655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Bisphenol A (BPA) is related to neurological disorders involving mitochondrial dysfunction, while the mechanism remains elusive. Therefore, we explored it through in vitro and in vivo experiments. In vitro, hippocampal neurons derived from neonatal rats of different genders were exposed to 1-100 nM and 100 μM BPA, autophagy activator Rapa and inhibitor 3-MA for 7 d. The results suggested that even nanomolar BPA (1-100 nM) disturbed Ca2+ homeostasis and damaged the integrity of mitochondrial cristae in neurons (p < 0.05). Furthermore, BPA increased the number of autophagic lysosomes, LC3II/LC3I ratio, and p62 expression, and decreased parkin expression (p < 0.05), suggesting that the entry of damaged mitochondria into autophagic pathway was prompted, while the autophagic degradation pathway was blocked. This further disrupts neuronal energy metabolism and promotes neuronal apoptosis. However, Rapa attenuated the adverse effects caused by BPA, while 3-MA exacerbated these reactions. In vivo, exposure of juvenile rats to 0.5, 50, 5000 μg/kg‧bw/day BPA during PND 7-21 markedly impaired the structure of hippocampal mitochondria, increased the number of autophagosomes, the rate of neuronal apoptosis, and the expression levels of pro-apoptotic proteins Cyt C, Bax, Bak1, and Caspase3, and decreased the expression of anti-apoptotic protein Bcl2 (p < 0.05). Particularly, male rats are more sensitive to low-dose BPA than females. Overall, environmental-doses BPA can induce the imbalance of energy metabolism in hippocampal neurons via PINK1/parkin mitophagy, thereby inducing their apoptosis. Importantly, this study provides a theoretical basis for attenuating BPA-related neurological diseases.
Collapse
Affiliation(s)
- Lingxue Meng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zedong Ouyang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yuxin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Chengmeng Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
4
|
Ortega-Portilla PA, Carrisoza-Urbina J, Bedolla-Alva MA, Cortéz-Hernández O, Juárez-Ramírez M, Baay-Guzmán G, Huerta-Yepez S, Gutiérrez-Pabello JA. Necrosis plays a role in the concentration of mycobacterial antigens in granulomas from Mycobacterium bovis naturally infected cattle. Vet Immunol Immunopathol 2024; 272:110757. [PMID: 38723459 DOI: 10.1016/j.vetimm.2024.110757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 05/26/2024]
Abstract
The dynamics that develop between cells and molecules in the host against infection by Mycobacterium bovis, leads to the formation of granulomas mainly present in the lungs and regional lymph nodes in cattle. Cell death is one of the main features in granuloma organization, however, it has not been characterized in granulomatous lesions caused by M. bovis. In this study we aimed to identify the profiles of cell death in the granuloma stages and its relationship with the accumulation of bacteria. We identified necrosis, activated caspase-3, LC3B/p62 using immunohistochemistry and digital pathology analysis on 484 granulomatous lesions in mediastinal lymph nodes from 23 naturally infected cattle. Conclusions: greater amounts of mycobacterial antigens were identified in granulomas from calves compared with adult cattle. The highest percentage of necrosis and quantity of mycobacterial antigens were identified in granuloma stages (III/IV) from adults. The LC3B/p62 profile was heterogeneous in granulomas between adults and calves. Our data suggest that necrosis is associated with a higher amount of mycobacterial antigens in the late stages of granuloma and the development of autophagy appears to play an heterogeneous effector response against infection in adults and calves. These results represent one of the first approaches in the identification of cell death in the four stages of granulomas in bovine tuberculosis.
Collapse
Affiliation(s)
- Paola A Ortega-Portilla
- Laboratorio de Investigación en Tuberculosis y Brucelosis, Departamento de Microbiologia e inmunologia, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jacobo Carrisoza-Urbina
- Laboratorio de Investigación en Tuberculosis y Brucelosis, Departamento de Microbiologia e inmunologia, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mario A Bedolla-Alva
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Omar Cortéz-Hernández
- Laboratorio de Investigación en Tuberculosis y Brucelosis, Departamento de Microbiologia e inmunologia, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mireya Juárez-Ramírez
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guillermina Baay-Guzmán
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - José A Gutiérrez-Pabello
- Laboratorio de Investigación en Tuberculosis y Brucelosis, Departamento de Microbiologia e inmunologia, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
5
|
Bhatnagar A, Chopra U, Raja S, Das KD, Mahalingam S, Chakravortty D, Srinivasula SM. TLR-mediated aggresome-like induced structures comprise antimicrobial peptides and attenuate intracellular bacterial survival. Mol Biol Cell 2024; 35:ar34. [PMID: 38170582 PMCID: PMC10916861 DOI: 10.1091/mbc.e23-09-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Immune cells employ diverse mechanisms for host defense. Macrophages, in response to TLR activation, assemble aggresome-like induced structures (ALIS). Our group has shown TLR4-signaling transcriptionally upregulates p62/sequestome1, which assembles ALIS. We have demonstrated that TLR4-mediated autophagy is, in fact, selective-autophagy of ALIS. We hypothesize that TLR-mediated autophagy and ALIS contribute to host-defense. Here we show that ALIS are assembled in macrophages upon exposure to different bacteria. These structures are associated with pathogen-containing phagosomes. Importantly, we present evidence of increased bacterial burden, where ALIS assembly is prevented with p62-specific siRNA. We have employed 3D-super-resolution structured illumination microscopy (3D-SR-SIM) and mass-spectrometric (MS) analyses to gain insight into the assembly of ALIS. Ultra-structural analyses of known constituents of ALIS (p62, ubiquitin, LC3) reveal that ALIS are organized structures with distinct patterns of alignment. Furthermore, MS-analyses of ALIS identified, among others, several proteins of known antimicrobial properties. We have validated MS data by testing the association of some of these molecules (Bst2, IFITM2, IFITM3) with ALIS and the phagocytosed-bacteria. We surmise that AMPs enrichment in ALIS leads to their delivery to bacteria-containing phagosomes and restricts the bacteria. Our findings in this paper support hitherto unknown functions of ALIS in host-defense.
Collapse
Affiliation(s)
- Anushree Bhatnagar
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - Umesh Chopra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sebastian Raja
- Laboratory of Molecular Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Krishanu Dey Das
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - S. Mahalingam
- Laboratory of Molecular Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Dipshikha Chakravortty
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Srinivasa Murty Srinivasula
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
6
|
Sun C, Zhu D, Zhu Q, He Z, Lou Y, Chen D. The significance of gut microbiota in the etiology of autoimmune hepatitis: a narrative review. Front Cell Infect Microbiol 2024; 14:1337223. [PMID: 38404291 PMCID: PMC10884129 DOI: 10.3389/fcimb.2024.1337223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic inflammatory disease of the liver that is mediated by autoimmunity and has complex pathogenesis. Its prevalence has increased globally. Since the liver is the first organ to be exposed to harmful substances, such as gut-derived intestinal microbiota and its metabolites, gut health is closely related to liver health, and the "liver-gut axis" allows abnormalities in the gut microbiota to influence the development of liver-related diseases such as AIH. Changes in the composition of the intestinal microbiota and its resultant disruption of the intestinal barrier and microbial transport are involved in multiple ways in the disruption of immune homeostasis and inflammation, thereby influencing the development of AIH. In terms of the mechanisms involved in immune, the gut microbiota or its metabolites, which is decreased in secondary bile acids, short-chain fatty acids (SCFAs), and polyamines, and increased in lipopolysaccharide (LPS), branched-chain amino acids (BCAA), tryptophan metabolite, amino acid, and bile acid, can disrupt immune homeostasis by activating various immune cells and immune-related signaling pathways, resulting in aberrant activation of the immune system. Clarifying this mechanism has significant clinical implications for the treatment of AIH with drugs that target intestinal microbiota and related signaling pathways. Therefore, this narrative review summarizes the progress in exploring the involvement of gut microbiota in the pathogenesis of AIH, with the aim of helping to improve the precise targeting of therapeutic treatments against AIH for the benefit of clinical AIH treatment.
Collapse
Affiliation(s)
- Chen Sun
- Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongzi Zhu
- Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeping He
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Lou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Desheng Chen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Guo S, Xu Z, Feng Q, Zhang H, Yu D, Li B, Hu K, Gao X, Zhang Q, Yi H, Wu X, Song D, Zhu H, Cai H, Peng Y, Zhu W, Shi J. Molecular mechanism by which RRM2-inhibitor (cholagogue osalmid) plus bafilomycin A1 cause autophagic cell death in multiple myeloma. Arch Biochem Biophys 2023; 747:109771. [PMID: 37776936 DOI: 10.1016/j.abb.2023.109771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Despite significant improvement in the prognosis of multiple myeloma (MM), the disease remains incurable; thus, more effective therapies are required. Ribonucleoside-diphosphate reductase subunit M2 (RRM2) is significantly associated with drug resistance, rapid relapse, and poor prognosis. Previously, we found that 4-hydroxysalicylanilide (osalmid), a specific inhibitor of RRM2, exhibits anti-MM activity in vitro, in vivo, and in human patients; however, the mechanism remains unclear. Osalmid inhibits the translocation of RRM2 to the nucleus and stimulates autophagosome synthesis but inhibits subsequent autophagosome-lysosome fusion. We confirm that RRM2 binds to receptor-interacting protein kinase 3 (RIPK3) and reduces RIPK3, inhibiting autophagosome-lysosome fusion. Interestingly, the combination of osalmid and bafilomycin A1 (an autophagy inhibitor) depletes RIPK3 and aggravates p62 and autophagosome accumulation, leading to autophagic cell death. Combination therapy demonstrates synergistic cytotoxicity both in vitro and in vivo. Therefore, we propose that combining osalmid and bafilomycin A1(BafA1) may have clinical benefits against MM.
Collapse
Affiliation(s)
- Shushan Guo
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qilin Feng
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hui Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Dandan Yu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Bo Li
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ke Hu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xuejie Gao
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qikai Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hongfei Yi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Dongliang Song
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Huabin Zhu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Haiyan Cai
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yu Peng
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jumei Shi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|