1
|
Zhang T, Xiaohan C. Unveiling the Role of JAK2/STAT3 signaling in chemoresistance of gynecological cancers: From mechanisms to therapeutic implications. Crit Rev Oncol Hematol 2025; 211:104712. [PMID: 40187711 DOI: 10.1016/j.critrevonc.2025.104712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
Gynecological cancers, encompassing ovarian, cervical, endometrial, vulvar, and vaginal cancers, present a significant global health burden due to high incidence rates and associated mortality. Among these, ovarian, cervical, and endometrial cancers are particularly challenging, characterized by late-stage diagnoses, distinct pathological features, and significant resistance to chemotherapy. A major contributor to treatment failure is chemoresistance, driven by multifactorial mechanisms such as dysregulation of apoptosis, DNA repair, metabolic reprogramming, and the tumor microenvironment. The Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway plays a pivotal role in promoting chemoresistance, enhancing tumor cell survival, stemness, and immune evasion through the transcriptional regulation of anti-apoptotic and multidrug resistance genes. Persistent activation of this pathway not only sustains tumor progression but also limits the efficacy of standard chemotherapeutics, such as paclitaxel, cisplatin, and platinum-based agents. This review comprehensively examines the molecular mechanisms underlying JAK2/STAT3-mediated chemoresistance in gynecological cancers, highlighting its interactions with critical regulatory networks, including non-coding RNAs, cytokine signaling, hypoxia, and extracellular vesicles. We further explore therapeutic interventions targeting the JAK2/STAT3 axis, encompassing small molecule inhibitors, monoclonal antibodies, nanoparticles, and oncolytic viruses. Natural products and synthetic compounds targeting this pathway demonstrate significant potential in overcoming resistance and improving chemotherapy response. The findings underscore the critical role of JAK2/STAT3 signaling in the persistence and progression of chemoresistant gynecological cancers and advocate for the integration of pathway-targeted therapies into current treatment paradigms. By disrupting this axis, emerging therapies offer a promising strategy to enhance drug sensitivity and improve patient outcomes, paving the way for more effective and personalized approaches in gynecological oncology.
Collapse
Affiliation(s)
- Tianxiao Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Key Laboratory of Lens Research of Liaoning Province, Eye Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Chang Xiaohan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Samad MA, Ahmad I, Hasan A, Alhashmi MH, Ayub A, Al‐Abbasi FA, Kumer A, Tabrez S. STAT3 Signaling Pathway in Health and Disease. MedComm (Beijing) 2025; 6:e70152. [PMID: 40166646 PMCID: PMC11955304 DOI: 10.1002/mco2.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a critical transcription factor involved in multiple physiological and pathological processes. While STAT3 plays an essential role in homeostasis, its persistent activation has been implicated in the pathogenesis of various diseases, particularly cancer, bone-related diseases, autoimmune disorders, inflammatory diseases, cardiovascular diseases, and neurodegenerative conditions. The interleukin-6/Janus kinase (JAK)/STAT3 signaling axis is central to STAT3 activation, influencing tumor microenvironment remodeling, angiogenesis, immune evasion, and therapy resistance. Despite extensive research, the precise mechanisms underlying dysregulated STAT3 signaling in disease progression remain incompletely understood, and no United States Food and Drug Administration (USFDA)-approved direct STAT3 inhibitors currently exist. This review provides a comprehensive evaluation of STAT3's role in health and disease, emphasizing its involvement in cancer stem cell maintenance, metastasis, inflammation, and drug resistance. We systematically discuss therapeutic strategies, including JAK inhibitors (tofacitinib, ruxolitinib), Src Homology 2 domain inhibitors (S3I-201, STATTIC), antisense oligonucleotides (AZD9150), and nanomedicine-based drug delivery systems, which enhance specificity and bioavailability while reducing toxicity. By integrating molecular mechanisms, disease pathology, and emerging therapeutic interventions, this review fills a critical knowledge gap in STAT3-targeted therapy. Our insights into STAT3 signaling crosstalk, epigenetic regulation, and resistance mechanisms offer a foundation for developing next-generation STAT3 inhibitors with greater clinical efficacy and translational potential.
Collapse
Affiliation(s)
- Md Abdus Samad
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Iftikhar Ahmad
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Aakifah Hasan
- Department of BiochemistryFaculty of Life ScienceAligarh Muslim UniversityAligarhIndia
| | - Mohammad Hassan Alhashmi
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Medical Laboratory SciencesFaculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Arusha Ayub
- Department of MedicineCollege of Health SciencesUniversity of GeorgiaGeorgiaUSA
| | - Fahad A. Al‐Abbasi
- Department of BiochemistryFaculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Ajoy Kumer
- Department of ChemistryCollege of Arts and SciencesInternational University of Business Agriculture & Technology (IUBAT)DhakaBangladesh
| | - Shams Tabrez
- King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
- Department of Medical Laboratory SciencesFaculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
3
|
Xiang H, Lan Y, Hu L, Qin R, Li H, Weng T, Zou Y, Liu Y, Hu X, Ge W, Zhang H, Pan HL, Yang NN, Liu W, Cai G, Li M. AMPK activation mitigates inflammatory pain by modulating STAT3 phosphorylation in inflamed tissue macrophages of adult male mice. Mol Pain 2025; 21:17448069251321339. [PMID: 39921559 PMCID: PMC11843706 DOI: 10.1177/17448069251321339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
Inflammatory pain presents a significant clinical challenge. AMP-activated protein kinase (AMPK) is recognized for its capacity to alleviate inflammation by inhibiting transcription factors such as nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription (STAT). Our prior research demonstrated that AMPK reduces inflammatory pain by inhibiting NF-κB activation and interleukin-1 beta (IL-1β) expression. However, the role of AMPK in regulating reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) by modulating STAT3 phosphorylation in inflammatory pain remains inadequately understood. This study aims to investigate the role of AMPK in modulating STAT3 phosphorylation in the macrophages of inflamed tissues to mitigate inflammatory pain. A Complete Freund's Adjuvant (CFA)-induced inflammatory pain model was established by subcutaneous injection into the plantar surface of the left hindpaw of adult male mice. Behavioral tests of mechanical allodynia and thermal latency were used to determine nociceptive behavior. Immunoblotting quantified p-AMPK and iNOS expression levels. Nuclear translocation of p-STAT3(Ser727) and STAT3 in macrophages was assessed by western blot and immunofluorescence. ROS accumulation and mitochondrial damage in NR8383 macrophages were detected by flow cytometry. Lentivirus infection cells experiment was performed to transfect vectors encoding the STAT3 S727D mutants. Treatment with the AMPK activator AICAR alleviated CFA-induced inflammatory pain, enhanced AMPK phosphorylation, and reduced iNOS expression in inflamed skin tissues. AICAR effectively prevented STAT3 nuclear translocation while promoting the phosphorylation of STAT3 (Ser727) in the cytoplasm. In vitro studies with CFA-stimulated NR8383 macrophages revealed that AICAR increased STAT3(Ser727) phosphorylation, curtailed iNOS expression, and attenuated ROS accumulation and mitochondrial damage. Furthermore, the S727D mutation, which enhances STAT3 phosphorylation, replicated the protective effects of AICAR against CFA-induced oxidative stress and mitochondrial dysfunction. Our study shows that the AMPK acitvation downregulates iNOS expression by inhibiting the STAT3 nuclear translocation and promotes cytoplasmic STAT3(Ser727) phosphorylation, which reduces ROS expression and mitochondrial dysfunction, thereby alleviating inflammatory pain. These findings underscore the therapeutic potential of targeting AMPK and STAT3 pathways in inflammatory pain management.
Collapse
Affiliation(s)
- Hongchun Xiang
- Department of Acupuncture-Moxibustion, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Yuye Lan
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Hu
- Department of Pharmacology, School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Renjie Qin
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Hongping Li
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture- Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Tao Weng
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zou
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Yongmin Liu
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefei Hu
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqiang Ge
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhang
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Na-na Yang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture- Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Wentao Liu
- Department of Pharmacology, School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Guowei Cai
- Department of Acupuncture-Moxibustion, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Man Li
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Abdallah FM, Ghoneim AI, Abd-Alhaseeb MM, Abdel-Raheem IT, Helmy MW. Unveiling the antitumor synergy between pazopanib and metformin on lung cancer through suppressing p-Akt/ NF-κB/ STAT3/ PD-L1 signal pathway. Biomed Pharmacother 2024; 180:117468. [PMID: 39332188 DOI: 10.1016/j.biopha.2024.117468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/01/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Pazopanib, an inhibitor of the VEGF receptor tyrosine kinase, has demonstrated significant antitumor effects in lung cancer. However, its application as a standard treatment for this type of cancer is limited by its drug resistance and toxicity. Metformin has the potential to combat lung cancer by modifying the tumor's immune microenvironment. In this study, we investigated the potential antitumor effects and the associated underlying molecular mechanisms of the combination of pazopanib and metformin in lung cancer. In vitro studies were conducted using the A549 and H460 lung cancer cell lines, whereas urethane-induced lung cancer-bearing mice were used for in vivo assessments. The urethane-induced mice received oral administration of pazopanib (50 mg/kg) and/or metformin (250 mg/kg) for a duration of 21 days. The results indicated that the MTT assay demonstrated a combined cytotoxic effect of the pazopanib/metformin combination in H460 and A549 cells, as evidenced by CI and DRI analyses. The observed increase in annexin V levels and the corresponding increase in Caspase-3 activity strongly suggest that this combination induced apoptosis. Furthermore, the pazopanib/metformin combination significantly inhibited the p-Akt/NF-κB/IL-6/STAT3, HIF1α/VEGF, and TLR2/TGF-β/PD-L1 pathways while also increasing CD8 expression in vivo. Immunohistochemical analysis revealed that these antitumor mechanisms were manifested by the suppression of the proliferation marker Ki67. In conclusion, these findings revealed that metformin augments the antitumor efficacy of pazopanib in lung cancer by simultaneously targeting proliferative, angiogenic, and immunogenic signaling pathways, metformin enhances the antitumor effectiveness of pazopanib in lung cancer, making it a promising therapeutic option for lung cancer.
Collapse
Affiliation(s)
- Fatma M Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Egypt; Faculty of Health Sciences Technology, Borg Al Arab Technological University, New Borg El Arab, Egypt.
| | - Asser I Ghoneim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Egypt.
| | - Mohammad M Abd-Alhaseeb
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Egypt; Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA.
| | - Ihab T Abdel-Raheem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Egypt.
| | - Maged W Helmy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Egypt.
| |
Collapse
|
5
|
Huo G, Shen H, Zheng J, Zeng Y, Yao Z, Cao J, Tang Y, Huang J, Liu Z, Zhou D. The potential of a nomogram risk assessment model for the diagnosis of abdominal aortic aneurysm: a multicenter retrospective study. Sci Rep 2024; 14:21536. [PMID: 39278952 PMCID: PMC11402964 DOI: 10.1038/s41598-024-72544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024] Open
Abstract
The incidence of abdominal aortic aneurysm (AAA) is very high, but there is no risk assessment model for early identification of AAA in clinic. The aim of this study was to develop a nomogram risk assessment model for predicting AAA. The data of 280 patients diagnosed as AAA and 385 controls in The Affiliated Suzhou Hospital of Nanjing Medical University were retrospectively reviewed. The LASSO regression method was applied to filter variables, and multivariate logistic regression was used to construct a nomogram. The discriminatory ability of the model was determined by calculating the area under the curve (AUC). The calibration capability of the model is evaluated by using bootstrap (resampling = 1000) internal validation and Hosmer-Lemeshow test. The clinical utility and clinical application value were evaluated by decision curve analysis (DCA) and clinical impact curve (CIC). In addition, a retrospective review of 133 AAA patients and 262 controls from The First Affiliated Hospital of Soochow University was performed as an external validation cohort. Eight variables are selected to construct the nomogram of AAA risk assessment model. The nomogram predicted AAA with AUC values of 0.928 (95%CI, 0.907-0.950) in the training cohort, and 0.902 (95%CI, 0.865-0.940) in the external validation cohort, the risk prediction model has excellent discriminative ability. The calibration curve and Hosmer-Lemeshow test proved that the nomogram predicted outcomes were close to the ideal curve, the predicted outcomes were consistent with the real outcomes, the DCA curve and CIC curve showed that patients could benefit. This finding was also confirmed in the external validation cohort. In this study, a nomogram was constructed that incorporated eight demographic and clinical characteristics of AAA patients, which can be used as a practical approach for the personalized early screening and auxiliary diagnosis of the potential risk factors.
Collapse
Affiliation(s)
- Guijun Huo
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, No. 26 Daoqian Street, Suzhou, Jiangsu, China
| | - Han Shen
- Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jin Zheng
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, No. 26 Daoqian Street, Suzhou, Jiangsu, China
| | | | - Zhichao Yao
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, No. 26 Daoqian Street, Suzhou, Jiangsu, China
| | - Junjie Cao
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, No. 26 Daoqian Street, Suzhou, Jiangsu, China
| | - Yao Tang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, No. 26 Daoqian Street, Suzhou, Jiangsu, China
| | - Jian Huang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, No. 26 Daoqian Street, Suzhou, Jiangsu, China
| | - Zhanao Liu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, No. 26 Daoqian Street, Suzhou, Jiangsu, China
| | - Dayong Zhou
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, No. 26 Daoqian Street, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Durrani IA, John P, Bhatti A, Khan JS. Network medicine based approach for identifying the type 2 diabetes, osteoarthritis and triple negative breast cancer interactome: Finding the hub of hub genes. Heliyon 2024; 10:e36650. [PMID: 39281650 PMCID: PMC11401126 DOI: 10.1016/j.heliyon.2024.e36650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
The increasing prevalence of multi-morbidities, particularly the incidence of breast cancer in diabetic/osteoarthritic patients emphasize on the need for exploring the underlying molecular mechanisms resulting in carcinogenesis. To address this, present study employed a systems biology approach to identify switch genes pivotal to the crosstalk between diseased states resulting in multi-morbid conditions. Hub genes previously reported for type 2 diabetes mellitus (T2DM), osteoarthritis (OA), and triple negative breast cancer (TNBC), were extracted from published literature and fed into an integrated bioinformatics analyses pipeline. Thirty-one hub genes common to all three diseases were identified. Functional enrichment analyses showed these were mainly enriched for immune and metabolism associated terms including advanced glycation end products (AGE) pathways, cancer pathways, particularly breast neoplasm, immune system signalling and adipose tissue. The T2DM-OA-TNBC interactome was subjected to protein-protein interaction network analyses to identify meta hub/clustered genes. These were prioritized and wired into a three disease signalling map presenting the enriched molecular crosstalk on T2DM-OA-TNBC axes to gain insight into the molecular mechanisms underlying disease-disease interactions. Deciphering the molecular bases for the intertwined metabolic and immune states may potentiate the discovery of biomarkers critical for identifying and targeting the immuno-metabolic origin of disease.
Collapse
Affiliation(s)
- Ilhaam Ayaz Durrani
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Peter John
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Attya Bhatti
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | | |
Collapse
|
7
|
Corleto KA, Strandmo JL, Giles ED. Metformin and Breast Cancer: Current Findings and Future Perspectives from Preclinical and Clinical Studies. Pharmaceuticals (Basel) 2024; 17:396. [PMID: 38543182 PMCID: PMC10974219 DOI: 10.3390/ph17030396] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/01/2024] Open
Abstract
Over the last several decades, a growing body of research has investigated the potential to repurpose the anti-diabetic drug metformin for breast cancer prevention and/or treatment. Observational studies in the early 2000s demonstrated that patients with diabetes taking metformin had decreased cancer risk, providing the first evidence supporting the potential role of metformin as an anti-cancer agent. Despite substantial efforts, two decades later, the exact mechanisms and clinical efficacy of metformin for breast cancer remain ambiguous. Here, we have summarized key findings from studies examining the effect of metformin on breast cancer across the translational spectrum including in vitro, in vivo, and human studies. Importantly, we discuss critical factors that may help explain the significant heterogeneity in study outcomes, highlighting how metformin dose, underlying metabolic health, menopausal status, tumor subtype, membrane transporter expression, diet, and other factors may play a role in modulating metformin's anti-cancer effects. We hope that these insights will help with interpreting data from completed studies, improve the design of future studies, and aid in the identification of patient subsets with breast cancer or at high risk for the disease who are most likely to benefit from metformin treatment.
Collapse
Affiliation(s)
- Karen A. Corleto
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (K.A.C.)
- School of Kinesiology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jenna L. Strandmo
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA; (K.A.C.)
| | - Erin D. Giles
- School of Kinesiology and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Tang YY, Xu WD, Fu L, Liu XY, Huang AF. Synergistic effects of BTN3A1, SHP2, CD274, and STAT3 gene polymorphisms on the risk of systemic lupus erythematosus: a multifactorial dimensional reduction analysis. Clin Rheumatol 2024; 43:489-499. [PMID: 37688767 DOI: 10.1007/s10067-023-06765-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus is a complex autoimmune disorder, and evidence supports the significance of genetic polymorphisms in SLE genetic susceptibility. The aim of this study was to assess the effects of BTN3A1 (butyrophilin 3A1), SHP2 (Src homology-2 containing protein tyrosine phosphatase), CD274 (programmed cell death 1 ligand 1), and STAT3 (signal transducer-activator of transcription 3) gene interactions on SLE risk. MATERIALS AND METHODS Two hundred and ninety patients diagnosed with SLE and 370 healthy controls were recruited. A multifactor dimensionality reduction (MDR) approach was used to determine the epistasis among single nucleotide polymorphisms (SNPs) on the BTN3A1 (rs742090), SHP2 (rs58116261), CD174 (rs702275), and STAT3 (rs8078731) genes. The best risk prediction model was identified in terms of precision and cross-validation consistency. RESULTS Allele A and genotype AA were negatively related to genetic susceptibility of SLE for BTN3A1 rs742090 (OR = 0.788 (0.625-0.993), P = 0.044; OR = 0.604 (0.372-0.981), P = 0.040). For STAT3 rs8078731, allele A and genotype AA were positively related to the risk of SLE (OR = 1.307 (1.032-1.654), P = 0.026; OR = 1.752 (1.020-3.010), P = 0.041). MDR analysis revealed the most significant interaction between BTN3A1 rs742090 and SHP2 rs58116261. The best risk prediction model was a combination of BTN3A1 rs742090, SHP2 rs58116261, and STAT3 rs8078731 (accuracy = 0.5866, consistency = 10/10, OR = 1.9870 (1.5964-2.4731), P = 0.001). CONCLUSION These data indicate that risk prediction models formed by gene interactions (BTN3A1, SHP2, STAT3) can identify susceptible populations of SLE. Key Points • BTN3A1 rs742090 polymorphism was a protective factor for systemic lupus erythematosus, while STAT3 rs8078731 polymorphism was a risk factor. • There was a strong synergistic effect of BTN3A1 rs742090 and SHP2 rs58116261, and interaction among BTN3A1 rs742090, SHP2 rs58116261, and STAT3 rs8078731 constructed the best model to show association with SLE risk.
Collapse
Affiliation(s)
- Yang-Yang Tang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| | - Lu Fu
- Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao-Yan Liu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
9
|
Song D, Yang Q, Li X, Chen K, Tong J, Shen Y. The role of the JAK/STAT3 signaling pathway in acquired corneal diseases. Exp Eye Res 2024; 238:109748. [PMID: 38081573 DOI: 10.1016/j.exer.2023.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/05/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024]
Abstract
Acquired corneal diseases such as dry eye disease (DED), keratitis and corneal alkali burns are significant contributors to vision impairment worldwide, and more effective and innovative therapies are urgently needed. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway plays an indispensable role in cell metabolism, inflammation and the immune response. Studies have shown that regulators of this pathway are extensively expressed in the cornea, inducing significant activation of JAK/STAT3 signaling in specific acquired corneal diseases. The activation of JAK/STAT3 signaling contributes to various pathophysiological processes in the cornea, including inflammation, neovascularization, fibrosis, and wound healing. In the context of DED, the hypertonic environment activates JAK/STAT3 signaling to stimulate corneal inflammation. Inflammation and injury progression in infectious keratitis can also be modulated by JAK/STAT3 signaling. Furthermore, JAK/STAT3 signaling is involved in every stage of corneal repair after alkali burns, including acute inflammation, angiogenesis and fibrosis. Treatments modulating JAK/STAT3 signaling have shown promising results in attenuating corneal damage, indicating its potential as a novel therapeutic target. Thus, this review emphasizes the multiple roles of the JAK/STAT3 signaling pathway in common acquired corneal disorders and summarizes the current achievements of JAK/STAT3-targeting therapy to provide new insights into future applications.
Collapse
Affiliation(s)
- Dongjie Song
- Department of Ophthalmology, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, China
| | - Qianjie Yang
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Xiang Li
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
10
|
Kim B, Yu JE, Yeo IJ, Son DJ, Lee HP, Roh YS, Lim KH, Yun J, Park H, Han SB, Hong JT. (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol alleviates inflammatory responses in LPS-induced mice liver sepsis through inhibition of STAT3 phosphorylation. Int Immunopharmacol 2023; 125:111124. [PMID: 37977740 DOI: 10.1016/j.intimp.2023.111124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Sepsis is a life-threatening disease with limited treatment options, and the inflammatory process represents an important factor affecting its progression. Many studies have demonstrated the critical roles of signal transducer and activator of transcription 3 (STAT3) in sepsis pathophysiology and pro-inflammatory responses. Inhibition of STAT3 activity may therefore represent a promising treatment option for sepsis. We here used a mouse model to demonstrate that (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) treatment prevented the liver sepsis-related mortality induced by 30 mg/kg lipopolysaccharide (LPS) treatment and reduced LPS-induced increase in alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels, all of which are markers of liver sepsis progression. These recovery effects were associated with decreased LPS-induced STAT3, p65, and JAK1 phosphorylation and proinflammatory cytokine (interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha) level; expression of cyclooxygenase-2 and induced nitric oxide synthase were also reduced by MMPP. In an in vitro study using the normal liver cell line THLE-2, MMPP treatment prevented the LPS-induced increase of STAT3, p65, and JAK1 phosphorylation and inflammatory protein expression in a dose-dependent manner, and this effect was enhanced by combination treatment with MMPP and STAT3 inhibitor. The results clearly indicate that MMPP treatment prevents LPS-induced mortality by inhibiting the inflammatory response via STAT3 activity inhibition. Thus, MMPP represents a novel agent for alleviating LPS-induced liver sepsis.
Collapse
Affiliation(s)
- Boyoung Kim
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Ji Eun Yu
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - In Jun Yeo
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Dong Ju Son
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Hee Pom Lee
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Yoon Seok Roh
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Key-Hwan Lim
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Jaesuk Yun
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Hanseul Park
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Sang Bae Han
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy & Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-21, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| |
Collapse
|
11
|
Petrasca A, Hambly R, Kearney N, Smith CM, Pender EK, Mac Mahon J, O'Rourke AM, Ismaiel M, Boland PA, Almeida JP, Kennedy C, Zaborowski A, Murphy S, Winter D, Kirby B, Fletcher JM. Metformin has anti-inflammatory effects and induces immunometabolic reprogramming via multiple mechanisms in hidradenitis suppurativa. Br J Dermatol 2023; 189:730-740. [PMID: 37648653 DOI: 10.1093/bjd/ljad305] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Targeting immunometabolism has shown promise in treating autoimmune and inflammatory conditions. Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease involving painful lesions in apocrine gland-bearing skin. Therapeutic options for HS are limited and often ineffective; thus, there is a pressing need for improved treatments. To date, metabolic dysregulation has not been investigated in HS. As HS is highly inflammatory, we hypothesized that energy metabolism is dysregulated in these patients. Metformin, an antidiabetic drug, which is known to impact on cellular metabolic and signalling pathways, has been shown to have anti-inflammatory effects in cancer and arthritis. While metformin is not licensed for use in HS, patients with HS taking metformin show improved clinical symptoms. OBJECTIVE To assess the effect and mechanism of action of metformin in HS. METHODS To assess the effect of metformin in vivo, we compared the immune and metabolic profiles of peripheral blood mononuclear cells (PBMCs) of patients with HS taking metformin vs. those not taking metformin. To examine the effect of metformin treatment ex vivo, we employed a skin explant model on skin biopsies from patients with HS not taking metformin, which we cultured with metformin overnight. We used enzyme-linked immunosorbent assays, multiplex cytokine assays and quantitative real-time polymerase chain reaction (RT-PCR) to measure inflammatory markers, and Seahorse flux technology and quantitative RT-PCR to assess glucose metabolism. RESULTS We showed that metabolic pathways are dysregulated in the PBMCs of patients with HS vs. healthy individuals. In metformin-treated patients, these metabolic pathways were restored and their PBMCs had reduced inflammatory markers following long-term metformin treatment. In the skin explant model, we found that overnight culture with metformin reduced inflammatory cytokines and chemokines and glycolytic genes in lesions and tracts of patients with HS. Using in vitro assays, we found that metformin may induce these changes via the NLR family pyrin domain containing 3 (NLRP3) inflammasome and the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) pathway, which is linked to glycolysis and protein synthesis. CONCLUSIONS Our study provides insight into the mechanisms of action of metformin in HS. The anti-inflammatory effects of metformin support its use as a therapeutic agent in HS, while its effects on immunometabolism suggest that targeting metabolism is a promising therapeutic option in inflammatory diseases, including HS.
Collapse
Affiliation(s)
- Andreea Petrasca
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Roisin Hambly
- Department of Dermatology, St. Vincent's University Hospital, Dublin, Ireland
- Charles Institute of Dermatology, Dublin, Ireland
| | - Niamh Kearney
- Department of Dermatology, St. Vincent's University Hospital, Dublin, Ireland
- Charles Institute of Dermatology, Dublin, Ireland
| | - Conor M Smith
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Emily K Pender
- Department of Dermatology, St. Vincent's University Hospital, Dublin, Ireland
- Charles Institute of Dermatology, Dublin, Ireland
| | - Julie Mac Mahon
- Department of Dermatology, St. Vincent's University Hospital, Dublin, Ireland
- Charles Institute of Dermatology, Dublin, Ireland
| | - Aoife M O'Rourke
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mohamed Ismaiel
- Department of Surgery, St. Michael's Hospital, Dublin, Ireland
| | | | - Jose P Almeida
- Department of Surgery, St. Michael's Hospital, Dublin, Ireland
| | - Czara Kennedy
- Department of Surgery, St. Michael's Hospital, Dublin, Ireland
| | | | - Siun Murphy
- Department of Plastic Reconstructive and Aesthetic Surgery, Blackrock Clinic, Dublin, Ireland
| | - Desmond Winter
- Department of Surgery, St. Michael's Hospital, Dublin, Ireland
| | - Brian Kirby
- Department of Dermatology, St. Vincent's University Hospital, Dublin, Ireland
- Charles Institute of Dermatology, Dublin, Ireland
| | - Jean M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
13
|
Han X, Sun Y. PROTACs: A novel strategy for cancer drug discovery and development. MedComm (Beijing) 2023; 4:e290. [PMID: 37261210 PMCID: PMC10227178 DOI: 10.1002/mco2.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Proteolysis targeting chimera (PROTAC) technology has become a powerful strategy in drug discovery, especially for undruggable targets/proteins. A typical PROTAC degrader consists of three components: a small molecule that binds to a target protein, an E3 ligase ligand (consisting of an E3 ligase and its small molecule recruiter), and a chemical linker that hooks first two components together. In the past 20 years, we have witnessed advancement of multiple PROTAC degraders into the clinical trials for anticancer therapies. However, one of the major challenges of PROTAC technology is that only very limited number of E3 ligase recruiters are currently available as E3 ligand for targeted protein degradation (TPD), although human genome encodes more than 600 E3 ligases. Thus, there is an urgent need to identify additional effective E3 ligase recruiters for TPD applications. In this review, we summarized the existing RING-type E3 ubiquitin ligase and their small molecule recruiters that act as effective E3 ligands of PROTAC degraders and their application in anticancer drug discovery. We believe that this review could serve as a reference in future development of efficient E3 ligands of PROTAC technology for cancer drug discovery and development.
Collapse
Affiliation(s)
- Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
- Research Center for Life Science and Human HealthBinjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|