1
|
Hou X, Pan Y. Melatonin in Glaucoma: Integrative Mechanisms of Intraocular Pressure Control and Neuroprotection. Biomedicines 2025; 13:1213. [PMID: 40427040 DOI: 10.3390/biomedicines13051213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Glaucoma is a leading cause of irreversible visual loss worldwide, characterized by progressive retinal ganglion cell (RGC) degeneration and optic nerve damage. Current therapies mainly focus on lowering intraocular pressure (IOP), yet fail to address pressure-independent neurodegenerative mechanisms. Melatonin, an endogenously produced indoleamine, has gained attention for its potential in modulating both IOP and neurodegeneration through diverse cellular pathways. This review evaluates the therapeutic relevance of melatonin in glaucoma by examining its mechanistic actions and emerging delivery approaches. Methods: A comprehensive literature search was conducted via PubMed and Medline to identify studies published between 2000 and 2025 on melatonin's roles in glaucoma. Included articles discussed its effects on IOP regulation, RGC survival, oxidative stress, mitochondrial integrity, and inflammation. Results: Evidence supports melatonin's involvement in IOP reduction via MT receptor activation and its synergism with adrenergic and enzymatic regulators. Moreover, it protects RGCs by mitigating oxidative stress, preventing mitochondrial dysfunction, and inhibiting apoptotic and inflammatory cascades. Recent advances in ocular drug delivery systems enhance its bioavailability and therapeutic potential. Conclusions: Melatonin represents a multi-target candidate for glaucoma treatment. Further clinical studies are necessary to establish optimal dosing strategies, delivery methods, and long-term safety in patients.
Collapse
Affiliation(s)
- Xinyu Hou
- Department of Ophthalmology, Peking University First Hospital, No. 8 Xi Shi Ku Street, Xi Cheng District, Beijing 100034, China
| | - Yingzi Pan
- Department of Ophthalmology, Peking University First Hospital, No. 8 Xi Shi Ku Street, Xi Cheng District, Beijing 100034, China
| |
Collapse
|
2
|
Konuk ŞG, Özdemir S, Kılıç R, Bektur G, Güneş A, Şener E. Evaluatıon of the protective role of melatonın ın methanol ınduced optıc neuropathy. Int Ophthalmol 2025; 45:182. [PMID: 40343573 PMCID: PMC12064626 DOI: 10.1007/s10792-025-03539-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 04/05/2025] [Indexed: 05/11/2025]
Abstract
PURPOSE To investigate the effects of intraperitoneal melatonin administration on the optic nerve and retina following acute methanol exposure. MATERIALS AND METHODS Twenty-four female albino Wistar rats weighing 200-300 g and aged between 3 and 6 months were utilized. The rats were divided into three groups, each consisting of eight rats: healthy control (C), methanol (M), and methanol + melatonin (MM) groups. Initially, rats in groups M and MM were administered intraperitoneal methotrexate at a dose of 0.3 mg/kg. One week later, the same groups were orally given methanol at a concentration of 20% and a dose of 3 g/kg to induce methanol toxicity. To ensure survival, four hours after oral methanol administration, ethanol was orally administered at a concentration of 20% and a dose of 0.5 g/kg. Additionally, starting from the next day, the MM group received intraperitoneal melatonin at a dose of 20 mg/kg/day for 14 days. On the 14th day, rats were sacrificed, and their eyes, including the optic nerves, were enucleated for histopathological examinations. Myelin basic protein (MBP), retinal ganglion cell (RGC), glial cell degeneration and optic nerve thickness were evaluated. RESULTS The experiment was completed with a total of twenty-four rats, with each group consisting of eight rats. When evaluating RGC, glial cell degeneration, and optic nerve thickness, the results for Group MM were significantly better than those for Group M (p < 0.0001, p < 0.0001, p < 0.0001, respectively). There was no significant difference between Group MM and Group C, which was not subjected to alcohol intoxication (p: 0.89, p: 0.82, p: 0.77, respectively). There was no significant difference in MBP values between the groups (p: 0.44, p: 0.17, p: 0.80, respectively). CONCLUSION Intraperitoneal administration of melatonin has a significant positive effect on the structure of the retina and optic nerve resulting from methanol exposure. Melatonin should be considered in future studies as a potential therapy for methanol-induced toxic optic neuropathy.
Collapse
Affiliation(s)
- Şerife Gülhan Konuk
- Faculty of Medicine, Department of Ophthalmology, Tokat Gaziosmanpaşa University, Tokat, Turkey.
| | - Süleyman Özdemir
- Faculty of Medicine, Department of Pathology, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Raşit Kılıç
- Faculty of Medicine, Department of Ophthalmology, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Gamze Bektur
- Faculty of Medicine, Department of Ophthalmology, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Alper Güneş
- Faculty of Medicine, Department of Ophthalmology, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Ender Şener
- Faculty of Medicine, Department of Ophthalmology, Tokat Gaziosmanpaşa University, Tokat, Turkey
| |
Collapse
|
3
|
Li B, Zhang T, Tan G, Pu Z, Shen Y. Neuroprotective Effects of Astragalus Polysaccharide on Retina Cells and Ganglion Cell Projection in NMDA-Induced Retinal Injury. Curr Eye Res 2025; 50:282-294. [PMID: 39373214 DOI: 10.1080/02713683.2024.2412304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
PURPOSE Astragalus polysaccharide (APS), a water-soluble heteropolysaccharide, possesses immunomodulatory, anti-inflammatory, and cardioprotective properties. This study investigates the neuroprotective potential of APS in a model of N-Methyl-d-aspartic acid (NMDA)-induced retinal neurodegeneration, aiming to explore its potential as a treatment for retinal degenerative diseases. METHODS Retinal function was evaluated using electroretinography (ERG), optomotor reflex (OMR), and flash visual evoked potentials (FVEP). Retinal inflammatory responses were examined through immunohistochemistry, western blotting (WB), and quantitative reverse transcription PCR (qRT-PCR). To assess the integrity of visual projections, an intravitreal injection of adeno-associated virus (AAV) was employed to trace the projections of retinal ganglion cells (RGCs) to the visual centers. RESULTS APS treatment conferred protection to retinal cells, as indicated by ERG and OMR assessments. And APS intervention mitigated NMDA-induced apoptosis, evidenced by a decrease in TUNEL-positive cells. Furthermore, APS treatment attenuated the NMDA-induced reduction in RGC projections to the visual centers, including the superior colliculus and lateral geniculate nucleus, as demonstrated by AAV tracing. CONCLUSIONS Our findings reveal that APS shields the retina from NMDA-induced damage by inhibiting the NF-κB signaling pathway and reduces the detrimental effects of NMDA on RGC projections to the visual centers. These findings propose APS as a potential novel therapeutic agent for the treatment of retinal diseases.
Collapse
Affiliation(s)
- Baige Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Tianlu Zhang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Gao Tan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Zeyuan Pu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, P. R. China
- Frontier Science Center for lmmunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
4
|
Feng L, Wang C, Zhang C, Zhang W, Zhu W, He Y, Xia Z, Song W. p38 MAPK inhibitor SB202190 suppresses ferroptosis in the glutamate-induced retinal excitotoxicity glaucoma model. Neural Regen Res 2024; 19:2299-2309. [PMID: 38488564 PMCID: PMC11034608 DOI: 10.4103/1673-5374.391193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/08/2023] [Accepted: 10/26/2023] [Indexed: 04/24/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202410000-00031/figure1/v/2024-02-06T055622Z/r/image-tiff Glutamate excitotoxicity has been shown to play an important role in glaucoma, and glutamate can induce ferroptosis. The p38 mitogen-activated protein kinase (MAPK) pathway inhibitor SB202190 has a potential ability to suppress ferroptosis, and its downstream targets, such as p53, have been shown to be associated with ferroptosis. However, whether ferroptosis also occurs in retinal ganglion cells in response to glutamate excitotoxicity and whether inhibition of ferroptosis reduces the loss of retinal ganglion cells induced by glutamate excitotoxicity remain unclear. This study investigated ferroptosis in a glutamate-induced glaucoma rat model and explored the effects and molecular mechanisms of SB202190 on retinal ganglion cells. A glutamate-induced excitotoxicity model in R28 cells and an N-methyl-D-aspartate-induced glaucoma model in rats were used. In vitro experiments showed that glutamate induced the accumulation of iron and lipid peroxide and morphological changes of mitochondria in R28 cells, and SB202190 inhibited these changes. Glutamate induced the levels of p-p38 MAPK/p38 MAPK and SAT1 and decreased the expression levels of ferritin light chain, SLC7A11, and GPX4. SB202190 inhibited the expression of iron death-related proteins induced by glutamate. In vivo experiments showed that SB202190 attenuated N-methyl-D-aspartate-induced damage to rat retinal ganglion cells and improved visual function. These results suggest that SB202190 can inhibit ferroptosis and protect retinal ganglion cells by regulating ferritin light chain, SAT1, and SLC7A11/Gpx4 pathways and may represent a potential retina protectant.
Collapse
Affiliation(s)
- Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| | - Weiming Zhu
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| | - Ye He
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| | - Zhaohua Xia
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| |
Collapse
|
5
|
Zhang J, Zhou H, Cai Y, Yoshida S, Li Y, Zhou Y. Melatonin: Unveiling the functions and implications in ocular health. Pharmacol Res 2024; 205:107253. [PMID: 38862072 DOI: 10.1016/j.phrs.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Melatonin, a versatile hormone produced by the pineal gland, has garnered considerable scientific interest due to its diverse functions. In the eye, melatonin regulates a variety of key processes like inhibiting angiogenesis by reducing vascular endothelial growth factor levels and protecting the blood-retinal barrier (BRB) integrity by enhancing tight junction proteins and pericyte coverage. Melatonin also maintains cell health by modulating autophagy via the Sirt1/mTOR pathways, reduces inflammation, promotes antioxidant enzyme activity, and regulates intraocular pressure fluctuations. Additionally, melatonin protects retinal ganglion cells by modulating aging and inflammatory pathways. Understanding melatonin's multifaceted functions in ocular health could expand the knowledge of ocular pathogenesis, and shed new light on therapeutic approaches in ocular diseases. In this review, we summarize the current evidence of ocular functions and therapeutic potential of melatonin and describe its roles in angiogenesis, BRB integrity maintenance, and modulation of various eye diseases, which leads to a conclusion that melatonin holds promising treatment potential for a wide range of ocular health conditions.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| |
Collapse
|
6
|
Dou X, Luo Q, Xie L, Zhou X, Song C, Liu M, Liu X, Ma Y, Liu X. Medical Prospect of Melatonin in the Intervertebral Disc Degeneration through Inhibiting M1-Type Macrophage Polarization via SIRT1/Notch Signaling Pathway. Biomedicines 2023; 11:1615. [PMID: 37371708 PMCID: PMC10296002 DOI: 10.3390/biomedicines11061615] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The study aims to explore the medical prospect of melatonin (MLT) and the underlying therapeutic mechanism of MLT-mediated macrophage (Mφ) polarization on the function of nucleus pulposus (NP) in intervertebral disc degeneration (IDD). RAW 264.7 Mφs were induced by lipopolysaccharide (LPS) to simulate Mφ polarization and the inflammatory reaction of Mφs with or without MLT were detected. Conditioned medium (CM) collected from these activated Mφs with or without MLT treatment were further used to incubate NP cells. The oxidative stress, inflammation and extracellular matrix (ECM) metabolism in NP cells were determined. Then, the changes in SIRT1/Notch signaling were detected. The agonist (SRT1720) and inhibitor (EX527) of SIRT1 were used to further explore the association among MLT. The interaction between SIRT1 and NICD was detected by immunoprecipitation (IP). Finally, puncture-induced rat IDD models were established and IDD degrees were clarified by X-ray, MRI, H&E staining and immunofluorescence (IF). The results of flow cytometry and inflammation detection indicated that LPS could induce M1-type Mφ polarization with pro-inflammatory properties. MLT significantly inhibited the aforementioned process and inhibited M1-type Mφ polarization, accompanied by the alleviation of inflammation. Compared with those without MLT, the levels of oxidative stress, pro-inflammatory cytokines and ECM catabolism in NP cells exposed to CM with MLT were markedly downregulated in a dose-dependent manner. The inhibition of SIRT1 and the enhancement of Notch were observed in activated Mφs and they can be reversed after MLT treatment. This prediction was further confirmed by using the SRT1720 and EX527 to activate or inhibit the signaling. The interaction between SIRT1 and NICD was verified by IP. In vivo study, the results of MRI, Pfirrmann grade scores and H&E staining demonstrated the degree of disc degeneration was significantly lower in the MLT-treated groups when compared with the IDD control group. The IF data showed M1-type Mφ polarization decreased after MLT treatment. MLT could inhibit M1-type Mφ polarization and ameliorate the NP cell injury caused by inflammation in vitro and vivo, which is of great significance for the remission of IDD. The SIRT1/Notch signaling pathway is a promising target for MLT to mediate Mφ polarization.
Collapse
Affiliation(s)
- Xinyu Dou
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (X.D.)
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| | - Qipeng Luo
- Pain Medical Center, Peking University Third Hospital, Beijing 100191, China
| | - Linzhen Xie
- Peking University Fourth School of Clinical Medicine, Beijing 100035, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Chunyu Song
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Meijuan Liu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Xiao Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (X.D.)
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| | - Yunlong Ma
- Pain Medical Center, Peking University Third Hospital, Beijing 100191, China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (X.D.)
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| |
Collapse
|