1
|
Wang Y, Chen Y, Liu Y, Zhao J, Wang G, Chen H, Tang Y, Ouyang D, Xie S, You J, Yang X, Li M, Xia J, Xiang T, Weng D. Tumor vascular endothelial cells promote immune escape by upregulating PD-L1 expression via crosstalk between NF-κB and STAT3 signaling pathways in nasopharyngeal carcinoma. Cell Death Dis 2025; 16:129. [PMID: 40000620 PMCID: PMC11861260 DOI: 10.1038/s41419-025-07444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Aberrant vascular systems are significant indicators of cancer and play pivotal roles in tumor immunomodulation. However, the role of PD-L1 expressed on vascular endothelial cells (VECs) in the tumor immune microenvironment of nasopharyngeal carcinoma (NPC), as well as its correlation with patient prognosis, remains unclear. According to in vitro experiments conducted in our research, NPC tumor supernatants could upregulate PD-L1 expression on HUVECs, and the upregulated PD-L1 could bind to PD-1 on T cells leading to diminished T cell killing. The results of animal experiments similarly showed that elevated levels of PD-L1 on tumor VECs hindered the anti-tumor effectiveness of T cells, resulting in immune evasion and tumor progression. Furthermore, PD-L1 expression on tumor VECs served as a valuable prognostic marker, with heightened expression linked to poorer prognosis in NPC patients. Mechanistically, we discovered that the interaction between NF-κB and STAT3 signaling pathways may contribute significantly to the up-regulation of PD-L1 on VECs in NPC. Together, our work provides novel insights into identifying prognostic markers and strategies for reversing immune evasion mechanisms in NPC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Yuanyuan Chen
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yuanyuan Liu
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Jingjing Zhao
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Gongming Wang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Hao Chen
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yan Tang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Dijun Ouyang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Songzuo Xie
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Jinqi You
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Xinyi Yang
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Minxing Li
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Jianchuan Xia
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| | - Tong Xiang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| | - Desheng Weng
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
| |
Collapse
|
2
|
An Y, Xu M, Yan M, Zhang H, Li C, Wang L, Liu C, Dong H, Chen L, Zhang L, Chen Y, Han X, Li Y, Wang D, Gao C. Erythrophagocytosis-induced ferroptosis contributes to pulmonary microvascular thrombosis and thrombotic vascular remodeling in pulmonary arterial hypertension. J Thromb Haemost 2025; 23:158-170. [PMID: 39357568 DOI: 10.1016/j.jtha.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/01/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Whether primary or just as a complication from the progression of pulmonary arterial hypertension (PAH), thrombosis seems to be an important player in this condition. The crosstalk between red blood cells (RBCs) and pulmonary microvascular endothelial cells (PMVECs) and their role in PAH remain undefined. OBJECTIVES The goals of this study were to assess the role of RBC-PMVEC interaction in microvascular thrombosis and thrombotic vascular remodeling under hypoxic conditions. METHODS We established an in vitro hypoxic coincubation model of RBC and PMVEC as well as a hypoxic mouse model. We investigated erythrophagocytosis (EP), ferroptosis, thrombosis tendency, and pulmonary hemodynamics in experimental PAH. RESULTS Increased EP in PMVEC triggered ferroptosis, enhanced procoagulant activity, and exacerbated vessel remodeling under hypoxic conditions. In the PAH mouse model induced by chronic hypoxia, EP-induced ferroptosis followed by upregulated TMEM16F led to a high tendency of thrombus formation and thrombotic vascular remodeling. Inhibition of ferroptosis or silencing of TMEM16F could alleviate hypercoagulable phenotype, reverse right ventricular systolic pressure, right ventricular hypertrophy index, and remodeling of pulmonary vessels. CONCLUSION These results illustrate the pathogenic RBC-PMVEC interactions in PAH. Inhibition EP, ferroptosis, or TMEM16F could be a novel therapeutic target to prevent PAH development and thrombotic complications.
Collapse
Affiliation(s)
- Yao An
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Minghui Xu
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Meishan Yan
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Hongyu Zhang
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Caixia Li
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Lifeng Wang
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Caixu Liu
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Haoran Dong
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Li Chen
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Lixin Zhang
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Yingli Chen
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Xu Han
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Yun Li
- Hematology Department, Daqing Oil Field General Hospital, Daqing, China
| | - Dongsheng Wang
- Department of Emergency, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Chunyan Gao
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China.
| |
Collapse
|
3
|
Jing Y, Zhao W, Zhou Z, Wang W, Niu Y, He X, Chang T, Guo C, Li B, Dou G. Apoptotic Vesicles Modulate Endothelial Metabolism and Ameliorate Ischemic Retinopathy via PD1/PDL1 Axis. Adv Healthc Mater 2024; 13:e2303527. [PMID: 38411334 PMCID: PMC11468456 DOI: 10.1002/adhm.202303527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Indexed: 02/28/2024]
Abstract
Pathological angiogenesis with subsequent disturbed microvascular remodeling is a major cause of irreversible blindness in a number of ischemic retinal diseases. The current anti-vascular endothelial growth factor therapy can effectively inhibit angiogenesis, but it also brings significant side effects. The emergence of stem cell derived extracellular vesicles provides a new underlining strategy for ischemic retinopathy. Apoptotic vesicles (apoVs) are extracted from stem cells from human exfoliated deciduous teeth (SHED). SHED-apoVs are delivered into the eyeballs of oxygen-induced retinopathy (a most common model of angiogenic retinal dieseases) mice through intravitreal injection. The retinal neovascularization and nonperfusion area, vascular structure, and density changes are observed during the neovascularization phase (P17) and vascular remodeling phase (P21), and visual function is measured. The expression of extracellular acidification rate and lactic acid testing are used to detect endothelial cells (ECs) glycolytic activity. Furthermore, lentivirus and neutralizing antibody are used to block PD1-PDL1 axis, investigating the effects of SHED-apoVs on glycolysis and angiogenic activities. This work shows that SHED-apoVs are taken up by ECs and modulate the ECs glycolysis, leading to the decrease of abnormal neovessels and vascular remodeling. Furthermore, it is found that, at the molecular level, apoVs-carried PD1 interacts with PDL1 on hypoxic ECs to regulate the angiogenic activation. SHED-apoVs inhibit pathological angiogenesis and promote vascular remodeling in ischemic retinopathy partially by modulating ECs glycolysis through PD1/PDL1 axis. This study provides a new potential strategy for the clinical treatment of pathological retinal neovascularization.
Collapse
Affiliation(s)
- Yutong Jing
- Department of OphthalmologyEye Institute of Chinese PLAXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseaseShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Wanmin Zhao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseaseShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Ziyi Zhou
- Department of OphthalmologyEye Institute of Chinese PLAXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Wenzhe Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseaseShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Yali Niu
- Department of OphthalmologyEye Institute of Chinese PLAXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Xiaoning He
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseaseShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Tianfang Chang
- Department of OphthalmologyEye Institute of Chinese PLAXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Changmei Guo
- Department of OphthalmologyEye Institute of Chinese PLAXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Bei Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseaseShaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyFourth Military Medical UniversityXi'anShaanxi710032China
| | - Guorui Dou
- Department of OphthalmologyEye Institute of Chinese PLAXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|