1
|
Duan Y, Lu Y, Liu Z, Zhang J, Yang Z, Guo Y, Yang Y, Lin W, Shuai Y, Huang J, Xu Y, Wu R, Wu Y, Li Y, Ke J. Qingre Huayu Jianpi prescription alleviates the inflammatory transformation of colitis-associated colorectal cancer by inhibiting the IL-17RA/ACT1/NF-κB axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119554. [PMID: 40043824 DOI: 10.1016/j.jep.2025.119554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/04/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammation-to-cancer transformation is critical for the progression of ulcerative colitis to colitis-associated colorectal cancer (CAC). AIM OF THE STUDY To explore the role and potential mechanisms of Qingre Huayu Jianpi prescription (QHJ) treatment in the development of CAC. MATERIALS AND METHODS Combined network pharmacology and transcriptome analyses were used to investigate QHJ-associated targets and pathways in the context of CAC. Using clinical data and a murine CAC model, we examined QHJ effects on pathological morphology, inflammatory factors, and key target pathways. RESULTS Network pharmacology analysis identified the interleukin 17 receptor A (IL-17RA)/ACT1/nuclear factor kappa B (NF-κB) axis as critical in the inflammation-to-CAC transformation and for QHJ effects in CAC. Western blot and multiplex immunofluorescence analyses revealed significant upregulation of the IL-17RA/ACT1/NF-κB axis along with matrix metalloproteinase (MMP)7, MMP9, and chemokine ligand 2 (CCL2) in human tumor tissues. QHJ significantly ameliorated CAC-related symptoms in mice in vivo by downregulating the IL-17RA/ACT1/NF-κB axis. This reduced the number of colorectal adenomas, increased colorectal length, and improved the structure of colonic mucosal glands. Additionally, QHJ inhibited the expression of pro-inflammatory factors and decreased the levels of MMP7, MMP9, and CCL2, ultimately suppressing the inflammation-to-cancer transformation. CONCLUSION QHJ exhibited significant therapeutic effects on CAC in mice, likely due to its inhibitory action on the IL-17RA/ACT1/NF-κB axis. This study lays the foundation for research into the pathogenesis of CAC and the clinical application of QHJ.
Collapse
Affiliation(s)
- Yilin Duan
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yao Lu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhenglin Liu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jin Zhang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhiyu Yang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yihan Guo
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yi Yang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wenjia Lin
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuxing Shuai
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiaying Huang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yingjian Xu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Renxiong Wu
- Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Gaozhou, 525200, China
| | - Yongqiang Wu
- Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Gaozhou, 525200, China.
| | - Yanwu Li
- Guangzhou University of Chinese Medicine Science and Technology Innovation Center, Guangzhou, 510405, China.
| | - Junyu Ke
- Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Gaozhou, 525200, China.
| |
Collapse
|
2
|
Zhang Y, Deng Z, Li H, Jiang Z. A Spermidine Derivative Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice by Inhibiting the MAPK4/AKT Signaling Pathway. Foods 2025; 14:1110. [PMID: 40238233 PMCID: PMC11988437 DOI: 10.3390/foods14071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by recurrent episodes and an inability to achieve a complete cure. The spermidine derivative (di-p-coumaroyl-caffeoyl spermidine, SPDD), as a key alkaloid, exhibits unique health benefits. However, it has not yet been reported whether SPDD can improve dextran sulfate sodium (DSS)-induced colitis in mice. Herein, we investigated the effects and mechanisms of SPDD on DSS-induced colitis in mice. SPDD was successfully purified from rose bee pollen and was found to have a protective effect on colitis, evidenced by reduced disease activity index (DAI) scores and colonic inflammation, increased colonic length and upregulated the expression of tight junction proteins (TJs) in the model (p < 0.05). Importantly, the IL-17 signaling pathway showed significant enrichment by RNA sequencing (RNA-seq) technology with SPDD treatment, which resulted in the downregulation of MAPK4 expression (p < 0.05). Furthermore, SPDD weakened the interaction between MAPK4 and AKT, resulting in a decrease in the phosphorylation level of AKT, thereby reducing the expression of IL-6, IL-1β, iNOS, and COX-2, and alleviating colitis (p < 0.05). In addition, SPDD treatment also ameliorated TNF-α-induced inflammation in Caco-2 cells. Overall, our study demonstrated that SPDD reversed colonic inflammation in colitis mice through the MAPK4/AKT pathway and might be a promising candidate for UC intervention.
Collapse
Affiliation(s)
- Yuxin Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (Y.Z.); (Z.D.); (H.L.)
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (Y.Z.); (Z.D.); (H.L.)
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (Y.Z.); (Z.D.); (H.L.)
- International Institute of Food Innovation, Nanchang University, Nanchang 330051, China
| | - Zeyin Jiang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (Y.Z.); (Z.D.); (H.L.)
| |
Collapse
|
3
|
Shan C, Liu T, Miao F, Guo G. Macadamia oil alleviates dextran sulfate sodium-induced ulcerative colitis in mice via activating the Nrf2/Ho-1 pathway. Food Sci Biotechnol 2025; 34:1027-1036. [PMID: 39974866 PMCID: PMC11832958 DOI: 10.1007/s10068-024-01719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 02/21/2025] Open
Abstract
Macadamia nut oil (MO) fatty acids are mainly composed of oleic acid and palmitoleic acid, which have a variety of health benefits. This study established an ulcerative colitis (UC) mouse model using dextran sulfate sodium (DSS), and the ameliorative effects of MO on UC were investigated. The results revealed that MO supplementation mitigated weight loss and colon shortening, increased goblet cell counts, and alleviated histopathologic changes in UC mice. MO significantly increased the intestinal antioxidant levels in UC mice. Moreover, Nrf2 and Ho-1 mRNA and protein expression levels were significantly upregulated in UC mice following treatment with low- and high-dose MO. In contrast, expression levels of Keap1 were significantly downregulated. Lastly, MO inhibited the inflammatory factors (TNF-α, IL-6 and IL-1β) expression in UC mice. These results indicate that MO could enhance colonic antioxidant levels, induce apoptosis, and activate the Nrf2/Ho-1 pathway, thereby ameliorating the pathological injuries associated with UC.
Collapse
Affiliation(s)
- Chunlan Shan
- College of Animal Science, Guizhou University, Guiyang, 550025 P. R. China
| | - Ting Liu
- College of Animal Science, Guizhou University, Guiyang, 550025 P. R. China
| | - Fujun Miao
- Yunnan Academy of Forestry and Grassland, Kunming, 650204 China
| | - Gangjun Guo
- Yunnan Institute of Tropical Crops, Jinghong, 666100 P. R. China
| |
Collapse
|
4
|
Ekhtiar M, Ghasemi-Dehnoo M, Azadegan-Dehkordi F, Bagheri N. Evaluation of Anti-Inflammatory and Antioxidant Effects of Ferulic Acid and Quinic Acid on Acetic Acid-Induced Ulcerative Colitis in Rats. J Biochem Mol Toxicol 2025; 39:e70169. [PMID: 39957712 DOI: 10.1002/jbt.70169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
Ulcerative colitis is a chronic inflammatory disease characterized by oxidative stress and the production of pro-inflammatory cytokines. Ferulic acid and quinic acid, two phenolic compounds, are thought to have potent antioxidant and anti-inflammatory properties. This study aimed to investigate the anti-inflammatory and antioxidant effects of ferulic acid and quinic acid in rats with acetic acid (AA)-induced ulcerative colitis. To this end, 64 Wistar rats were randomly divided into eight groups, each consisting of eight rats. AA was administered intrarectally to induce ulcerative colitis. Ferulic acid (20, 40, and 60 mg/kg), quinic acid (10, 30, 60, and 100 mg/kg), and dexamethasone (2 mg/kg) were received daily for five consecutive days. Then, the macroscopic and histopathological changes in the colon tissue were examined. Finally, the tissue levels of heme oxygenase 1 (HO1), nuclear factor erythroid 2-related factor 2 (NRF2), and NAD(P)H quinone dehydrogenase 1 (NQO1) mRNA expression and pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) were measured using the quantitative real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) methods, respectively. AA-induced ulcerative colitis in rats was associated with edema and severe damage to the epithelium, infiltration of inflammatory cells, and the presence of ulcers in the colon tissue. The results showed that rats who were administered AA showed a decrease in the expression of HO-1, Nrf2, and NQO1 and increased protein levels of TNF-α and IL-1β than the control group. Rats were administered ferulic acid, quinic acid and, dexamethasone significantly improved histopathological indices. The expression of HO-1, Nrf2, and NQO1 were upregulated by 60 mg/kg of ferulic acid, 60 and100 mg/kg of quinic acid and, 2 mg/kg of dexamethasone treatment compared to the ulcerative colitis group. The protein levels of TNF-α and IL-1β dose-dependently decreased by ferulic acid and quinic acid treatment compared to the ulcerative colitis group. Ferulic acid and quinic acid effectively reduce inflammation and mucosal damage in rats with ulcerative colitis, especially when administered in high doses. The possible mechanism of anti-inflammatory response by ferulic acid and quinic acid may involve the activating of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Mahsa Ekhtiar
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Ghasemi-Dehnoo
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
5
|
Xavier LEMDS, Reis TCG, Martins ASDP, Santos JCDF, Bueno NB, Goulart MOF, Moura FA. Antioxidant Therapy in Inflammatory Bowel Diseases: How Far Have We Come and How Close Are We? Antioxidants (Basel) 2024; 13:1369. [PMID: 39594511 PMCID: PMC11590966 DOI: 10.3390/antiox13111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Inflammatory bowel diseases (IBD) pose a growing public health challenge with unclear etiology and limited efficacy of traditional pharmacological treatments. Alternative therapies, particularly antioxidants, have gained scientific interest. This systematic review analyzed studies from MEDLINE, Cochrane, Web of Science, EMBASE, and Scopus using keywords like "Inflammatory Bowel Diseases" and "Antioxidants." Initially, 925 publications were identified, and after applying inclusion/exclusion criteria-covering studies from July 2015 to June 2024 using murine models or clinical trials in humans and evaluating natural or synthetic substances affecting oxidative stress markers-368 articles were included. This comprised 344 animal studies and 24 human studies. The most investigated antioxidants were polyphenols and active compounds from medicinal plants (n = 242; 70.3%). The review found a strong link between oxidative stress and inflammation in IBD, especially in studies on nuclear factor kappa B and nuclear factor erythroid 2-related factor 2 pathways. However, it remains unclear whether inflammation or oxidative stress occurs first in IBD. Lipid peroxidation was the most studied oxidative damage, followed by DNA damage. Protein damage was rarely investigated. The relationship between antioxidants and the gut microbiota was examined in 103 animal studies. Human studies evaluating oxidative stress markers were scarce, reflecting a major research gap in IBD treatment. PROSPERO registration: CDR42022335357 and CRD42022304540.
Collapse
Affiliation(s)
| | | | - Amylly Sanuelly da Paz Martins
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Juliana Célia de Farias Santos
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Nassib Bezerra Bueno
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
| | - Marília Oliveira Fonseca Goulart
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
- Institute of Chemistry and Biotechnology (IQB/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil
| | - Fabiana Andréa Moura
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| |
Collapse
|
6
|
Long Z, Xiang W, Xiao W, Min Y, Qu F, Zhang B, Zeng L. Advances in the study of artemisinin and its derivatives for the treatment of rheumatic skeletal disorders, autoimmune inflammatory diseases, and autoimmune disorders: a comprehensive review. Front Immunol 2024; 15:1432625. [PMID: 39524446 PMCID: PMC11543433 DOI: 10.3389/fimmu.2024.1432625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024] Open
Abstract
Artemisinin and its derivatives are widely recognized as first-line treatments for malaria worldwide. Recent studies have demonstrated that artemisinin-based antimalarial drugs, such as artesunate, dihydroartemisinin, and artemether, not only possess excellent antimalarial properties but also exhibit antitumor, antifungal, and immunomodulatory effects. Researchers globally have synthesized artemisinin derivatives like SM735, SM905, and SM934, which offer advantages such as low toxicity, high bioavailability, and potential immunosuppressive properties. These compounds induce immunosuppression by inhibiting the activation of pathogenic T cells, suppressing B cell activation and antibody production, and enhancing the differentiation of regulatory T cells. This review summarized the mechanisms by which artemisinin and its analogs modulate excessive inflammation and immune responses in rheumatic and skeletal diseases, autoimmune inflammatory diseases, and autoimmune disorders, through pathways including TNF, Toll-like receptors, IL-6, RANKL, MAPK, PI3K/AKT/mTOR, JAK/STAT, and NRF2/GPX4. Notably, in the context of the NF-κB pathway, artemisinin not only inhibits NF-κB expression by disrupting upstream cascades and/or directly binding to NF-κB but also downregulates multiple downstream genes controlled by NF-κB, including inflammatory chemokines and their receptors. These downstream targets regulate various immune cell functions, apoptosis, proliferation, signal transduction, and antioxidant responses, ultimately intervening in systemic autoimmune diseases and autoimmune responses in organs such as the kidneys, nervous system, skin, liver, and biliary system by modulating immune dysregulation and inflammatory responses. Ongoing multicenter randomized clinical trials are investigating the effects of these compounds on rheumatic, inflammatory, and autoimmune diseases, with the aim of translating promising preclinical data into clinical applications.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wang Xiang
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Wei Xiao
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Yu Min
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fei Qu
- Department of Acupuncture and Massage, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| | | | - Liuting Zeng
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Yeshi K, Jamtsho T, Wangchuk P. Current Treatments, Emerging Therapeutics, and Natural Remedies for Inflammatory Bowel Disease. Molecules 2024; 29:3954. [PMID: 39203033 PMCID: PMC11357616 DOI: 10.3390/molecules29163954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, lifelong disorder characterized by inflammation of the gastrointestinal (GI) tract. The exact etiology of IBD remains incompletely understood due to its multifaceted nature, which includes genetic predisposition, environmental factors, and host immune response dysfunction. Currently, there is no cure for IBD. This review discusses the available treatment options and the challenges they present. Importantly, we examine emerging therapeutics, such as biologics and immunomodulators, that offer targeted treatment strategies for IBD. While many IBD patients do not respond adequately to most biologics, recent clinical trials combining biologics with small-molecule drugs (SMDs) have provided new insights into improving the IBD treatment landscape. Furthermore, numerous novel and specific therapeutic targets have been identified. The high cost of IBD drugs poses a significant barrier to treatment, but this challenge may be alleviated with the development of more affordable biosimilars. Additionally, emerging point-of-care protein biomarkers from serum and plasma are showing potential for enhancing the precision of IBD diagnosis and prognosis. Several natural products (NPs), including crude extracts, small molecules, and peptides, have demonstrated promising anti-inflammatory activity in high-throughput screening (HTS) systems and advanced artificial intelligence (AI)-assisted platforms, such as molecular docking and ADMET prediction. These platforms are advancing the search for alternative IBD therapies derived from natural sources, potentially leading to more affordable and safer treatment options with fewer side effects.
Collapse
Affiliation(s)
- Karma Yeshi
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia;
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia
| | - Tenzin Jamtsho
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia;
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia
| | - Phurpa Wangchuk
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia;
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Building E4, McGregor Rd, Smithfield, Cairns, QLD 4878, Australia
| |
Collapse
|
8
|
Abufares HI, Zenati RA, Soares NC, El-Huneidi W, Dahabiyeh LA, Al-Hroub HM, Alqudah MA, Abuhelwa AY, Alzoubi KH, Abu-Gharbieh E, Haza WJ, Fararjeh MA, Abu-Irmaileh B, Bustanji Y, Semreen MH. A non-targeted metabolomics comparative study on plasma of pfizer and sinopharm COVID-19 vaccinated individuals, assessed by (TIMS-QTOF) mass spectrometry. Heliyon 2024; 10:e35443. [PMID: 39170395 PMCID: PMC11336712 DOI: 10.1016/j.heliyon.2024.e35443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
COVID-19 is a highly contagious infectious disease that has posed a global threat, leading to a widespread pandemic characterized by multi-organ complications and failures. AIMS The present study was conducted to evaluate the impact of Pfizer and Sinopharm vaccines on metabolomic changes and their correlations with immune pathways. MAIN METHODS The study used a cross-sectional design and implemented an untargeted metabolomics-based approach. Plasma samples were obtained from three groups: non-vaccinated participants, Sinopharm-vaccinated participants, and Pfizer-vaccinated participants. Comparative metabolomic analysis was conducted using TIMS-QTOF, and multiple t-tests with a 5 % false discovery rate (FDR) were performed using MetaboAnalyst software. KEY FINDINGS Out of the 105 metabolites detected, 72 showed statistically significant changes (p-value < 0.05) across the different groups. Notably, several metabolites such as neopterin, pyridoxal, and syringic acid were markedly altered in individuals vaccinated with Pfizer. Conversely, in the Sinopharm-vaccinated group, significant alterations were observed in sphinganine, neopterin, and sphingosine. These metabolites hold potential as biomarkers for evaluating vaccine efficacy. Additionally, both Pfizer and Sinopharm vaccinations were found to influence sphingolipid and histidine metabolisms compared to the control group. The Sinopharm group also displayed changes in lysine degradation relative to the control group. When comparing the enriched pathways between the Pfizer and Sinopharm-vaccinated groups, differences were observed in purine metabolism. Furthermore, alterations in tryptophan and vitamin B6 metabolism were noted when comparing the Pfizer-vaccinated group with both the control and Sinopharm-vaccinated groups. SIGNIFICANCE These findings highlight the importance of metabolomics in assessing vaccine effectiveness and identifying potential biomarkers for monitoring the efficacy of newly developed vaccines in a shorter timeframe.
Collapse
Affiliation(s)
- Haneen I. Abufares
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ruba A. Zenati
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Nelson C. Soares
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid university of Medicine and Health Sciences, Dubai Health , United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | | | - Hamza M. Al-Hroub
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad A.Y. Alqudah
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ahmad Y. Abuhelwa
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Karem H. Alzoubi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | | | | | - Bashaer Abu-Irmaileh
- Hamdi Mango Center for Scientific Research, The university of Jordan, Amman, Jordan
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
9
|
Subudhi RN, Poonia N, Singh D, Arora V. Natural approaches for the management of ulcerative colitis: evidence of preclinical and clinical investigations. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:42. [PMID: 39078427 PMCID: PMC11289194 DOI: 10.1007/s13659-024-00463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/07/2024] [Indexed: 07/31/2024]
Abstract
Ulcerative colitis (UC) is a recurring autoimmune disorder characterized by persistent inflammation in the mucosal lining of the lower part of the large intestine. Conventional treatment options such as salicylates, corticosteroids, and immunosuppressants often come with severe side effects, limited bioavailability, and the development of drug resistance, which hampers their therapeutic effectiveness. Therefore, it is imperative to explore natural strategies as safe and alternative treatments for UC. Currently, around 40% of UC patients find relief through natural constituents, which can help reduce toxic side effects and maintain clinical remission. This review aims to provide a summary of both preclinical and clinical evidence supporting the efficacy of various natural substances in the prophylaxis of UC. These natural options include plant extracts, essential oils, nutraceuticals, and phytochemicals. Furthermore, we will delve into the potential mechanisms that underlie the protective and curative actions of these novel herbal agents. In summary, this review will explore the effectiveness of natural remedies for UC, shedding light on their preclinical and clinical findings and the mechanisms behind their therapeutic actions. These alternatives offer hope for improved treatment outcomes and reduced side effects for individuals suffering from this challenging autoimmune condition.
Collapse
Affiliation(s)
- Rudra Narayan Subudhi
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Neelam Poonia
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India.
| | - Dilpreet Singh
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Vimal Arora
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
10
|
Assalem N, Abd-Allah H, Ragaie MH, Ahmed SS, Elmowafy E. Therapeutic potential of limonene-based syringic acid nanoemulsion: Enhanced ex-vivo cutaneous deposition and clinical anti-psoriatic efficacy. Int J Pharm 2024; 660:124376. [PMID: 38914355 DOI: 10.1016/j.ijpharm.2024.124376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Nanoemulsions have carved their position in topical delivery owing to their peculiar features of forming a uniform film on the skin and conquering stratum corneum barrier and hence fostering dermal penetration and retention. The present work developed syringic acid nanoemulsion (SA-NE) by spontaneous emulsification as an anti-psoriatic remedy via the dermal route. SA-NE were prepared with either lauroglycol90, limonene or their combination (oil phase) and tween80 (surfactant) with variable concentrations. The physicochemical characteristics of SA-NE were assessed together with Ex-vivo skin deposition and dermal toxicity. The effectiveness of optimal formula in psoriatic animal model and psoriatic patients was investigated using PASI scoring and dermoscope examination. Results showed that, SA-NE containing mixture of lauroglycol 90, limonene and 10 % tween80 (F5), was selected as the optimal formula presenting stable nanoemulsion for 2-month period, showing droplet size of 177.6 ± 13.23 nm, polydispersity index of 0.16 ± 0.06, zeta potential of -21.23 ± 0.41 mV. High SA% in different skin strata and no dermal irritation was noticed with limonene-based SA-NE also it showed high in-vitro anti- inflammatory potential compared to the blank and control formulations. A preclinical study demonstrated that limonene-based SA-NE is effective in alleviating psoriasis-like skin lesions against imiquimod-induced psoriasis in rats. Clinically, promising anti-psoriatic potential was asserted as all patients receiving F5 experienced better clinical improvement and response to therapy, achieving ≥ 50 % reduction in PASI scores versus only 35 % responders in the Dermovate® cream group. Collectively, the practical feasibility of limonene-based SA-NE topical delivery can boost curative functionality in the treatment of psoriatic lesions.
Collapse
Affiliation(s)
- Noor Assalem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo, Egypt, P.O.B. 11566
| | - Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo, Egypt, P.O.B. 11566.
| | - Maha H Ragaie
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minya University, Al-Minya, Egypt
| | - Shimaa S Ahmed
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minya University, Al-Minya, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo, Egypt, P.O.B. 11566
| |
Collapse
|
11
|
Qian H, Ye Z, Hu Y, Wu M, Chen L, Li L, Hu Z, Zhao Q, Zhang C, Yang M, Xudong W, Ye Q, Qin K. Molecular targets associated with ulcerative colitis and the benefits of atractylenolides-based therapy. Front Pharmacol 2024; 15:1398294. [PMID: 38860174 PMCID: PMC11163078 DOI: 10.3389/fphar.2024.1398294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the intestines that can significantly impact quality of life and lead to various complications. Currently, 5-aminosalicylic acid derivatives, corticosteroids, immunosuppressants, and biologics are the major treatment strategies for UC, but their limitations have raised concerns. Atractylenolides (ATs), sesquiterpene metabolites found in Atractylodes macrocephala Koidz., have shown promising effects in treating UC by exerting immune barrier modulation, alleviating oxidative stress, gut microbiota regulation, improving mitochondrial dysfunction and repairing the intestinal barrier. Furthermore, ATs have been shown to possess remarkable anti-fibrosis, anti-thrombus, anti-angiogenesis and anti-cancer. These findings suggest that ATs hold important potential in treating UC and its complications. Therefore, this review systematically summarizes the efficacy and potential mechanisms of ATs in treating UC and its complications, providing the latest insights for further research and clinical applications.
Collapse
Affiliation(s)
- Huanzhu Qian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Orthopedic Hospital, Chengdu, Sichuan, China
| | - Liulin Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Linzhen Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhipeng Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Maoyi Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wen Xudong
- Department of Gastroenterology, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, Sichuan, China
| | - Qiaobo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kaihua Qin
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Lu Y, Han X. Therapeutic Implications of Phenolic Acids for Ameliorating Inflammatory Bowel Disease. Nutrients 2024; 16:1347. [PMID: 38732594 PMCID: PMC11085699 DOI: 10.3390/nu16091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disorder, and its complex etiology makes prevention and treatment challenging. Research on new drugs and treatment strategies is currently a focal point. Phenolic acids are widely present in plant-based diets and have demonstrated the potential to alleviate colitis due to their powerful antioxidant and anti-inflammatory properties. In this review, we provide an overview of the structures and main dietary sources of phenolic acids, encompassing benzoic acid and cinnamic acid. Additionally, we explore the potential of phenolic acids as a nutritional therapy for preventing and treating IBD. In animal and cell experiments, phenolic acids effectively alleviate IBD induced by drug exposure or genetic defects. The mechanisms include improving intestinal mucosal barrier function, reducing oxidative stress, inhibiting excessive activation of the immune response, and regulating the balance of the intestinal microbiota. Our observation points towards the need for additional basic and clinical investigations on phenolic acids and their derivatives as potential novel therapeutic agents for IBD.
Collapse
Affiliation(s)
- Yanan Lu
- School of Biomedicine, Beijing City University, Huanghoudian Village, Yongfeng Town, Haidian District, Beijing 100094, China;
| | - Xue Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
13
|
Ghasemi-Dehnoo M, Amini-Khoei H, Lorigooini Z, AnjomShoa M, Bijad E, Rafieian-Kopaei M. Inhibition of TLR4, NF-κB, and INOS pathways mediates ameliorative effect of syringic acid in experimental ulcerative colitis in rats. Inflammopharmacology 2024; 32:795-808. [PMID: 38095803 DOI: 10.1007/s10787-023-01387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/24/2023] [Indexed: 03/03/2024]
Abstract
OBJECTIVE Numerous therapeutics and pharmacological properties have been reported in syringic acid (SA). In this study, we aimed to evaluate effect of SA in ulcerative colitis (UC) in rats considering effect on TLR4, NF-κB, and INOS pathways. MATERIALS AND METHODS 48 Wistar rats were randomly designated into six groups (n = 8). UC was induced via intra-rectal administration of 7% acetic acid (0.8 ml). SA at doses of 10, 25, 50 mg/kg was administrated through gavage, and dexamethasone (2 mg/kg) administrated intra-peritoneally for 5 consecutive days. The macroscopic and histopathological damages as well as expression of inflammatory and apoptotic genes along with superoxide dismutase (SOD) and catalase (CAT) activities, total antioxidant capacity (TAC), nitric oxide (NO), and malondialdehyde (MDA) levels in the colon tissue were assessed. RESULTS UC led to an increase in the apoptotic and inflammatory genes, NO and MDA levels as well as decrease in TAC level, and SOD and CAT activities (p < 0.05). UC also caused severe damage, edema, inflammation, and necrosis in the colon. SA significantly reduced gene expressions of INOS, TLR4, IL-6, IL-1β, NF-κB, Caspase-3, Caspase-8, and Bax. SA ameliorated negative macroscopic and histopathologic effects of UC. SA significantly reduced MDA and NO levels, and increased TAC level and CAT activity in the colon tissue in comparison to the UC rats without treatment (p < 0.05). CONCLUSION SA via attenuation of the TLR4-NF-κB, NF-κB-INOS-NO pathways, oxidative stress, inflammation, and apoptosis of UC in rats.
Collapse
Affiliation(s)
- Maryam Ghasemi-Dehnoo
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam AnjomShoa
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
14
|
Xie J, Huang Q, Xie H, Liu J, Tian S, Cao R, Yang M, Lin J, Han L, Zhang D. Hyaluronic acid/inulin-based nanocrystals with an optimized ratio of indigo and indirubin for combined ulcerative colitis therapy via immune and intestinal flora regulation. Int J Biol Macromol 2023; 252:126502. [PMID: 37625742 DOI: 10.1016/j.ijbiomac.2023.126502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Indigo (IND) and indirubin (INB) have demonstrated a synergistic effect in treating ulcerative colitis at a ratio of 7.5:1. However, the colon mucus layer, a critical physiological barrier against external threats, is also a biological barrier, limiting the potential for effective drug delivery to the lamina propria for regulating inflammatory cells. Inspired by the potential of Hyaluronic acid (HA), to enhance cellular uptake by inflammatory cells, and Pluronic® F127 (F127), known for overcoming the mucus barrier, this study innovatively developed INB/IND nanosuspensions by co-modifying with F127 and HA. Moreover, inulin serves a dual purpose as a spray protective agent and a regulator of intestinal flora. Therefore, it was incorporated into INB/IND nanosuspensions for subsequent spray drying, resulting in the preparation of INB/IND nanocrystals (INB/IND-NC). The mucus penetration of INB/IND-NC was 24.30 times that of the control group. Besides, INB/IND-NC exhibited enhanced cellular uptake properties proximately twice that of Raw INB/IND. Importantly, INB/IND-NC exhibited improved therapeutic efficacy in DSS-induced mice by regulating the expression of cytokines, regulating immune responses via downregulating the expression of macrophages, neutrophils, and dendritic cells and maintaining intestinal flora homeostasis. Our study provides a new perspective for applying natural products for treating inflammatory diseases.
Collapse
Affiliation(s)
- Jin Xie
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Huang
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huijuan Xie
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun Liu
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shimin Tian
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruiyi Cao
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Li Han
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dingkun Zhang
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
15
|
Ghasemi-Dehnoo M, Amini-Khoei H, Lorigooini Z, AnjomShoa M, Rafieian-Kopaei M. Ferulic acid ameliorates ulcerative colitis in a rat model via the inhibition of two LPS-TLR4-NF-κB and NF-κB-INOS-NO signaling pathways and thus alleviating the inflammatory, oxidative and apoptotic conditions in the colon tissue. Inflammopharmacology 2023; 31:2587-2597. [PMID: 37432553 DOI: 10.1007/s10787-023-01277-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Ulcerative colitis is a chronic inflammation of the colon. However, the common treatment for it is accompanied by many complications. Therefore, the present study was aimed to determine the ameliorative effects of ferulic acid on acetic acid-induced colitis in rat. MATERIALS AND METHODS To induce ulcerative colitis, animals received 0.8 ml of 7% acetic acid intra-rectally. Ferulic acid in 20, 40, and 60 mg/kg doses was administered orally one hour after the ulcerative colitis induction. Animals received treatments for five consecutive days and then were euthanized on the sixth day. The colon was dissected out and macroscopic lesions were examined. Colon samples were evaluated for histopathological examination, biochemical analysis, determination of the expression of inflammatory, and apoptotic genes as well as total antioxidant capacity. RESULTS Ferulic acid significantly inhibited inflammatory and apoptotic genes mRNA expression, also production of MDA and NO. Ferulic acid significantly increased the activity of antioxidant factors (TAC content, and SOD and CAT activity), thereby preventing inflammation and histopathological damage in the colon tissue of colitis rats. CONCLUSION The results of the present study confirmed the antioxidant, anti-inflammatory, and anti-apoptotic properties of ferulic acid. About the mechanism of action of this compound, it can be concluded that the ability of ferulic acid in the amelioration of ulcerative colitis is related to the inhibition of two LPS-TLR4-NF-κB and NF-κB-INOS-NO signaling pathways.
Collapse
Affiliation(s)
- Maryam Ghasemi-Dehnoo
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam AnjomShoa
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|