1
|
Zhou S, Cao Q, Zhang Z, Du Y, Hou Y, Zhang X, Xie Z, Zhou Y, Zhu B, Zhang Y, Zhu A, Niu H. The adjuvant effect of manganese on tuberculosis subunit vaccine Bfrb-GrpE. NPJ Vaccines 2024; 9:248. [PMID: 39702587 DOI: 10.1038/s41541-024-01049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Protein subunit vaccines, lacking pathogen-associated molecular patterns that trigger immune responses, rely on adjuvants to induce robust immune responses against the target pathogen. Thus, selection of adjuvants plays a crucial role in the design of protein subunit vaccines. Recently, there has been growing interest in utilizing cGAS-STING agonists as vaccine adjuvants. In this study, we investigated the adjuvant effect of manganese (Mn), a cGAS-STING agonist, on the tuberculosis subunit vaccine Bfrb-GrpE (BG) in a mouse model. Initially, mice were administered with BG-Mn(J), and its immunogenicity and protective efficacy were assessed six weeks after the final immunization. The results showed that Mn(J) enhanced both the cellular and humoral immune responses to the BG vaccine and conferred effective protection against M. tuberculosis H37Ra infection in mice, leading to a significant reduction of 2.0 ± 0.17 Log10 CFU in spleens and 1.3 ± 0.17 Log10 CFU in lungs compared to the PBS control group. Additionally, we assessed the BG-Mn(J) vaccine in a surrogate model of tuberculosis in rabbit skin model. The vaccination with BG-Mn(J) also provided effective protection in the rabbit model, as indicated by a decreased bacterial load at the infection site, minimal pathological damage, and accelerated healing. These findings suggest that Mn(J) holds promise as an adjuvant for tuberculosis vaccines, underscoring its potential to enhance vaccine efficacy and offer protection against tuberculosis infection.
Collapse
Affiliation(s)
- Shuai Zhou
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qianqian Cao
- School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, China
| | - Zunjing Zhang
- Key Laboratory of Inheritance and Innovation of She Medicine of Zhejiang Province, Zhejiang Chinese Medical University Affiliated Lishui Traditional Chinese Medicine Hospital, Lishui, Zhejiang, China
| | - Yunjie Du
- School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, China
| | - Yilin Hou
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaojuan Zhang
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhijun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuan Zhou
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bingdong Zhu
- School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Aisong Zhu
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Hongxia Niu
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
2
|
He P, Wang J, Tan D, Hu L, Ma Y, Mi Y, Li F, Zhang T, Du Y, Zhang W, Li J, Jiao L, Zhu B. The combination of Mycobacterium tuberculosis fusion proteins LT33 and LT28 induced strong protective immunity in mice. Front Immunol 2024; 15:1450124. [PMID: 39650665 PMCID: PMC11621036 DOI: 10.3389/fimmu.2024.1450124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
Effective subunit vaccines for tuberculosis (TB) must target antigenic components at various stages of infection. In this study, we constructed fusion proteins using secreted antigens from Mycobacterium tuberculosis (M. tuberculosis), specifically ESAT6, CFP10, MPT64, and Rv2645 from the proliferation stage, along with latency-associated antigens Rv1738 and Rv1978. The resulting fusion proteins, designated LT33 (ESAT6-CFP10-Rv1738) and LT28 (MPT6461-170-Rv19788-60-Rv264521-80), were combined with an adjuvant containing dimethyldioctadecylammonium bromide (DDA), polyriboinosinic polyribocytidylic acid (PolyI:C), and cholesterol to construct subunit vaccines. We evaluated the subunit vaccine effect in C57BL/6 mice and revealed that LT33 and LT28 exhibited strong immunogenicity and induced protective efficacy against aerosol challenge with M. tuberculosis H37Rv. Notably, the combination of LT33 and LT28 led to a significant reduction of 0.77 log10 colony-forming units (CFU) of H37Rv in the lungs compared to the adjuvant control group, highlighting their potential as promising candidates for subunit vaccine against M. tuberculosis infection.
Collapse
Affiliation(s)
- Pu He
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Juan Wang
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Daquan Tan
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Lina Hu
- Lanzhou Institute of Biological Products, Lanzhou, China
| | - Yanlin Ma
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Youjun Mi
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Institute of Pathogenic Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fei Li
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Tingting Zhang
- Lanzhou Institute of Biological Products, Lanzhou, China
| | - Yunjie Du
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wenhua Zhang
- School of Life Science, Lanzhou University, Lanzhou, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Lei Jiao
- Lanzhou Institute of Biological Products, Lanzhou, China
| | - Bingdong Zhu
- State Key Laboratory for Animal Disease Control and Prevention and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
3
|
Wang H, Wang S, Fang R, Li X, Xing J, Li Z, Song N. Enhancing TB Vaccine Efficacy: Current Progress on Vaccines, Adjuvants and Immunization Strategies. Vaccines (Basel) 2023; 12:38. [PMID: 38250851 PMCID: PMC10820143 DOI: 10.3390/vaccines12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Tuberculosis (TB) remains a global infectious disease primarily transmitted via respiratory tract infection. Presently, vaccination stands as the primary method for TB prevention, predominantly reliant on the Bacillus Calmette-Guérin (BCG) vaccine. Although it is effective in preventing disseminated diseases in children, its impact on adults is limited. To broaden vaccine protection, efforts are underway to accelerate the development of new TB vaccines. However, challenges arise due to the limited immunogenicity and safety of these vaccines, necessitating adjuvants to bolster their ability to elicit a robust immune response for improved and safer immunization. These adjuvants function by augmenting cellular and humoral immunity against M. tuberculosis antigens via different delivery systems, ultimately enhancing vaccine efficacy. Therefore, this paper reviews and summarizes the current research progress on M. tuberculosis vaccines and their associated adjuvants, aiming to provide a valuable reference for the development of novel TB vaccines and the screening of adjuvants.
Collapse
Affiliation(s)
- Hui Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Shuxian Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Ren Fang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Xiaotian Li
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Jiayin Xing
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| | - Zhaoli Li
- SAFE Pharmaceutical Technology Co., Ltd., Beijing 100000, China
| | - Ningning Song
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, China; (H.W.); (S.W.); (R.F.); (X.L.); (J.X.)
| |
Collapse
|