1
|
Molina-Moreno M, González-Díaz I, Rivera Gorrín M, Burguera Vion V, Díaz-de-María F. URI-CADS: A Fully Automated Computer-Aided Diagnosis System for Ultrasound Renal Imaging. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1458-1474. [PMID: 38413459 PMCID: PMC11300425 DOI: 10.1007/s10278-024-01055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Ultrasound is a widespread imaging modality, with special application in medical fields such as nephrology. However, automated approaches for ultrasound renal interpretation still pose some challenges: (1) the need for manual supervision by experts at various stages of the system, which prevents its adoption in primary healthcare, and (2) their limited considered taxonomy (e.g., reduced number of pathologies), which makes them unsuitable for training practitioners and providing support to experts. This paper proposes a fully automated computer-aided diagnosis system for ultrasound renal imaging addressing both of these challenges. Our system is based in a multi-task architecture, which is implemented by a three-branched convolutional neural network and is capable of segmenting the kidney and detecting global and local pathologies with no need of human interaction during diagnosis. The integration of different image perspectives at distinct granularities enhanced the proposed diagnosis. We employ a large (1985 images) and demanding ultrasound renal imaging database, publicly released with the system and annotated on the basis of an exhaustive taxonomy of two global and nine local pathologies (including cysts, lithiasis, hydronephrosis, angiomyolipoma), establishing a benchmark for ultrasound renal interpretation. Experiments show that our proposed method outperforms several state-of-the-art methods in both segmentation and diagnosis tasks and leverages the combination of global and local image information to improve the diagnosis. Our results, with a 87.41% of AUC in healthy-pathological diagnosis and 81.90% in multi-pathological diagnosis, support the use of our system as a helpful tool in the healthcare system.
Collapse
Affiliation(s)
- Miguel Molina-Moreno
- Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, Leganés, 28911, Spain.
| | - Iván González-Díaz
- Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, Leganés, 28911, Spain
| | - Maite Rivera Gorrín
- Hospital Ramón y Cajal, M-607, 9, 100, Madrid, 28034, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRyCis), Ctra. Colmenar Viejo, Madrid, 28034, Spain
- Universidad de Alcalá, Pl. de San Diego, s/n, Alcalá de Henares, 28801, Spain
| | | | - Fernando Díaz-de-María
- Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, Leganés, 28911, Spain
| |
Collapse
|
2
|
Umer M, Aljrees T, Karamti H, Ishaq A, Alsubai S, Omar M, Bashir AK, Ashraf I. Heart failure patients monitoring using IoT-based remote monitoring system. Sci Rep 2023; 13:19213. [PMID: 37932424 PMCID: PMC10628138 DOI: 10.1038/s41598-023-46322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
Intelligent health monitoring systems are becoming more important and popular as technology advances. Nowadays, online services are replacing physical infrastructure in several domains including medical services as well. The COVID-19 pandemic has also changed the way medical services are delivered. Intelligent appliances, smart homes, and smart medical systems are some of the emerging concepts. The Internet of Things (IoT) has changed the way communication occurs alongside data collection sources aided by smart sensors. It also has deployed artificial intelligence (AI) methods for better decision-making provided by efficient data collection, storage, retrieval, and data management. This research employs health monitoring systems for heart patients using IoT and AI-based solutions. Activities of heart patients are monitored and reported using the IoT system. For heart disease prediction, an ensemble model ET-CNN is presented which provides an accuracy score of 0.9524. The investigative data related to this system is very encouraging in real-time reporting and classifying heart patients with great accuracy.
Collapse
Affiliation(s)
- Muhammad Umer
- Department of Computer Science and Information Technology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Turki Aljrees
- Department College of Computer Science and Engineering, University of Hafr Al-Batin, 39524, Hafar Al-Batin, Saudi Arabia
| | - Hanen Karamti
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Abid Ishaq
- Department of Computer Science and Information Technology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Shtwai Alsubai
- Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, P.O. Box 151, 11942, Al-Kharj, Saudi Arabia
| | - Marwan Omar
- Information Technology and Management, Illinois Institute of Technology, Chicago, USA
| | - Ali Kashif Bashir
- Department of Computing and Mathematics, Manchester Metropolitan University, Manchester, UK.
- Woxsen School of Business, Woxsen University, Hyderabad, 502 345, India.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Imran Ashraf
- Information and Communication Engineering, Yeungnam University, Gyeongsan, 38541, Korea.
| |
Collapse
|
3
|
Anastasiadis A, Koudonas A, Langas G, Tsiakaras S, Memmos D, Mykoniatis I, Symeonidis EN, Tsiptsios D, Savvides E, Vakalopoulos I, Dimitriadis G, de la Rosette J. Transforming urinary stone disease management by artificial intelligence-based methods: A comprehensive review. Asian J Urol 2023; 10:258-274. [PMID: 37538159 PMCID: PMC10394286 DOI: 10.1016/j.ajur.2023.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/23/2022] [Accepted: 02/10/2023] [Indexed: 08/05/2023] Open
Abstract
Objective To provide a comprehensive review on the existing research and evidence regarding artificial intelligence (AI) applications in the assessment and management of urinary stone disease. Methods A comprehensive literature review was performed using PubMed, Scopus, and Google Scholar databases to identify publications about innovative concepts or supporting applications of AI in the improvement of every medical procedure relating to stone disease. The terms ''endourology'', ''artificial intelligence'', ''machine learning'', and ''urolithiasis'' were used for searching eligible reports, while review articles, articles referring to automated procedures without AI application, and editorial comments were excluded from the final set of publications. The search was conducted from January 2000 to September 2023 and included manuscripts in the English language. Results A total of 69 studies were identified. The main subjects were related to the detection of urinary stones, the prediction of the outcome of conservative or operative management, the optimization of operative procedures, and the elucidation of the relation of urinary stone chemistry with various factors. Conclusion AI represents a useful tool that provides urologists with numerous amenities, which explains the fact that it has gained ground in the pursuit of stone disease management perfection. The effectiveness of diagnosis and therapy can be increased by using it as an alternative or adjunct to the already existing data. However, little is known concerning the potential of this vast field. Electronic patient records, containing big data, offer AI the opportunity to develop and analyze more precise and efficient diagnostic and treatment algorithms. Nevertheless, the existing applications are not generalizable in real-life practice, and high-quality studies are needed to establish the integration of AI in the management of urinary stone disease.
Collapse
Affiliation(s)
- Anastasios Anastasiadis
- 1st Department of Urology, Aristotle University of Thessaloniki, School of Medicine, “G.Gennimatas” General Hospital, Thessaloniki, Greece
| | - Antonios Koudonas
- 1st Department of Urology, Aristotle University of Thessaloniki, School of Medicine, “G.Gennimatas” General Hospital, Thessaloniki, Greece
| | - Georgios Langas
- 1st Department of Urology, Aristotle University of Thessaloniki, School of Medicine, “G.Gennimatas” General Hospital, Thessaloniki, Greece
| | - Stavros Tsiakaras
- 1st Department of Urology, Aristotle University of Thessaloniki, School of Medicine, “G.Gennimatas” General Hospital, Thessaloniki, Greece
| | - Dimitrios Memmos
- 1st Department of Urology, Aristotle University of Thessaloniki, School of Medicine, “G.Gennimatas” General Hospital, Thessaloniki, Greece
| | - Ioannis Mykoniatis
- 1st Department of Urology, Aristotle University of Thessaloniki, School of Medicine, “G.Gennimatas” General Hospital, Thessaloniki, Greece
| | - Evangelos N. Symeonidis
- 1st Department of Urology, Aristotle University of Thessaloniki, School of Medicine, “G.Gennimatas” General Hospital, Thessaloniki, Greece
| | - Dimitrios Tsiptsios
- Neurology Department, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Ioannis Vakalopoulos
- 1st Department of Urology, Aristotle University of Thessaloniki, School of Medicine, “G.Gennimatas” General Hospital, Thessaloniki, Greece
| | - Georgios Dimitriadis
- 1st Department of Urology, Aristotle University of Thessaloniki, School of Medicine, “G.Gennimatas” General Hospital, Thessaloniki, Greece
| | - Jean de la Rosette
- Department of Urology, Istanbul Medipol Mega University Hospital, Istanbul, Turkey
| |
Collapse
|
4
|
Almujally NA, Aljrees T, Saidani O, Umer M, Faheem ZB, Abuzinadah N, Alnowaiser K, Ashraf I. Monitoring Acute Heart Failure Patients Using Internet-of-Things-Based Smart Monitoring System. SENSORS (BASEL, SWITZERLAND) 2023; 23:4580. [PMID: 37430494 DOI: 10.3390/s23104580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/17/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023]
Abstract
With technological advancements, smart health monitoring systems are gaining growing importance and popularity. Today, business trends are changing from physical infrastructure to online services. With the restrictions imposed during COVID-19, medical services have been changed. The concepts of smart homes, smart appliances, and smart medical systems have gained popularity. The Internet of Things (IoT) has revolutionized communication and data collection by incorporating smart sensors for data collection from diverse sources. In addition, it utilizes artificial intelligence (AI) approaches to control a large volume of data for better use, storing, managing, and making decisions. In this research, a health monitoring system based on AI and IoT is designed to deal with the data of heart patients. The system monitors the heart patient's activities, which helps to inform patients about their health status. Moreover, the system can perform disease classification using machine learning models. Experimental results reveal that the proposed system can perform real-time monitoring of patients and classify diseases with higher accuracy.
Collapse
Affiliation(s)
- Nouf Abdullah Almujally
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Turki Aljrees
- College of Computer Science and Engineering, University of Hafr Al-Batin, Hafar Al-Batin 39524, Saudi Arabia
| | - Oumaima Saidani
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Muhammad Umer
- Department of Computer Science & Information Technology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zaid Bin Faheem
- Department of Computer Science & Information Technology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Nihal Abuzinadah
- Faculty of Computer Science and Information Technology, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Khaled Alnowaiser
- Department of Computer Engineering, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Imran Ashraf
- Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
5
|
Harun-Ar-Rashid M, Chowdhury O, Hossain MM, Rahman MM, Muhammad G, AlQahtani SA, Alrashoud M, Yassine A, Hossain MS. IoT-Based Medical Image Monitoring System Using HL7 in a Hospital Database. Healthcare (Basel) 2023; 11:healthcare11010139. [PMID: 36611599 PMCID: PMC9819388 DOI: 10.3390/healthcare11010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
In recent years, the healthcare system, along with the technology that surrounds it, has become a sector in much need of development. It has already improved in a wide range of areas thanks to significant and continuous research into the practical implications of biomedical and telemedicine studies. To ensure the continuing technological improvement of hospitals, physicians now also must properly maintain and manage large volumes of patient data. Transferring large amounts of data such as images to IoT servers based on machine-to-machine communication is difficult and time consuming over MQTT and MLLP protocols, and since IoT brokers only handle a limited number of bytes of data, such protocols can only transfer patient information and other text data. It is more difficult to handle the monitoring of ultrasound, MRI, or CT image data via IoT. To address this problem, this study proposes a model in which the system displays images as well as patient data on an IoT dashboard. A Raspberry Pi processes HL7 messages received from medical devices like an ultrasound machine (ULSM) and extracts only the image data for transfer to an FTP server. The Raspberry Pi 3 (RSPI3) forwards the patient information along with a unique encrypted image data link from the FTP server to the IoT server. We have implemented an authentic and NS3-based simulation environment to monitor real-time ultrasound image data on the IoT server and have analyzed the system performance, which has been impressive. This method will enrich the telemedicine facilities both for patients and physicians by assisting with overall monitoring of data.
Collapse
Affiliation(s)
- Md. Harun-Ar-Rashid
- Department of Computer Science and Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
- Faculty Member, Department of Computer Science and Engineering, Uttara University, Dhaka 1230, Bangladesh
| | - Oindrila Chowdhury
- Department of Computer Science and Engineering, American International University-Bangladesh (AIUB), Dhaka 1229, Bangladesh
| | - Muhammad Minoar Hossain
- Department of Computer Science and Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Mohammad Motiur Rahman
- Department of Computer Science and Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Ghulam Muhammad
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
| | - Salman A. AlQahtani
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
| | - Mubarak Alrashoud
- Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
| | - Abdulsalam Yassine
- Department of Software Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - M. Shamim Hossain
- Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
- Correspondence:
| |
Collapse
|
6
|
Prasitpuriprecha C, Jantama SS, Preeprem T, Pitakaso R, Srichok T, Khonjun S, Weerayuth N, Gonwirat S, Enkvetchakul P, Kaewta C, Nanthasamroeng N. Drug-Resistant Tuberculosis Treatment Recommendation, and Multi-Class Tuberculosis Detection and Classification Using Ensemble Deep Learning-Based System. Pharmaceuticals (Basel) 2022; 16:13. [PMID: 36678508 PMCID: PMC9864877 DOI: 10.3390/ph16010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
This research develops the TB/non-TB detection and drug-resistant categorization diagnosis decision support system (TB-DRC-DSS). The model is capable of detecting both TB-negative and TB-positive samples, as well as classifying drug-resistant strains and also providing treatment recommendations. The model is developed using a deep learning ensemble model with the various CNN architectures. These architectures include EfficientNetB7, mobileNetV2, and Dense-Net121. The models are heterogeneously assembled to create an effective model for TB-DRC-DSS, utilizing effective image segmentation, augmentation, and decision fusion techniques to improve the classification efficacy of the current model. The web program serves as the platform for determining if a patient is positive or negative for tuberculosis and classifying several types of drug resistance. The constructed model is evaluated and compared to current methods described in the literature. The proposed model was assessed using two datasets of chest X-ray (CXR) images collected from the references. This collection of datasets includes the Portal dataset, the Montgomery County dataset, the Shenzhen dataset, and the Kaggle dataset. Seven thousand and eight images exist across all datasets. The dataset was divided into two subsets: the training dataset (80%) and the test dataset (20%). The computational result revealed that the classification accuracy of DS-TB against DR-TB has improved by an average of 43.3% compared to other methods. The categorization between DS-TB and MDR-TB, DS-TB and XDR-TB, and MDR-TB and XDR-TB was more accurate than with other methods by an average of 28.1%, 6.2%, and 9.4%, respectively. The accuracy of the embedded multiclass model in the web application is 92.6% when evaluated with the test dataset, but 92.8% when evaluated with a random subset selected from the aggregate dataset. In conclusion, 31 medical staff members have evaluated and utilized the online application, and the final user preference score for the web application is 9.52 out of a possible 10.
Collapse
Affiliation(s)
- Chutinun Prasitpuriprecha
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Sirima Suvarnakuta Jantama
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Thanawadee Preeprem
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Rapeepan Pitakaso
- Department of Industrial Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Thanatkij Srichok
- Department of Industrial Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Surajet Khonjun
- Department of Industrial Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Nantawatana Weerayuth
- Department of Mechanical Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Sarayut Gonwirat
- Department of Computer Engineering and Automation, Faculty of Engineering and Industrial Technology, Kalasin University, Kalasin 46000, Thailand
| | - Prem Enkvetchakul
- Department of Information Technology, Faculty of Science, Buriram University, Buriram 31000, Thailand
| | - Chutchai Kaewta
- Department of Computer Science, Faculty of Computer Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand
| | - Natthapong Nanthasamroeng
- Department of Engineering Technology, Faculty of Industrial Technology, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand
| |
Collapse
|
7
|
Prasitpuriprecha C, Pitakaso R, Gonwirat S, Enkvetchakul P, Preeprem T, Jantama SS, Kaewta C, Weerayuth N, Srichok T, Khonjun S, Nanthasamroeng N. Embedded AMIS-Deep Learning with Dialog-Based Object Query System for Multi-Class Tuberculosis Drug Response Classification. Diagnostics (Basel) 2022; 12:diagnostics12122980. [PMID: 36552987 PMCID: PMC9777254 DOI: 10.3390/diagnostics12122980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
A person infected with drug-resistant tuberculosis (DR-TB) is the one who does not respond to typical TB treatment. DR-TB necessitates a longer treatment period and a more difficult treatment protocol. In addition, it can spread and infect individuals in the same manner as regular TB, despite the fact that early detection of DR-TB could reduce the cost and length of TB treatment. This study provided a fast and effective classification scheme for the four subtypes of TB: Drug-sensitive tuberculosis (DS-TB), drug-resistant tuberculosis (DR-TB), multidrug-resistant tuberculosis (MDR-TB), and extensively drug-resistant tuberculosis (XDR-TB). The drug response classification system (DRCS) has been developed as a classification tool for DR-TB subtypes. As a classification method, ensemble deep learning (EDL) with two types of image preprocessing methods, four convolutional neural network (CNN) architectures, and three decision fusion methods have been created. Later, the model developed by EDL will be included in the dialog-based object query system (DBOQS), in order to enable the use of DRCS as the classification tool for DR-TB in assisting medical professionals with diagnosing DR-TB. EDL yields an improvement of 1.17-43.43% over the existing methods for classifying DR-TB, while compared with classic deep learning, it generates 31.25% more accuracy. DRCS was able to increase accuracy to 95.8% and user trust to 95.1%, and after the trial period, 99.70% of users were interested in continuing the utilization of the system as a supportive diagnostic tool.
Collapse
Affiliation(s)
| | - Rapeepan Pitakaso
- Department of Industrial Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Sarayut Gonwirat
- Department of Computer Engineering and Automation, Kalasin University, Kalasin 46000, Thailand
| | - Prem Enkvetchakul
- Department of Information Technology, Buriram Rajabhat University, Buriram 31000, Thailand
- Correspondence:
| | - Thanawadee Preeprem
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | | | - Chutchai Kaewta
- Department of Computer Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand
| | - Nantawatana Weerayuth
- Department of Mechanical Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Thanatkij Srichok
- Department of Industrial Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Surajet Khonjun
- Department of Industrial Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Natthapong Nanthasamroeng
- Department of Engineering Technology, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand
| |
Collapse
|
8
|
Bouhadana D, Lu XH, Luo JW, Assad A, Deyirmendjian C, Guennoun A, Nguyen DD, Kwong JCC, Chughtai B, Elterman D, Zorn KC, Trinh QD, Bhojani N. Clinical Applications of Machine Learning for Urolithiasis and Benign Prostatic Hyperplasia: A Systematic Review. J Endourol 2022; 37:474-494. [PMID: 36266993 DOI: 10.1089/end.2022.0311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Previous systematic reviews related to machine learning (ML) in urology often overlooked the literature related to endourology. Therefore, we aim to conduct a more focused systematic review examining the use of ML algorithms for benign prostatic hyperplasia (BPH) or urolithiasis. In addition, we are the first group to evaluate these articles using the STREAM-URO framework. METHODS Searches of MEDLINE, Embase, and the Cochrane CENTRAL databases were conducted from inception through July 12, 2021. Keywords included those related to ML, endourology, urolithiasis, and BPH. Two reviewers screened the citations that were eligible for title, abstract and full-text screening, with conflicts resolved by a third reviewer. Two reviewers extracted information from the studies, with discrepancies resolved by a third reviewer. The data collected was then qualitatively synthesized by consensus. Two reviewers evaluated each article according to the STREAM-URO checklist with discrepancies resolved by a third reviewer. RESULTS After identifying 459 unique citations, 63 articles were retained for data extraction. Most articles consisted of tabular (n=32) and computer vision (n=23) tasks. The two most common problem types were classification (n=40) and regression (n=12). In general, most studies utilized neural networks as their ML algorithm (n=36). Among the 63 studies retrieved, 58 were related to urolithiasis and five focused on BPH. The urolithiasis studies were designed for outcome prediction (n=20), stone classification (n=18), diagnostics (n=17), and therapeutics (n=3). The BPH studies were designed for outcome prediction (n=2), diagnostics (n=2), and therapeutics (n=1). On average, the urolithiasis and BPH articles met 13.8 (SD 2.6), and 13.4 (4.1) of the 26 STREAM-URO framework criteria, respectively. CONCLUSIONS The majority of the retrieved studies successfully helped with outcome prediction, diagnostics, and therapeutics for both urolithiasis and BPH. While ML shows great promise in improving patient care, it is important to adhere to the recently developed STREAM-URO framework to ensure the development of high-quality ML studies.
Collapse
Affiliation(s)
- David Bouhadana
- McGill University Faculty of Medicine and Health Sciences, 12367, 3605 de la Montagne, Montreal, Quebec, Canada, H3G 2M1;
| | - Xing Han Lu
- McGill University School of Computer Science, 348406, Montreal, Quebec, Canada;
| | - Jack W Luo
- McGill University Faculty of Medicine and Health Sciences, 12367, Montreal, Quebec, Canada;
| | - Anis Assad
- University of Montreal Hospital Centre, 25443, Urology, Montreal, Quebec, Canada;
| | | | - Abbas Guennoun
- University of Montreal Hospital Centre, 25443, Urology, Montreal, Quebec, Canada;
| | | | | | - Bilal Chughtai
- Weill Cornell Medical Center, Urology, New York, New York, United States;
| | - Dean Elterman
- University of Toronto, 7938, Urology, Toronto, Ontario, Canada;
| | | | - Quoc-Dien Trinh
- Brigham and Women's Hospital, Urology, Boston, Massachusetts, United States;
| | - Naeem Bhojani
- University of Montreal Hospital Centre, 25443, Urology, Montreal, Quebec, Canada;
| |
Collapse
|
9
|
Tulo SK, Ramu P, Swaminathan R. Evaluation of Diagnostic Value of Mediastinum for Differentiation of Drug Sensitive, Multi and Extensively Drug Resistant Tuberculosis using Chest X-rays. Ing Rech Biomed 2022. [DOI: 10.1016/j.irbm.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Viveka S, Sudha MJ. A comprehensive review of architecture, classification, challenges, and future of the Internet of Medical Things (IoMTs). MEDICAL JOURNAL OF BABYLON 2022. [DOI: 10.4103/mjbl.mjbl_5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Hameed BMZ, Shah M, Naik N, Rai BP, Karimi H, Rice P, Kronenberg P, Somani B. The Ascent of Artificial Intelligence in Endourology: a Systematic Review Over the Last 2 Decades. Curr Urol Rep 2021; 22:53. [PMID: 34626246 PMCID: PMC8502128 DOI: 10.1007/s11934-021-01069-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 12/17/2022]
Abstract
Purpose of Review To highlight and review the application of artificial intelligence (AI) in kidney stone disease (KSD) for diagnostics, predicting procedural outcomes, stone passage, and recurrence rates. The systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) checklist. Recent Findings This review discusses the newer advancements in AI-driven management strategies, which holds great promise to provide an essential step for personalized patient care and improved decision making. AI has been used in all areas of KSD including diagnosis, for predicting treatment suitability and success, basic science, quality of life (QOL), and recurrence of stone disease. However, it is still a research-based tool and is not used universally in clinical practice. This could be due to a lack of data infrastructure needed to train the algorithms, wider applicability in all groups of patients, complexity of its use and cost involved with it. Summary The constantly evolving literature and future research should focus more on QOL and the cost of KSD treatment and develop evidence-based AI algorithms that can be used universally, to guide urologists in the management of stone disease.
Collapse
Affiliation(s)
- B M Zeeshan Hameed
- Department of Urology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.,iTRUE: International Training and Research, Uro-Oncology and Endourology, Manipal, Karnataka, India
| | - Milap Shah
- Department of Urology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.,iTRUE: International Training and Research, Uro-Oncology and Endourology, Manipal, Karnataka, India
| | - Nithesh Naik
- iTRUE: International Training and Research, Uro-Oncology and Endourology, Manipal, Karnataka, India. .,Department of Mechanical and Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Bhavan Prasad Rai
- iTRUE: International Training and Research, Uro-Oncology and Endourology, Manipal, Karnataka, India.,Freeman Hospital, Newcastle upon Tyne, UK
| | - Hadis Karimi
- Department of Pharmacy, Manipal College of Pharmaceuticals, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Patrick Rice
- Department of Urology, University Hospital Southampton NHS Trust, Southampton, UK
| | | | - Bhaskar Somani
- Department of Urology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.,iTRUE: International Training and Research, Uro-Oncology and Endourology, Manipal, Karnataka, India.,Department of Urology, University Hospital Southampton NHS Trust, Southampton, UK
| |
Collapse
|
12
|
A Review on existing IoT Architecture and Communication Protocols used in Healthcare Monitoring System. JOURNAL OF THE INSTITUTION OF ENGINEERS (INDIA): SERIES B 2021. [PMCID: PMC8188533 DOI: 10.1007/s40031-021-00632-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nowadays, due to modernization or advancement in the Internet of Things (IoT) especially in the Healthcare area, we want to take care of our elders with some monitoring equipment, and the Internet of Things can play a significant role in it. The motivation of writing this paper is to collect the information of various existing Internet of Things Architecture and Communication Techniques used in Healthcare Monitoring System to observe that how efficiently, different researchers have used it. So we have studied different real-time health monitoring system based on diseases which are common in elderly people like diabetes, blood pressure, heart disease, sleep apnea, and cancer, etc. In this real-time health monitoring system, researchers introduced many new measures, communication techniques like ZigBee, Long-Range Wide Area Network (LoRawan), Radio Frequency Identification (RFID). Apart from this, it was also observed that remote monitoring system in Healthcare is incomplete without data processing and early prediction in such diseases. Though, Machine learning provides efficient techniques to extract knowledge from diagnostic medical datasets collected from the patients. That is why we highlighted the current role of various Machine Learning algorithms like Support Vector Machine, K-Nearest Neighbor, Random Forest, etc., for processing of Healthcare data and also helpful to predict the output more precisely.
Collapse
|
13
|
Alex DM, Chandy DA. Exploration of a Framework for the Identification of Chronic Kidney Disease Based on 2D Ultrasound Images: A Survey. Curr Med Imaging 2021; 17:464-478. [PMID: 32964826 DOI: 10.2174/1573405616666200923162600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a fatal disease that ultimately results in kidney failure. The primary threat is the aetiology of CKD. Over the years, researchers have proposed various techniques and methods to detect and diagnose the disease. The conventional method of detecting CKD is the determination of the estimated glomerular filtration rate by measuring creatinine levels in blood or urine. Conventional methods for the detection and classification of CKD are tedious; therefore, several researchers have suggested various alternative methods. Recently, the research community has shown keen interest in developing methods for the early detection of this disease using imaging modalities such as ultrasound, magnetic resonance imaging, and computed tomography. DISCUSSION The study aimed to conduct a systematic review of various existing techniques for the detection and classification of different stages of CKD using 2D ultrasound imaging of the kidney. The review was confined to 2D ultrasound images alone, considering the feasibility of implementation even in underdeveloped countries because 2D ultrasound scans are more cost effective than other modalities. The techniques and experimentation in each work were thoroughly studied and discussed in this review. CONCLUSION This review displayed the cutting-age research, challenges, and possibilities of further research and development in the detection and classification of CKD.
Collapse
Affiliation(s)
- Deepthy Mary Alex
- Department of Electronics and Communication Engineering, Karunya University Institute of Technology and Sciences, Coimbatore, India
| | - D Abraham Chandy
- Department of Electronics and Communication Engineering, Karunya University Institute of Technology and Sciences, Coimbatore, India
| |
Collapse
|
14
|
Patil S, Choudhary S. Deep convolutional neural network for chronic kidney disease prediction using ultrasound imaging. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2020-0068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
Objectives
Chronic kidney disease (CKD) is a common disease and it is related to a higher risk of cardiovascular disease and end-stage renal disease that can be prevented by the earlier recognition and diagnosis of individuals at risk. Even though risk factors for CKD have been recognized, the effectiveness of CKD risk classification via prediction models remains uncertain. This paper intends to introduce a new predictive model for CKD using US image.
Methods
The proposed model includes three main phases “(1) preprocessing, (2) feature extraction, (3) and classification.” In the first phase, the input image is subjected to preprocessing, which deploys image inpainting and median filtering processes. After preprocessing, feature extraction takes place under four cases; (a) texture analysis to detect the characteristics of texture, (b) proposed high-level feature enabled local binary pattern (LBP) extraction, (c) area based feature extraction, and (d) mean intensity based feature extraction. These extracted features are then subjected for classification, where “optimized deep convolutional neural network (DCNN)” is used. In order to make the prediction more accurate, the weight and the activation function of DCNN are optimally chosen by a new hybrid model termed as diversity maintained hybrid whale moth flame optimization (DM-HWM) model.
Results
The accuracy of adopted model at 40th training percentage was 44.72, 11.02, 5.59, 3.92, 3.92, 3.57, 2.59, 1.71, 1.68, and 0.42% superior to traditional artificial neural networks (ANN), support vector machine (SVM), NB, J48, NB-tree, LR, composite hypercube on iterated random projection (CHIRP), CNN, moth flame optimization (MFO), and whale optimization algorithm (WOA) models.
Conclusions
Finally, the superiority of the adopted scheme is validated over other conventional models in terms of various measures.
Collapse
Affiliation(s)
- Smitha Patil
- Research Scholar, VTU , RC Sir MVIT , Bengaluru , India
- Assistant Professor, Presidency University , Bengaluru , India
| | | |
Collapse
|
15
|
Sudharson S, Kokil P. An ensemble of deep neural networks for kidney ultrasound image classification. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 197:105709. [PMID: 32889406 DOI: 10.1016/j.cmpb.2020.105709] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Chronic kidney disease is a worldwide health issue which includes not only kidney failure but also complications of reduced kidney functionality. Cyst formation, nephrolithiasis or kidney stone, and renal cell carcinoma or kidney tumor are the common kidney disorders which affects the functionality of kidneys. These disorders are typically asymptomatic, therefore early and automatic diagnosis of kidney disorders are required to avoid serious complications. METHODS This paper proposes an automatic classification of B-mode kidney ultrasound images based on the ensemble of deep neural networks (DNNs) using transfer learning. The ultrasound images are usually affected by speckle noise and quality selection in the ultrasound image is based on perception-based image quality evaluator score. Three variant datasets are given to the pre-trained DNN models for feature extraction followed by support vector machine for classification. The ensembling of different pre-trained DNNs like ResNet-101, ShuffleNet, and MobileNet-v2 are combined and final predictions are done by using the majority voting technique. By combining the predictions from multiple DNNs the ensemble model shows better classification performance than the individual models. The presented method proved its superiority when compared to the conventional and DNN based classification methods. The developed ensemble model classifies the kidney ultrasound images into four classes, namely, normal, cyst, stone, and tumor. RESULTS To highlight effectiveness of the proposed approach, the ensemble based approach is compared with the existing state-of-the-art methods and tested in the variants of ultrasound images like in quality and noisy conditions. The presented method resulted in maximum classification accuracy of 96.54% in testing with quality images and 95.58% in testing with noisy images. The performance of the presented approach is evaluated based on accuracy, sensitivity, and selectivity. CONCLUSIONS From the experimental analysis, it is clear that the ensemble of DNNs classifies the majority of images correctly and results in maximum classification accuracy as compared to the existing methods. This automatic classification approach is a supporting tool for the radiologists and nephrologists for precise diagnosis of kidney diseases.
Collapse
Affiliation(s)
- S Sudharson
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai 600127, India
| | - Priyanka Kokil
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai 600127, India.
| |
Collapse
|
16
|
Deepthy Mary Alex, Hepzibah Christinal A, Abraham Chandy D, Singh A, Pushkaran M. Speckle noise suppression in 2D ultrasound kidney images using local pattern based topological derivative. Pattern Recognit Lett 2020. [DOI: 10.1016/j.patrec.2019.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Abstract
A wide range of medical devices have significant electronic components. Compared to open-source medical software, open (and open-source) electronic hardware has been less published in peer-reviewed literature. In this review, we explore the developments, significance, and advantages of using open platform electronic hardware for medical devices. Open hardware electronics platforms offer not just shorter development times, reduced costs, and customization; they also offer a key potential advantage which current commercial medical devices lack—seamless data sharing for machine learning and artificial intelligence. We explore how various electronic platforms such as microcontrollers, single board computers, field programmable gate arrays, development boards, and integrated circuits have been used by researchers to design medical devices. Researchers interested in designing low cost, customizable, and innovative medical devices can find references to various easily available electronic components as well as design methodologies to integrate those components for a successful design.
Collapse
|
18
|
Csuka SI, Martos T, Kapornaky M, Sallay V, Lewis CA. Attitudes Toward Technologies of the Near Future: The Role of Technology Readiness in a Hungarian Adult Sample. INTERNATIONAL JOURNAL OF INNOVATION AND TECHNOLOGY MANAGEMENT 2019. [DOI: 10.1142/s0219877019500469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Past decades’ rapid development of technological innovations can ease individual’s everyday lives, but they can also convey a sense of frustration. The aim of the present study was to investigate attitudes toward technologies that are expected to become widespread in the near future. The Technology Readiness Index was administered to a sample of Hungarian respondents to measure the capacity to adopt technologies. The results add significant novelties about the specific patterns related to perceptions of considerably different future technologies, emphasizing the unique role of optimism. Derivations are further specified by demographic characteristics, future directions and practical implications are also discussed.
Collapse
Affiliation(s)
- Sára Imola Csuka
- Károly Rácz School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Tamás Martos
- Department of Personality, Clinical and Health Psychology, University of Szeged, Hungary
| | - Mihály Kapornaky
- Department of Social Psychology, Eötvös Loránd University, Hungary
| | - Viola Sallay
- Department of Personality, Clinical and Health Psychology, University of Szeged, Hungary
| | | |
Collapse
|
19
|
Kokil P, Sudharson S. Automatic Detection of Renal Abnormalities by Off-the-shelf CNN Features. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/09747338.2019.1613936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Priyanka Kokil
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, 600127 Chennai, India
| | - S. Sudharson
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, 600127 Chennai, India
| |
Collapse
|
20
|
Thampi L, Paul V. Abnormality recognition and feature extraction in female pelvic ultrasound imaging. INFORMATICS IN MEDICINE UNLOCKED 2018. [DOI: 10.1016/j.imu.2018.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|