1
|
Shi SN, Xu Q, Jiao X, Wen Y, Wu Y, Liu J, Ma D, Zhao B, Gao Q, Fang Y. ATR-mediated phosphorylation of RIPK1 inhibits DNA damage-induced necroptosis. Biochem Pharmacol 2025; 237:116949. [PMID: 40228635 DOI: 10.1016/j.bcp.2025.116949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/30/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Necroptosis induced by DNA damage during chemotherapy is a significant and effective treatment strategy for malignant tumors. Ataxia telangiectasia and rad3-related protein (ATR), a key kinase in DNA damage checkpoints, initiates repair by transmitting damage signals to effectors. However, persistent DNA damage may result in cell death. The mechanisms by which ATR regulates necroptosis remain incompletely understood. In this study, we demonstrated that ATR binds to receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and inhibits its activation, thereby suppressing RIPK1-dependent necroptosis triggered by DNA damage. Mechanistically, ATR directly inhibited RIPK1 and downstream necrosome formation through Ser335 phosphorylation following DNA damage, thereby attenuating RIPK1-dependent necroptosis. In the case of the S335A mutation, RIPK1 repression was relieved, leading to enhanced downstream necroptosis. Furthermore, RIPK1 knockout with complementation of wild-type or S335A mutation in ovarian cancer cell lines revealed that ATR phosphorylation of RIPK1 at S335 promoted chemoresistance, while the S335A mutation significantly increased chemosensitivity. This was characterized by heightened necroptosis activation, reduced cell viability, and increased cell death. These findings expand our understanding of the interaction between DNA damage and cell death regulation and may aid in developing therapeutic drugs to enhance DNA damage-induced tumor necroptosis and improve chemosensitivity.
Collapse
Affiliation(s)
- Shen-Nan Shi
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyang Xu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Jiao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanjia Wen
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijie Wu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahao Liu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingbing Zhao
- Department of Obstetrics and Gynecology, Guangxi Medical University of Cancer Hospital, Nanning, Guangxi 530021, China; State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Qinglei Gao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Wang F, Li K, Wang W, Hui J, He J, Cai J, Ren W, Zhao Y, Song Q, He Y, Ma Y, Feng X, Liu Y, Yu J, Siriporn J, Ma D, Cai Z. Sensing of endogenous retroviruses-derived RNA by ZBP1 triggers PANoptosis in DNA damage and contributes to toxic side effects of chemotherapy. Cell Death Dis 2024; 15:779. [PMID: 39465258 PMCID: PMC11514216 DOI: 10.1038/s41419-024-07175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Excessive DNA damage triggers various types of programmed cell death (PCD), yet the regulatory mechanism of DNA damage-induced cell death is not fully understood. Here, we report that PANoptosis, a coordinated PCD pathway, including pyroptosis, apoptosis and necroptosis, is activated by DNA damage. The Z-DNA binding protein 1 (ZBP1) is the apical sensor of PANoptosis and essential for PANoptosome assembly in response to DNA damage. We find endogenous retroviruses (ERVs) are activated by DNA damage and act as ligands for ZBP1 to trigger PANoptosis. By using ZBP1 knock-out and knock-in mice disrupting ZBP1 nucleic acid-binding activity, we demonstrate that ZBP1-mediated PANoptosis contributes to the toxic effects of chemotherapeutic drugs, which is dependent on ZBP1 nucleic acid-binding activity. We found that ZBP1 expression is downregulated in tumor tissue. Furthermore, in colorectal cancer patients, dsRNA is induced by chemotherapy and sensed by ZBP1 in normal colonic tissues, suggesting ZBP1-mediated PANoptosis is activated by chemotherapy in normal tissues. Our findings indicate that ZBP1-mediated PANoptosis is activated by DNA damage and contributes to the toxic side effects of DNA-damage-based chemotherapy. These data suggest that ZBP1 could be a promising therapeutic target to alleviate chemotherapy-related side effects.
Collapse
Affiliation(s)
- Fang Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 200331, Shanghai, China
| | - Kaiying Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 200331, Shanghai, China
| | - Wensheng Wang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, 400037, Chongqing, China
| | - Jiang Hui
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 200331, Shanghai, China
| | - Jiangping He
- Guangzhou National Laboratory, 510005, Guangzhou, China
| | - Jin Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 200331, Shanghai, China
| | - Wenqing Ren
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Yaxing Zhao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Qianqian Song
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 200331, Shanghai, China
| | - Yuan He
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China
| | - Xiaona Feng
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jitkaew Siriporn
- Center of Excellence for Cancer and Inflammation, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Dan Ma
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, 400037, Chongqing, China.
| | - Zhenyu Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 200072, Shanghai, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, 200331, Shanghai, China.
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China.
| |
Collapse
|
3
|
Lee B, Kim YY, Jeong S, Lee SW, Lee SJ, Rho MC, Kim SH, Lee S. Oleanolic Acid Acetate Alleviates Cisplatin-Induced Nephrotoxicity via Inhibition of Apoptosis and Necroptosis In Vitro and In Vivo. TOXICS 2024; 12:301. [PMID: 38668524 PMCID: PMC11054587 DOI: 10.3390/toxics12040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Cisplatin is a widely used anti-cancer drug for treating solid tumors, but it is associated with severe side effects, including nephrotoxicity. Various studies have suggested that the nephrotoxicity of cisplatin could be overcome; nonetheless, an effective adjuvant drug has not yet been established. Oleanolic acid acetate (OAA), a triterpenoid isolated from Vigna angularis, is commonly used to treat inflammatory and allergic diseases. This study aimed to investigate the protective effects of OAA against cisplatin-induced apoptosis and necroptosis using TCMK-1 cells and a mouse model. In cisplatin-treated TCMK-1 cells, OAA treatment significantly reduced Bax and cleaved-caspase3 expression, whereas it increased Bcl-2 expression. Moreover, in a cisplatin-induced kidney injury mouse model, OAA treatment alleviated weight loss in the body and major organs and also relieved cisplatin-induced nephrotoxicity symptoms. RNA sequencing analysis of kidney tissues identified lipocalin-2 as the most upregulated gene by cisplatin. Additionally, necroptosis-related genes such as receptor-interacting protein kinase (RIPK) and mixed lineage kinase domain-like (MLKL) were identified. In an in vitro study, the phosphorylation of RIPKs and MLKL was reduced by OAA pretreatment in both cisplatin-treated cells and cells boosted via co-treatment with z-VAD-FMK. In conclusion, OAA could protect the kidney from cisplatin-induced nephrotoxicity and may serve as an anti-cancer adjuvant.
Collapse
Affiliation(s)
- Bori Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Yeon-Yong Kim
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Seungwon Jeong
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Seung Woong Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Seung-Jae Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Mun-Chual Rho
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| | - Sang-Hyun Kim
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Soyoung Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Republic of Korea; (B.L.); (Y.-Y.K.); (S.J.); (S.W.L.); (S.-J.L.); (M.-C.R.)
| |
Collapse
|
4
|
Zhang FX, Xu P, Zhang LJ, Fan R, Zhang HX, Liu DH, Liu K, Shen DY. RARγ promotes the invasion and metastasis of thyroid carcinoma by activating the JAK1-STAT3-CD24/MMPs axis. Int Immunopharmacol 2023; 125:111129. [PMID: 37897947 DOI: 10.1016/j.intimp.2023.111129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
The nuclear receptor superfamily RAR is generally considered to play a crucial role in the development of tumors by regulating the transcription of target genes. Nevertheless, whether RARγ performs tumor-promoting or tumor-suppressing functions and its specific mechanism in thyroid carcinoma (TC) remain unknown. Here, our study demonstrated that RARγ was abnormally overexpressed in TC tissues compared with normal thyroid tissues. Moreover, RARγ expression was remarkably correlated with cell phenotypes such as cell proliferation, migration and invasion. Mechanistically, RARγ knockdown effectively decreased the phosphorylation levels of JAK1 and STAT3, leading to decreased expression of the membrane protein CD24. In a coculture system, TC cells with high levels of CD24 in the membrane were more likely to escape phagocytosis by macrophages via the combination of CD24 with the inhibitory receptor Siglec-10 in the membrane of macrophages. In contrast, the ability of macrophages to engulf TC cells was notably elevated through exogenous addition of CD24 antibody. Collectively, our study revealed a previously undiscovered molecular mechanism of RARγ in promoting the development of TC, shedding light on RARγ as a promising therapeutic target for TC.
Collapse
Affiliation(s)
- Fu-Xing Zhang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China; Department of General Surgery, The First Hospital Affiliated to Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Peng Xu
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Lin-Jun Zhang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Rui Fan
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Hao-Xuan Zhang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Dong-Hua Liu
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Ke Liu
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Dong-Yan Shen
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China.
| |
Collapse
|
5
|
Yu S, Xiao H, Ma L, Zhang J, Zhang J. Reinforcing the immunogenic cell death to enhance cancer immunotherapy efficacy. Biochim Biophys Acta Rev Cancer 2023; 1878:188946. [PMID: 37385565 DOI: 10.1016/j.bbcan.2023.188946] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Immunogenic cell death (ICD) has been a revolutionary modality in cancer treatment since it kills primary tumors and prevents recurrent malignancy simultaneously. ICD represents a particular form of cancer cell death accompanied by production of damage-associated molecular patterns (DAMPs) that can be recognized by pattern recognition receptors (PRRs), which enhances infiltration of effector T cells and potentiates antitumor immune responses. Various treatment methods can elicit ICD involving chemo- and radio-therapy, phototherapy and nanotechnology to efficiently convert dead cancer cells into vaccines and trigger the antigen-specific immune responses. Nevertheless, the efficacy of ICD-induced therapies is restrained due to low accumulation in the tumor sites and damage of normal tissues. Thus, researchers have been devoted to overcoming these problems with novel materials and strategies. In this review, current knowledge on different ICD modalities, various ICD inducers, development and application of novel ICD-inducing strategies are summarized. Moreover, the prospects and challenges are briefly outlined to provide reference for future design of novel immunotherapy based on ICD effect.
Collapse
Affiliation(s)
- Sihui Yu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongyang Xiao
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Li Ma
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Jiarong Zhang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
DiKun KM, Gudas LJ. Vitamin A and retinoid signaling in the kidneys. Pharmacol Ther 2023; 248:108481. [PMID: 37331524 PMCID: PMC10528136 DOI: 10.1016/j.pharmthera.2023.108481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Vitamin A (VA, retinol) and its metabolites (commonly called retinoids) are required for the proper development of the kidney during embryogenesis, but retinoids also play key roles in the function and repair of the kidney in adults. Kidneys filter 180-200 liters of blood per day and each kidney contains approximately 1 million nephrons, which are often referred to as the 'functional units' of the kidney. Each nephron consists of a glomerulus and a series of tubules (proximal tubule, loop of Henle, distal tubule, and collecting duct) surrounded by a network of capillaries. VA is stored in the liver and converted to active metabolites, most notably retinoic acid (RA), which acts as an agonist for the retinoic acid receptors ((RARs α, β, and γ) to regulate gene transcription. In this review we discuss some of the actions of retinoids in the kidney after injury. For example, in an ischemia-reperfusion model in mice, injury-associated loss of proximal tubule (PT) differentiation markers occurs, followed by re-expression of these differentiation markers during PT repair. Notably, healthy proximal tubules express ALDH1a2, the enzyme that metabolizes retinaldehyde to RA, but transiently lose ALDH1a2 expression after injury, while nearby myofibroblasts transiently acquire RA-producing capabilities after injury. These results indicate that RA is important for renal tubular injury repair and that compensatory mechanisms exist for the generation of endogenous RA by other cell types upon proximal tubule injury. ALDH1a2 levels also increase in podocytes, epithelial cells of the glomeruli, after injury, and RA promotes podocyte differentiation. We also review the ability of exogenous, pharmacological doses of RA and receptor selective retinoids to treat numerous kidney diseases, including kidney cancer and diabetic kidney disease, and the emerging genetic evidence for the importance of retinoids and their receptors in maintaining or restoring kidney function after injury. In general, RA has a protective effect on the kidney after various types of injuries (eg. ischemia, cytotoxic actions of chemicals, hyperglycemia related to diabetes). As more research into the actions of each of the three RARs in the kidney is carried out, a greater understanding of the actions of vitamin A is likely to lead to new insights into the pathology of kidney disorders and the development of new therapies for kidney diseases.
Collapse
Affiliation(s)
- Krysta M DiKun
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; Department of Urology, Weill Cornell Medicine, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
7
|
Brown G. Deregulation of All- Trans Retinoic Acid Signaling and Development in Cancer. Int J Mol Sci 2023; 24:12089. [PMID: 37569466 PMCID: PMC10419198 DOI: 10.3390/ijms241512089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer stem cells are the root cause of cancer, which, in essence, is a developmental disorder. All-trans retinoic acid (ATRA) signaling via ligand-activation of the retinoic acid receptors (RARs) plays a crucial role in tissue patterning and development during mammalian embryogenesis. In adults, active RARγ maintains the pool of hematopoietic stem cells, whereas active RARα drives myeloid cell differentiation. Various findings have revealed that ATRA signaling is deregulated in many cancers. The enzymes for ATRA synthesis are downregulated in colorectal, gastric, lung, and oropharyngeal cancers. ATRA levels within breast, ovarian, pancreatic, prostate, and renal cancer cells were lower than within their normal counterpart cells. The importance is that 0.24 nM ATRA activates RARγ (for stem cell stemness), whereas 100 times more is required to activate RARα (for differentiation). Moreover, RARγ is an oncogene regarding overexpression within colorectal, cholangiocarcinoma, hepatocellular, ovarian, pancreatic, and renal cancer cells. The microRNA (miR) 30a-5p downregulates expression of RARγ, and miR-30a/miR-30a-5p is a tumor suppressor for breast, colorectal, gastric, hepatocellular, lung, oropharyngeal, ovarian, pancreatic, prostate, and renal cancer. These complementary findings support the view that perturbations to ATRA signaling play a role in driving the abnormal behavior of cancer stem cells. Targeting ATRA synthesis and RARγ has provided promising approaches to eliminating cancer stem cells because such agents have been shown to drive cell death.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
8
|
Liu H, Hu B, Luan J, Sun Y, Wang S, Li W, Chen L, Wang H, Gao Y, Wang J. Structural requirement of RARγ agonism through computational aspects. J Mol Model 2023; 29:108. [PMID: 36964229 DOI: 10.1007/s00894-023-05507-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023]
Abstract
CONTEXT RARγ is a therapeutic target for many skin diseases and has potential in cancer treatment. In the current study, we put forward a comprehensive structure-activity relationship study of third and fourth generations of RARγ agonists, addressing multiple crystal structures of RARγ complexes and approved drugs. Adapalene and Trifarotene, through hybrid strategies including protein contacts Atlas analysis, molecular docking, dynamics simulations, MM-GBSA, ASM, and pharmacophore modeling. Our result revealed crucial amino acids Arg267, Ser278, Phe288, Phe230, Met272, Leu271, and Leu268 within the RARγ pocket, as well as pharmacophore features such as two hydrophobic groups, two aromatic rings, and negative ionic features, which are essential for the binding of RARγ agonists. Based on this study, the binding mechanism of RARγ agonists was elucidated, which will be helpful for the rational design of new RARγ agonists for skin diseases and cancer treatment. METHODS In this study, Schrödinger suite 2021-2 with OPLS_4 force field, Discovery Studio program 3.0, LigandScout 4.3, and PyMOL are utilized in the investigation.
Collapse
Affiliation(s)
- Haihan Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Baichun Hu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Jiasi Luan
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yuqing Sun
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Shizun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Weixai Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Lu Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yinli Gao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
9
|
Luo R, Onyshchenko K, Wang L, Gaedicke S, Grosu AL, Firat E, Niedermann G. Necroptosis-dependent Immunogenicity of Cisplatin: Implications for Enhancing the Radiation-induced Abscopal Effect. Clin Cancer Res 2023; 29:667-683. [PMID: 36449659 DOI: 10.1158/1078-0432.ccr-22-1591] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/04/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
PURPOSE Cisplatin is increasingly used in chemoimmunotherapy and may enhance the T cell-dependent radiation-induced abscopal effect, but how it promotes antitumor immunity is poorly understood. We investigated whether and why cisplatin is immunogenic, and the implications for the cisplatin-enhanced abscopal effect. EXPERIMENTAL DESIGN Cisplatin, carboplatin, and the well-known immunogenic cell death (ICD) inducer oxaliplatin were compared for their potency to enhance the abscopal effect and induce type I IFN (IFN-I) and extracellular ATP, danger signals of ICD. The hypothetical role of necroptosis and associated damage-associated molecular patterns for cisplatin-induced ICD was investigated by inhibitors and knockout cells in vitro and in two tumor models in mice. A novel necroptosis signature for tumor immune cell infiltration and therapy response was developed. RESULTS Cisplatin enhanced the abscopal effect more strongly than oxaliplatin or carboplatin. This correlated with higher induction of IFN-I and extracellular ATP by cisplatin, in a necroptosis-dependent manner. Cisplatin triggered receptor-interacting protein kinase 3 (RIPK3)-dependent tumor cell necroptosis causing cytosolic mitochondrial DNA (mtDNA) release, initiating the cyclic GMP-AMP synthase-stimulator of interferon genes pathway and IFN-I secretion promoting T-cell cross-priming by dendritic cells (DC). Accordingly, tumor cell RIPK3 or mtDNA deficiency and loss of IFN-I or ATP signaling diminished the cisplatin-enhanced abscopal effect. Cisplatin-treated tumor cells were immunogenic in vaccination experiments, depending on RIPK3 and mtDNA. In human tumor transcriptome analysis, necroptotic features correlated with abundant CD8+ T cells/DCs, sparse immunosuppressive cells, and immunotherapy response. CONCLUSIONS Cisplatin induces antitumor immunity through necroptosis-mediated ICD. Our findings may help explain the benefits of cisplatin in chemo(radio)immunotherapies and develop clinical trials to investigate whether cisplatin enhances the abscopal effect in patients.
Collapse
Affiliation(s)
- Ren Luo
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kateryna Onyshchenko
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Liqun Wang
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, P.R. China
| | - Simone Gaedicke
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Firat
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Niedermann
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Brown G. Targeting the Retinoic Acid Pathway to Eradicate Cancer Stem Cells. Int J Mol Sci 2023; 24:2373. [PMID: 36768694 PMCID: PMC9916838 DOI: 10.3390/ijms24032373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
All-trans retinoic acid is a morphogen during embryogenesis and a teratogen. Cancer is an error of development, and the retinoic acid receptors (RAR) for all-trans retinoic acid play a role in cancer. Expression of the cytosolic aldehyde dehydrogenases, which mediate the last step to the synthesis of all-trans retinoic acid, is deregulated in various human cancers. Inhibiting these enzymes using a variety of agents reduced the proliferation of lung cancer cells, reduced the proliferation and induced apoptosis of ovarian, prostate, squamous, and uterine cancer cells, and sensitised breast, colorectal and ovarian cancer cells to chemotherapeutic agents. RARγ is an oncogene within some cases of AML, cholangiocarcinoma, colorectal cancer, clear cell renal cell carcinoma, hepatocellular carcinoma, pancreatic ductal adenocarcinoma, prostate cancer, and ovarian cancer. Pan-RAR and RARγ antagonist inhibition of the action of RARγ led to necroptosis of human prostate and pediatric brain tumour cancer stem cells. Treatment of hepatocellular carcinoma cells with the flavenoid acacetin, which interferes with the action of RARγ, decreased cell growth and induced apoptosis. Targeting the retinoic acid pathway is promising regarding the development of new drugs to eradicate cancer stem cells.
Collapse
Affiliation(s)
- Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
11
|
Brown G. Lessons to cancer from studies of leukemia and hematopoiesis. Front Cell Dev Biol 2022; 10:993915. [PMID: 36204679 PMCID: PMC9531023 DOI: 10.3389/fcell.2022.993915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The starting point to describing the origin and nature of any cancer must be knowledge about how the normal counterpart tissue develops. New principles to the nature of hematopoietic stem cells have arisen in recent years. In particular, hematopoietic stem cells can “choose” a cell lineage directly from a spectrum of the end-cell options, and are, therefore, a heterogeneous population of lineage affiliated/biased cells. These cells remain versatile because the developmental trajectories of hematopoietic stem and progenitor cells are broad. From studies of human acute myeloid leukemia, leukemia is also a hierarchy of maturing or partially maturing cells that are sustained by leukemia stem cells at the apex. This cellular hierarchy model has been extended to a wide variety of human solid tumors, by the identification of cancer stem cells, and is termed the cancer stem cell model. At least, two genomic insults are needed for cancer, as seen from studies of human childhood acute lymphoblastic leukemia. There are signature mutations for some leukemia’s and some relate to a transcription factor that guides the cell lineage of developing hematopoietic stem/progenitor cells. Similarly, some oncogenes restrict the fate of leukemia stem cells and their offspring to a single maturation pathway. In this case, a loss of intrinsic stem cell versatility seems to be a property of leukemia stem cells. To provide more effective cures for leukemia, there is the need to find ways to eliminate leukemia stem cells.
Collapse
|
12
|
Abdelaal MR, Ibrahim E, Elnagar MR, Soror SH, Haffez H. Augmented Therapeutic Potential of EC-Synthetic Retinoids in Caco-2 Cancer Cells Using an In Vitro Approach. Int J Mol Sci 2022; 23:ijms23169442. [PMID: 36012706 PMCID: PMC9409216 DOI: 10.3390/ijms23169442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer therapies have produced promising clinical responses, but tumor cells rapidly develop resistance to these drugs. It has been previously shown that EC19 and EC23, two EC-synthetic retinoids, have single-agent preclinical anticancer activity in colorectal carcinoma. Here, isobologram analysis revealed that they have synergistic cytotoxicity with retinoic acid receptor (RAR) isoform-selective agonistic retinoids such as AC261066 (RARβ2-selective agonist) and CD437 (RARγ-selective agonist) in Caco-2 cells. This synergism was confirmed by calculating the combination index (lower than 1) and the dose reduction index (higher than 1). Flow cytometry of combinatorial IC50 (the concentration causing 50% cell death) confirmed the cell cycle arrest at the SubG0-G1 phase with potentiated apoptotic and necrotic effects. The reported synergistic anticancer activity can be attributed to their ability to reduce the expression of ATP-binding cassette (ABC) transporters including P-glycoprotein (P-gp1), breast cancer resistance protein (BCRP) and multi-drug resistance-associated protein-1 (MRP1) and Heat Shock Protein 70 (Hsp70). This adds up to the apoptosis-promoting activity of EC19 and EC23, as shown by the increased Caspase-3/7 activities and DNA fragmentation leading to DNA double-strand breaks. This study sheds the light on the possible use of EC-synthetic retinoids in the rescue of multi-drug resistance in colorectal cancer using Caco-2 as a model and suggests new promising combinations between different synthetic retinoids. The current in vitro results pave the way for future studies on these compounds as possible cures for colorectal carcinoma.
Collapse
Affiliation(s)
- Mohamed R. Abdelaal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Esraa Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Mohamed R. Elnagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt
| | - Sameh H. Soror
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo 11795, Egypt
- Correspondence: ; Tel.: +20-1094-970-173
| |
Collapse
|
13
|
Antagonizing RARγ Drives Necroptosis of Cancer Stem Cells. Int J Mol Sci 2022; 23:ijms23094814. [PMID: 35563205 PMCID: PMC9105400 DOI: 10.3390/ijms23094814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 12/23/2022] Open
Abstract
There is a need for agents that eliminate cancer stem cells, which sustain cancer and are also largely responsible for disease relapse and metastasis. Conventional chemotherapeutics and radiotherapy are often highly effective against the bulk of cancer cells, which are proliferating, but spare cancer stem cells. Therapeutics that target cancer stem cells may also provide a bona fide cure for cancer. There are two rationales for targeting the retinoic acid receptor (RAR)γ. First, RARγ is expressed selectively within primitive cells. Second, RARγ is a putative oncogene for a number of human cancers, including cases of acute myeloid leukemia, cholangiocarcinoma, and colorectal, renal and hepatocellular carcinomas. Prostate cancer cells depend on active RARγ for their survival. Antagonizing all RARs caused necroptosis of prostate and breast cancer stem cell-like cells, and the cancer stem cells that gave rise to neurospheres from pediatric patients’ primitive neuroectodermal tumors and an astrocytoma. As tested for prostate cancer, antagonizing RARγ was sufficient to drive necroptosis. Achieving cancer-selectively is a longstanding paradigm for developing new treatments. The normal prostate epithelium was less sensitive to the RARγ antagonist and pan-RAR antagonist than prostate cancer cells, and fibroblasts and blood mononuclear cells were insensitive. The RARγ antagonist and pan-RAR antagonist are promising new cancer therapeutics.
Collapse
|
14
|
Needs SH, Bootman MD, Grotzke JE, Kramer HB, Allman SA. Off‐target inhibition of NGLY1 by the polycaspase inhibitor Z‐VAD‐fmk induces cellular autophagy. FEBS J 2022; 289:3115-3131. [PMID: 34995415 PMCID: PMC9304259 DOI: 10.1111/febs.16345] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 09/14/2021] [Accepted: 01/05/2022] [Indexed: 12/28/2022]
Affiliation(s)
- Sarah H. Needs
- School of Life, Health and Chemical Sciences The Open University Milton Keynes UK
- Reading School of Pharmacy University of Reading UK
| | - Martin D. Bootman
- School of Life, Health and Chemical Sciences The Open University Milton Keynes UK
| | | | - Holger B. Kramer
- Department of Physiology, Anatomy and Genetics University of Oxford UK
- MRC London Institute of Medical Sciences UK
| | - Sarah A. Allman
- School of Life, Health and Chemical Sciences The Open University Milton Keynes UK
- Reading School of Pharmacy University of Reading UK
- Leicester School of Pharmacy De Montfort University Leicester UK
| |
Collapse
|
15
|
Chabanon RM, Rouanne M, Lord CJ, Soria JC, Pasero P, Postel-Vinay S. Targeting the DNA damage response in immuno-oncology: developments and opportunities. Nat Rev Cancer 2021; 21:701-717. [PMID: 34376827 DOI: 10.1038/s41568-021-00386-6] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Immunotherapy has revolutionized cancer treatment and substantially improved patient outcome with regard to multiple tumour types. However, most patients still do not benefit from such therapies, notably because of the absence of pre-existing T cell infiltration. DNA damage response (DDR) deficiency has recently emerged as an important determinant of tumour immunogenicity. A growing body of evidence now supports the concept that DDR-targeted therapies can increase the antitumour immune response by (1) promoting antigenicity through increased mutability and genomic instability, (2) enhancing adjuvanticity through the activation of cytosolic immunity and immunogenic cell death and (3) favouring reactogenicity through the modulation of factors that control the tumour-immune cell synapse. In this Review, we discuss the interplay between the DDR and anticancer immunity and highlight how this dynamic interaction contributes to shaping tumour immunogenicity. We also review the most innovative preclinical approaches that could be used to investigate such effects, including recently developed ex vivo systems. Finally, we highlight the therapeutic opportunities presented by the exploitation of the DDR-anticancer immunity interplay, with a focus on those in early-phase clinical development.
Collapse
Affiliation(s)
- Roman M Chabanon
- ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Mathieu Rouanne
- Equipe Labellisée Ligue Nationale contre le Cancer, Inserm Unit U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Département d'Urologie, Hôpital Foch, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, Suresnes, France
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Jean-Charles Soria
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médicine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | - Philippe Pasero
- Equipe Labellisée Ligue contre le Cancer, Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier, France
| | - Sophie Postel-Vinay
- ATIP-Avenir Group, Inserm Unit U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France.
- Faculté de Médicine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France.
| |
Collapse
|
16
|
Liu L, Tang Z, Zeng Y, Liu Y, Zhou L, Yang S, Wang D. Role of necroptosis in infection-related, immune-mediated, and autoimmune skin diseases. J Dermatol 2021; 48:1129-1138. [PMID: 34109676 DOI: 10.1111/1346-8138.15929] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022]
Abstract
Regulated necrosis, also termed necroptosis, is another programmed cell death depending on a unique molecular pathway that does not overlap with apoptosis. Tumor necrosis factor and Toll-like receptor family members, interferon, and other mediators are the factors that mainly cause necroptosis. Activating necroptosis by ligands of death receptors requires the kinase activity of receptor-interacting proteins 1 and 3, and a mixed lineage kinase domain-like protein, which is a critical downstream mediator of necroptosis. Increasing evidence has revealed that necroptosis does not only involve physiological regulation but also the occurrence, development, and prognosis of certain diseases, such as septicemia, neurodegenerative diseases, and ischemic-reperfusion injury. Many excellent documented systematic discussions of necroptosis and its role in various skin diseases. In this review, we summarize the molecular mechanism of necroptosis, as well as the current knowledge on the contribution of necroptosis, in infection-related, immune-mediated, autoimmune skin diseases, and malignant skin tumors.
Collapse
Affiliation(s)
- Lulu Liu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ziting Tang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yilan Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuanhong Liu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shengbo Yang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dan Wang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Hawkins CJ, Miles MA. Mutagenic Consequences of Sublethal Cell Death Signaling. Int J Mol Sci 2021; 22:ijms22116144. [PMID: 34200309 PMCID: PMC8201051 DOI: 10.3390/ijms22116144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023] Open
Abstract
Many human cancers exhibit defects in key DNA damage response elements that can render tumors insensitive to the cell death-promoting properties of DNA-damaging therapies. Using agents that directly induce apoptosis by targeting apoptotic components, rather than relying on DNA damage to indirectly stimulate apoptosis of cancer cells, may overcome classical blocks exploited by cancer cells to evade apoptotic cell death. However, there is increasing evidence that cells surviving sublethal exposure to classical apoptotic signaling may recover with newly acquired genomic changes which may have oncogenic potential, and so could theoretically spur the development of subsequent cancers in cured patients. Encouragingly, cells surviving sublethal necroptotic signaling did not acquire mutations, suggesting that necroptosis-inducing anti-cancer drugs may be less likely to trigger therapy-related cancers. We are yet to develop effective direct inducers of other cell death pathways, and as such, data regarding the consequences of cells surviving sublethal stimulation of those pathways are still emerging. This review details the currently known mutagenic consequences of cells surviving different cell death signaling pathways, with implications for potential oncogenic transformation. Understanding the mechanisms of mutagenesis associated (or not) with various cell death pathways will guide us in the development of future therapeutics to minimize therapy-related side effects associated with DNA damage.
Collapse
Affiliation(s)
- Christine J. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Mark A. Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Correspondence:
| |
Collapse
|
18
|
Rui C, Shi SN, Ren W, Qin X, Zhuang C, Chen X, Chen G, Yu J, Wang HY, Cai Z. The multitargeted kinase inhibitor KW-2449 ameliorates cisplatin-induced nephrotoxicity by targeting RIPK1-mediated necroptosis. Biochem Pharmacol 2021; 188:114542. [PMID: 33819469 DOI: 10.1016/j.bcp.2021.114542] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Cisplatin (cis-dichloro-diammine platinum, CDDP) is a well-known chemotherapeutic drug against a broad spectrum of human malignancies. However, the clinical utility of this effective chemotherapy agent is dose limited by its toxic side effects such as nephrotoxicity and ototoxicity. Necroptosis is a form of programmed necrotic cell death that is mediated by serine/threonine kinases, RIPK1 and RIPK3, together with MLKL. In this study, we identified that the multitargeted kinase inhibitor KW-2449 inhibited cisplatin-induced necroptosis, while potentiated cisplatin-induced apoptosis in cancer cells. Mechanistic studies indicated that KW-2449 directly inhibited RIPK1 kinase activity to block necroptosis. Oral administration of KW-2449 attenuated renal cell necrosis and reduced pro-inflammatory responses in mouse models of cisplatin-induced nephrotoxicity. Taken together, our study shows that KW-2449 is a novel necroptosis inhibitor by targeting RIPK1 kinase activity and has great clinic potential for the treatment of cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Chunhua Rui
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shen-Nan Shi
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wenqing Ren
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xia Qin
- Department of General Surgery, The First Naval Hospital of Southern Theater Command, Zhanjiang 440803, China
| | - Chunlin Zhuang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China; College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Xiaofei Chen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Gang Chen
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Hong-Yang Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China; The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China.
| | - Zhenyu Cai
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| |
Collapse
|
19
|
Christidi E, Brunham LR. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis 2021; 12:339. [PMID: 33795647 PMCID: PMC8017015 DOI: 10.1038/s41419-021-03614-x] [Citation(s) in RCA: 372] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/01/2023]
Abstract
Doxorubicin is a chemotherapeutic drug used for the treatment of various malignancies; however, patients can experience cardiotoxic effects and this has limited the use of this potent drug. The mechanisms by which doxorubicin kills cardiomyocytes has been elusive and despite extensive research the exact mechanisms remain unknown. This review focuses on recent advances in our understanding of doxorubicin induced regulated cardiomyocyte death pathways including autophagy, ferroptosis, necroptosis, pyroptosis and apoptosis. Understanding the mechanisms by which doxorubicin leads to cardiomyocyte death may help identify novel therapeutic agents and lead to more targeted approaches to cardiotoxicity testing.
Collapse
Affiliation(s)
- Effimia Christidi
- grid.17091.3e0000 0001 2288 9830Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC Canada
| | - Liam R. Brunham
- grid.17091.3e0000 0001 2288 9830Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medicine, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
20
|
Brown G, Petrie K. The RARγ Oncogene: An Achilles Heel for Some Cancers. Int J Mol Sci 2021; 22:3632. [PMID: 33807298 PMCID: PMC8036636 DOI: 10.3390/ijms22073632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer "stem cells" (CSCs) sustain the hierarchies of dividing cells that characterize cancer. The main causes of cancer-related mortality are metastatic disease and relapse, both of which originate primarily from CSCs, so their eradication may provide a bona fide curative strategy, though there maybe also the need to kill the bulk cancer cells. While classic anti-cancer chemotherapy is effective against the dividing progeny of CSCs, non-dividing or quiescent CSCs are often spared. Improved anti-cancer therapies therefore require approaches that target non-dividing CSCs, which must be underpinned by a better understanding of factors that permit these cells to maintain a stem cell-like state. During hematopoiesis, retinoic acid receptor (RAR) γ is selectively expressed by stem cells and their immediate progeny. It is overexpressed in, and is an oncogene for, many cancers including colorectal, renal and hepatocellular carcinoma, cholangiocarcinomas and some cases of acute myeloid leukemia that harbor RARγ fusion proteins. In vitro studies suggest that RARγ-selective and pan-RAR antagonists provoke the death of CSCs by necroptosis and point to antagonism of RARγ as a potential strategy to treat metastatic disease and relapse, and perhaps provide a cure for some cancers.
Collapse
Affiliation(s)
- Geoffrey Brown
- Institute of Clinical Sciences, School of Biomedical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - Kevin Petrie
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR13SD, UK;
| |
Collapse
|
21
|
Chong SJF, Iskandar K, Lai JXH, Qu J, Raman D, Valentin R, Herbaux C, Collins M, Low ICC, Loh T, Davids M, Pervaiz S. Serine-70 phosphorylated Bcl-2 prevents oxidative stress-induced DNA damage by modulating the mitochondrial redox metabolism. Nucleic Acids Res 2021; 48:12727-12745. [PMID: 33245769 PMCID: PMC7736805 DOI: 10.1093/nar/gkaa1110] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Bcl-2 phosphorylation at serine-70 (S70pBcl2) confers resistance against drug-induced apoptosis. Nevertheless, its specific mechanism in driving drug-resistance remains unclear. We present evidence that S70pBcl2 promotes cancer cell survival by acting as a redox sensor and modulator to prevent oxidative stress-induced DNA damage and execution. Increased S70pBcl2 levels are inversely correlated with DNA damage in chronic lymphocytic leukemia (CLL) and lymphoma patient-derived primary cells as well as in reactive oxygen species (ROS)- or chemotherapeutic drug-treated cell lines. Bioinformatic analyses suggest that S70pBcl2 is associated with lower median overall survival in lymphoma patients. Empirically, sustained expression of the redox-sensitive S70pBcl2 prevents oxidative stress-induced DNA damage and cell death by suppressing mitochondrial ROS production. Using cell lines and lymphoma primary cells, we further demonstrate that S70pBcl2 reduces the interaction of Bcl-2 with the mitochondrial complex-IV subunit-5A, thereby reducing mitochondrial complex-IV activity, respiration and ROS production. Notably, targeting S70pBcl2 with the phosphatase activator, FTY720, is accompanied by an enhanced drug-induced DNA damage and cell death in CLL primary cells. Collectively, we provide a novel facet of the anti-apoptotic Bcl-2 by demonstrating that its phosphorylation at serine-70 functions as a redox sensor to prevent drug-induced oxidative stress-mediated DNA damage and execution with potential therapeutic implications.
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kartini Iskandar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Jolin Xiao Hui Lai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Jianhua Qu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Deepika Raman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Rebecca Valentin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Charles Herbaux
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mary Collins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ivan Cherh Chiet Low
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Thomas Loh
- Department of Otolaryngology, National University of Healthcare System (NUHS), Singapore, Singapore
| | - Matthew Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,NUS Graduate School of Integrative Science and Engineering, NUS, Singapore, Singapore.,National University Cancer Institute, NUHS, Singapore, Singapore.,Faculté de Médecine, Université de Paris, Paris, France
| |
Collapse
|
22
|
Afshari AR, Mollazadeh H, Sahebkar A. Minocycline in Treating Glioblastoma Multiforme: Far beyond a Conventional Antibiotic. JOURNAL OF ONCOLOGY 2020; 2020:8659802. [PMID: 33014057 PMCID: PMC7519463 DOI: 10.1155/2020/8659802] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
Abstract
One of the most lethal forms of CNS pathologies is glioblastoma multiforme (GBM) that represents high invasiveness, uncontrolled proliferation, and angiogenic features. Its invasiveness is responsible for the high recurrence even after maximal surgical interventions. Minocycline is a semisynthetic analog of tetracyclines with potential anti-inflammatory and anticancer effects, distinct from its antimicrobial activity. In this review, we highlight the importance and the cytotoxic mechanisms of minocycline on GBM pathophysiology. Considering the role of certain enzymes in autophagy, apoptosis, tumor cell invasion, and metastatic ability, the possible use of tetracyclines for cancer therapy should be investigated, especially GBM. The present study is, therefore, going to cover the main topics in minocycline pharmacology to date, encouraging its consideration as a new treatment approach for cancer and GBM.
Collapse
Affiliation(s)
- Amir R. Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Christidi E, Huang H, Shafaattalab S, Maillet A, Lin E, Huang K, Laksman Z, Davis MK, Tibbits GF, Brunham LR. Variation in RARG increases susceptibility to doxorubicin-induced cardiotoxicity in patient specific induced pluripotent stem cell-derived cardiomyocytes. Sci Rep 2020; 10:10363. [PMID: 32587261 PMCID: PMC7316788 DOI: 10.1038/s41598-020-65979-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/11/2020] [Indexed: 01/04/2023] Open
Abstract
Doxorubicin is a potent anticancer drug used to treat a variety of cancer types. However, its use is limited by doxorubicin-induced cardiotoxicity (DIC). A missense variant in the RARG gene (S427L; rs2229774) has been implicated in susceptibility to DIC in a genome wide association study. The goal of this study was to investigate the functional role of this RARG variant in DIC. We used induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) from patients treated with doxorubicin. iPSC-CMs from individuals who experienced DIC (cases) showed significantly greater sensitivity to doxorubicin compared to iPSC-CMs from doxorubicin-treated individuals who did not develop DIC (controls) in cell viability and optical mapping experiments. Using CRISPR/Cas9, we generated isogenic cell lines that differed only at the RARG locus. Genetic correction of RARG-S427L to wild type resulted in reduced doxorubicin-induced double stranded DNA breaks, reactive oxygen species production, and cell death. Conversely, introduction of RARG-S427L increased susceptibility to doxorubicin. Finally, genetic disruption of the RARG gene resulted in protection from cell death due to doxorubicin treatment. Our findings suggest that the presence of RARG-S427L increases sensitivity to DIC, establishing a direct, causal role for this variant in DIC.
Collapse
Affiliation(s)
- Effimia Christidi
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Haojun Huang
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Sanam Shafaattalab
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
- Department of Cardiovascular Science, British Columbia Children's Hospital, Vancouver, Canada
| | | | - Eric Lin
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Kate Huang
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Zachary Laksman
- Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Margot K Davis
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
- Department of Cardiovascular Science, British Columbia Children's Hospital, Vancouver, Canada
| | - Liam R Brunham
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, Canada.
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|