1
|
Aris KDP, Cofsky JC, Shi H, Al-Sayyad N, Ivanov IE, Balaji A, Doudna JA, Bryant Z. Dynamic basis of supercoiling-dependent DNA interrogation by Cas12a via R-loop intermediates. Nat Commun 2025; 16:2939. [PMID: 40133266 PMCID: PMC11937380 DOI: 10.1038/s41467-025-57703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
The sequence specificity and programmability of DNA binding and cleavage have enabled widespread applications of CRISPR-Cas12a in genetic engineering. As an RNA-guided CRISPR endonuclease, Cas12a engages a 20-base pair (bp) DNA segment by forming a three-stranded R-loop structure in which the guide RNA hybridizes to the DNA target. Here we use single-molecule torque spectroscopy to investigate the dynamics and mechanics of R-loop formation of two widely used Cas12a orthologs at base-pair resolution. We directly observe kinetic intermediates corresponding to a ~5 bp initial RNA-DNA hybridization and a ~17 bp intermediate preceding R-loop completion, followed by transient DNA unwinding that extends beyond the 20 bp R-loop. The complex multistate landscape of R-loop formation is ortholog-dependent and shaped by target sequence, mismatches, and DNA supercoiling. A four-state kinetic model captures essential features of Cas12a R-loop dynamics and provides a biophysical framework for understanding Cas12a activity and specificity.
Collapse
Affiliation(s)
- Kevin D P Aris
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Joshua C Cofsky
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Honglue Shi
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Noor Al-Sayyad
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Ivan E Ivanov
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ashwin Balaji
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Structural Biology, Stanford University Medical Center, Stanford, CA, USA.
| |
Collapse
|
2
|
Newman A, Saha A, Starrs L, Arantes PR, Palermo G, Burgio G. CRISPR-Cas12a REC2 - NUC interactions drive target-strand cleavage and constrain trans cleavage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.23.644851. [PMID: 40196614 PMCID: PMC11974684 DOI: 10.1101/2025.03.23.644851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
CRISPR-Cas12a effects RNA-guided cleavage of dsDNA in cis, after which it remains catalytically active and non-specifically cleaves ssDNA in trans. Native host-defence by Cas12a employs cis cleavage, which can be repurposed for the genome editing of other organisms, and trans cleavage can be used for in vitro DNA detection. Cas12a orthologues have high structural similarity and a conserved mechanism of DNA cleavage, yet highly different efficacies when applied for genome editing or DNA detection. By comparing three well characterised Cas12a orthologues (FnCas12a, LbCas12a, and AsCas12a), we sought to determine what drives their different cis and trans cleavage, and how this relates to their applied function. We integrated in vitro DNA cleavage kinetics with molecular dynamics simulations, plasmid interference in E. coli, and genome editing in human cell lines. We report large differences in cis cleavage kinetics between orthologues, which may be driven by dynamic REC2-NUC interactions. We generated and tested REC2 and NUC mutants, including a hitherto unstudied 'NUC loop', integrity of which is critical for the function of Cas12 orthologues. In total, our in vitro, in vivo, and in silico survey of Cas12a orthologues highlights key properties that drive their function in biotechnology applications.
Collapse
Affiliation(s)
- Anthony Newman
- The Shine-Dalgarno Centre for RNA Innovation, Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Aakash Saha
- Department of Bioengineering, University of California Riverside, 900 University Avenue, 92512 Riverside, CA, USA
| | - Lora Starrs
- The Shine-Dalgarno Centre for RNA Innovation, Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Pablo R. Arantes
- Department of Bioengineering, University of California Riverside, 900 University Avenue, 92512 Riverside, CA, USA
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, 92512 Riverside, CA, USA
- Department of Chemistry, University of California Riverside, 900 University Avenue, 92512 Riverside, CA, USA
| | - Gaetan Burgio
- The Shine-Dalgarno Centre for RNA Innovation, Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
3
|
Hsiung CCS, Wilson CM, Sambold NA, Dai R, Chen Q, Teyssier N, Misiukiewicz S, Arab A, O'Loughlin T, Cofsky JC, Shi J, Gilbert LA. Engineered CRISPR-Cas12a for higher-order combinatorial chromatin perturbations. Nat Biotechnol 2025; 43:369-383. [PMID: 38760567 PMCID: PMC11919711 DOI: 10.1038/s41587-024-02224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/28/2024] [Indexed: 05/19/2024]
Abstract
Multiplexed genetic perturbations are critical for testing functional interactions among coding or non-coding genetic elements. Compared to double-stranded DNA cutting, repressive chromatin formation using CRISPR interference (CRISPRi) avoids genotoxicity and is more effective for perturbing non-coding regulatory elements in pooled assays. However, current CRISPRi pooled screening approaches are limited to targeting one to three genomic sites per cell. We engineer an Acidaminococcus Cas12a (AsCas12a) variant, multiplexed transcriptional interference AsCas12a (multiAsCas12a), that incorporates R1226A, a mutation that stabilizes the ribonucleoprotein-DNA complex via DNA nicking. The multiAsCas12a-KRAB fusion improves CRISPRi activity over DNase-dead AsCas12a-KRAB fusions, often rescuing the activities of lentivirally delivered CRISPR RNAs (crRNA) that are inactive when used with the latter. multiAsCas12a-KRAB supports CRISPRi using 6-plex crRNA arrays in high-throughput pooled screens. Using multiAsCas12a-KRAB, we discover enhancer elements and dissect the combinatorial function of cis-regulatory elements in human cells. These results instantiate a group testing framework for efficiently surveying numerous combinations of chromatin perturbations for biological discovery and engineering.
Collapse
Affiliation(s)
- C C-S Hsiung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - C M Wilson
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, CA, USA
| | | | - R Dai
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Q Chen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - N Teyssier
- Biological and Medical Informatics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - S Misiukiewicz
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - A Arab
- Arc Institute, Palo Alto, CA, USA
| | - T O'Loughlin
- Department of Urology, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - J C Cofsky
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - J Shi
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - L A Gilbert
- Department of Urology, University of California, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Arc Institute, Palo Alto, CA, USA.
| |
Collapse
|
4
|
Allen A, Cooper BH, Singh J, Rohs R, Qin PZ. PAM-adjacent DNA flexibility tunes CRISPR-Cas12a off-target binding. Sci Rep 2025; 15:4930. [PMID: 39929897 PMCID: PMC11811290 DOI: 10.1038/s41598-025-87565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Cas12a is a class 2 type V CRISPR-associated nuclease that uses an effector complex comprised of a single protein activated by a CRISPR-encoded small RNA to cleave double-stranded DNA at specific sites. Cas12a processes unique features as compared to other CRISPR effector nucleases such as Cas9, and has been demonstrated as an effective tool for manipulating complex genomes. Prior studies have indicated that DNA flexibility at the region adjacent to the protospacer-adjacent-motif (PAM) contributes to Cas12a target recognition. Here, we adapted a SELEX-seq approach to further examine the connection between PAM-adjacent DNA flexibility and off-target binding by Cas12a. A DNA library containing DNA-DNA mismatches at PAM + 1 to + 6 positions was generated and subjected to binding in vitro with FnCas12a in the absence of pairing between the RNA guide and DNA target. The bound and unbound populations were sequenced to determine the propensity for off-target binding for each of the individual sequences. Analyzing the position and nucleotide dependency of the DNA-DNA mismatches showed that PAM-dependent Cas12a off-target binding requires unpairing of the protospacer at PAM + 1 and increases with unpairing at PAM + 2 and + 3. This revealed that PAM-adjacent DNA flexibility can tune Cas12a off-target binding. The work adds support to the notion that physical properties of the DNA modulate Cas12a target discrimination, and has implications on Cas12a-based applications.
Collapse
Affiliation(s)
- Aleique Allen
- Department of Chemistry, University of Southern California, 3430 S Vermont Ave., Los Angeles, CA, 90089, USA
| | - Brendon H Cooper
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Beckman Coulter, 1584 Enterprise Blvd, West Sacramento, CA, 95691, USA
| | - Jaideep Singh
- Department of Chemistry, University of Southern California, 3430 S Vermont Ave., Los Angeles, CA, 90089, USA
| | - Remo Rohs
- Department of Chemistry, University of Southern California, 3430 S Vermont Ave., Los Angeles, CA, 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Physics & Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Peter Z Qin
- Department of Chemistry, University of Southern California, 3430 S Vermont Ave., Los Angeles, CA, 90089, USA.
| |
Collapse
|
5
|
Zhou S, Miao Y, Qiu H, Yao Y, Wang W, Chen C. Deep learning based local feature classification to automatically identify single molecule fluorescence events. Commun Biol 2024; 7:1404. [PMID: 39468368 PMCID: PMC11519536 DOI: 10.1038/s42003-024-07122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Long-term single-molecule fluorescence measurements are widely used powerful tools to study the conformational dynamics of biomolecules in real time to further elucidate their conformational dynamics. Typically, thousands or even more single-molecule traces are analyzed to provide statistically meaningful information, which is labor-intensive and can introduce user bias. Recently, several deep-learning models have been developed to automatically classify single-molecule traces. In this study, we introduce DEBRIS (Deep lEarning Based fRagmentatIon approach for Single-molecule fluorescence event identification), a deep-learning model focusing on classifying local features and capable of automatically identifying steady fluorescence signals and dynamically emerging signals of different patterns. DEBRIS efficiently and accurately identifies both one-color and two-color single-molecule events, including their start and end points. By adjusting user-defined criteria, DEBRIS becomes the pioneer in using a deep learning model to accurately classify four different types of single-molecule fluorescence events using the same trained model, demonstrating its universality and ability to enrich the current toolbox.
Collapse
Affiliation(s)
- Shuqi Zhou
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yu Miao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Haoren Qiu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yuan Yao
- Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Wenjuan Wang
- Technology Center for Protein Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Chunlai Chen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
6
|
Liu J, Zhu L. PlmCas12e Utilizes Glu662 to Prevent Cleavage Site Occupation by Positively Charged Residues Before Target Strand Cleavage. Molecules 2024; 29:5036. [PMID: 39519677 PMCID: PMC11547573 DOI: 10.3390/molecules29215036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
CRISPR-Cas12e is a recently identified gene-editing tool mainly known because its relatively small size benefits cell delivery. Drastically different from Cas9, it creates a blunt-end double-strand breakage of the DNA via two cleavage sites; Cas12e produces a sticky-end double-strand breakage of the DNA through only one cleavage site in its RuvC domain, meaning two consecutive cleavage events first on the non-target strand (ntsDNA) and then the target strand (tsDNA). Though crucial for Cas12e's cleavage efficiency, the mechanism by which Cas12e loads tsDNA for the second cleavage remains elusive. Through molecular dynamics simulations and our recently matured traveling-salesman-based automated path-searching (TAPS) algorithm, we identified a series of positively charged residues (Arg856TSL, Arg768RuvC, Lys898TSL, Arg904TSL, Arg764RuvC) that guide the tsDNA backbone toward the cleavage site of wild-type PlmCas12e. Further simulations of the R856L and R904L mutants supported such observations. More interestingly, we found the key role of Glu662RuvC in coordinating Arg764RuvC, preventing its occupation of the cleavage site, and facilitating tsDNA cleavage. Additional simulations confirmed that mutating Glu662RuvC to valine disabled such coordination and created a stable intermediate state with Arg764RuvC occupying the cleavage site before tsDNA loading. These insights, revealing an elaborate mechanism of cleavage facilitation, offer essential guiding principles for future rational engineering of Cas12e into more efficient gene-editing tools.
Collapse
Affiliation(s)
| | - Lizhe Zhu
- School of Medicine, and Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China;
| |
Collapse
|
7
|
Jiang G, Yang X, Li Z, Mao J, Zeng P, Wang D, Wu Z, Liu C, Qiu Y, Cui Y, Zhou J, Liu J, Hou L. Recombinant Polymerase Amplification Coupled with CRISPR/Cas12a Detection System for Rapid Visual Detection of Porcine Circovirus 3. Animals (Basel) 2024; 14:2527. [PMID: 39272312 PMCID: PMC11393983 DOI: 10.3390/ani14172527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
The porcine circovirus type 3 (PCV3) infection is an emerging disease associated with clinical signs of porcine dermatitis and nephropathy syndrome (PDNS)-like clinical signs. Currently, there is a lack of effective vaccines and therapeutics against this disease. Therefore, rapid, effective, sensitive, and specific detection methods are crucial for the timely identification, prevention, and control of PCV3. In this study, we developed one- and two-pot visual detection methods for PCV3 using a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas12a detection system combined with recombinase polymerase amplification (RPA). These two methods demonstrated no cross-reactivity with eight other swine viruses and exhibited minimum detection limits of five and two copies of viral DNA, respectively, revealing their high specificity and sensitivity. During a clinical sample detection within 30 min, the coincidence rates between the one- and two-pot detection methods and real-time quantitative polymerase chain reaction (qPCR) were 100%. In conclusion, both one- and two-pot RPA-CRISPR/Cas12a detection methods have significant potential for the rapid, sensitive, and specific visual detection of PCV3.
Collapse
Affiliation(s)
- Genghong Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyu Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhaoyang Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jingyu Mao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Penghui Zeng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Dedong Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhi Wu
- Loudi Livestock, Aquaculture and Agricultural Machinery Affairs Center, Loudi 417000, China
| | - Changzhe Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yonghui Qiu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongqiu Cui
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianwei Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jue Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Lei Hou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Xing W, Li D, Wang W, Liu JJG, Chen C. Conformational dynamics of CasX (Cas12e) in mediating DNA cleavage revealed by single-molecule FRET. Nucleic Acids Res 2024; 52:9014-9027. [PMID: 38994558 PMCID: PMC11347132 DOI: 10.1093/nar/gkae604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
CasX (also known as Cas12e), a Class 2 CRISPR-Cas system, shows promise in genome editing due to its smaller size compared to the widely used Cas9 and Cas12a. Although the structures of CasX-sgRNA-DNA ternary complexes have been resolved and uncover a distinctive NTSB domain, the dynamic behaviors of CasX are not well characterized. In this study, we employed single-molecule and biochemical assays to investigate the conformational dynamics of two CasX homologs, DpbCasX and PlmCasX, from DNA binding to target cleavage and fragment release. Our results indicate that CasX cleaves the non-target strand and the target strand sequentially with relative irreversible dynamics. The two CasX homologs exhibited different cleavage patterns and specificities. The dynamic characterization of CasX also reveals a PAM-proximal seed region, providing guidance for CasX-based effector design. Further studies elucidate the mechanistic basis for why modification of sgRNA and the NTSB domain can affect its activity. Interestingly, CasX has less effective target search efficiency than Cas9 and Cas12a, potentially accounting for its lower genome editing efficiency. This observation opens a new avenue for future protein engineering.
Collapse
Affiliation(s)
- Wenjing Xing
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Danyuan Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenjuan Wang
- Technology Center for Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun-Jie Gogo Liu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chunlai Chen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
He W, Li X, Li X, Guo M, Zhang M, Hu R, Li M, Ding S, Yan Y. Exploration of new ways for CRISPR/Cas12a activation: DNA hairpins without PAM and toehold and single strands containing DNA and RNA bases. J Biotechnol 2024; 391:99-105. [PMID: 38880387 DOI: 10.1016/j.jbiotec.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The CRISPR/Cas12a system is emerging as a promising candidate for next-generation diagnostic biosensing platforms, with the discovery of new activation modes greatly expanding its applications. Here, we have identified two novel CRISPR/Cas12a system activation modes: PAM- and toehold-free DNA hairpins, and DNA-RNA hybrid strands. Utilizing a well-established real-time fluorescence method, we have demonstrated a strong correlation between DNA hairpin structures and Cas12a activation. Compared with previously reported activation modes involving single-stranded DNA and PAM-contained double-stranded DNA, the DNA hairpin activation way exhibits similar specificity and generality. Moreover, our findings indicate that increasing the number of RNA bases in DNA-RNA hybrid strands can decelerate the kinetics of Cas12a-triggered trans-cleavage of reporter probes. These newly discovered CRISPR/Cas12a activation ways hold significant potential for the development of high-performance biosensing strategies.
Collapse
Affiliation(s)
- Wen He
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xinmin Li
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, PR China
| | - Minghui Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Mengxuan Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Ruiwei Hu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Menghan Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
10
|
Strohkendl I, Saha A, Moy C, Nguyen AH, Ahsan M, Russell R, Palermo G, Taylor DW. Cas12a domain flexibility guides R-loop formation and forces RuvC resetting. Mol Cell 2024; 84:2717-2731.e6. [PMID: 38955179 PMCID: PMC11283365 DOI: 10.1016/j.molcel.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
The specific nature of CRISPR-Cas12a makes it a desirable RNA-guided endonuclease for biotechnology and therapeutic applications. To understand how R-loop formation within the compact Cas12a enables target recognition and nuclease activation, we used cryo-electron microscopy to capture wild-type Acidaminococcus sp. Cas12a R-loop intermediates and DNA delivery into the RuvC active site. Stages of Cas12a R-loop formation-starting from a 5-bp seed-are marked by distinct REC domain arrangements. Dramatic domain flexibility limits contacts until nearly complete R-loop formation, when the non-target strand is pulled across the RuvC nuclease and coordinated domain docking promotes efficient cleavage. Next, substantial domain movements enable target strand repositioning into the RuvC active site. Between cleavage events, the RuvC lid conformationally resets to occlude the active site, requiring re-activation. These snapshots build a structural model depicting Cas12a DNA targeting that rationalizes observed specificity and highlights mechanistic comparisons to other class 2 effectors.
Collapse
Affiliation(s)
- Isabel Strohkendl
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Aakash Saha
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Catherine Moy
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Alexander-Hoi Nguyen
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Mohd Ahsan
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX 78712, USA
| | - Giulia Palermo
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA; Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; LIVESTRONG Cancer Institute, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
11
|
Motorina DM, Galimova YA, Battulina NV, Omelina ES. Systems for Targeted Silencing of Gene Expression and Their Application in Plants and Animals. Int J Mol Sci 2024; 25:5231. [PMID: 38791270 PMCID: PMC11121118 DOI: 10.3390/ijms25105231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
At present, there are a variety of different approaches to the targeted regulation of gene expression. However, most approaches are devoted to the activation of gene transcription, and the methods for gene silencing are much fewer in number. In this review, we describe the main systems used for the targeted suppression of gene expression (including RNA interference (RNAi), chimeric transcription factors, chimeric zinc finger proteins, transcription activator-like effectors (TALEs)-based repressors, optogenetic tools, and CRISPR/Cas-based repressors) and their application in eukaryotes-plants and animals. We consider the advantages and disadvantages of each approach, compare their effectiveness, and discuss the peculiarities of their usage in plant and animal organisms. This review will be useful for researchers in the field of gene transcription suppression and will allow them to choose the optimal method for suppressing the expression of the gene of interest depending on the research object.
Collapse
Affiliation(s)
| | | | | | - Evgeniya S. Omelina
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
12
|
Hsiung CC, Wilson CM, Sambold NA, Dai R, Chen Q, Misiukiewicz S, Arab A, Teyssier N, O'Loughlin T, Cofsky JC, Shi J, Gilbert LA. Higher-order combinatorial chromatin perturbations by engineered CRISPR-Cas12a for functional genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.18.558350. [PMID: 37781594 PMCID: PMC10541102 DOI: 10.1101/2023.09.18.558350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Multiplexed genetic perturbations are critical for testing functional interactions among coding or non-coding genetic elements. Compared to double-stranded DNA cutting, repressive chromatin formation using CRISPR interference (CRISPRi) avoids genotoxicity and is more effective for perturbing non-coding regulatory elements in pooled assays. However, current CRISPRi pooled screening approaches are limited to targeting 1-3 genomic sites per cell. To develop a tool for higher-order ( > 3) combinatorial targeting of genomic sites with CRISPRi in functional genomics screens, we engineered an Acidaminococcus Cas12a variant -- referred to as mul tiplexed transcriptional interference AsCas12a (multiAsCas12a). multiAsCas12a incorporates a key mutation, R1226A, motivated by the hypothesis of nicking-induced stabilization of the ribonucleoprotein:DNA complex for improving CRISPRi activity. multiAsCas12a significantly outperforms prior state-of-the-art Cas12a variants in combinatorial CRISPRi targeting using high-order multiplexed arrays of lentivirally transduced CRISPR RNAs (crRNA), including in high-throughput pooled screens using 6-plex crRNA array libraries. Using multiAsCas12a CRISPRi, we discover new enhancer elements and dissect the combinatorial function of cis-regulatory elements. These results instantiate a group testing framework for efficiently surveying potentially numerous combinations of chromatin perturbations for biological discovery and engineering.
Collapse
|
13
|
Cao H, Mao K, Zhang H, Wu Q, Ju H, Feng X. Thermal stability and micrdose-based coupling CRISPR/Cas12a biosensor for amplification-free detection of hgcA gene in paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168536. [PMID: 37977400 DOI: 10.1016/j.scitotenv.2023.168536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/21/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The lack of point-of-use (POU) methods hinders the utilization of the hgcA gene to rapidly evaluate methylmercury risks. CRISPR/Cas12a is a promising technology, but shortcomings such as low sensitivity, a strict reaction temperature and high background signal limit its further utilization. Here, a thermally stable microsystem-based CRISPR/Cas12a biosensor was constructed to achieve POU analysis for hgcA. First, three target gRNAs were designed to recognize hgcA. Then, a microsystem was developed to eliminate the background signal. Next, the effect of temperature on the activity of the Cas12a-gRNA complex was explored and its thermal stability was discovered. After that, coupling gRNA assay was introduced to improve sensitivity, exhibiting a limit of detection as low as 0.49 pM with a linear range of 0.98-125 pM, and a recovery rate between 90 and 110 % for hgcA. The biosensor was finally utilized to assess hgcA abundance in paddy soil, and high abundance of hgcA was found in these paddy soil samples. This study not only systematically explored the influence of temperature and microsystem on CRISPR/Cas12a, providing vital references for other novel CRISPR-based detection methods, but also applied the CRISPR-based analytical method to the field of environmental geochemistry for the first time, demonstrating enormous potential for POU detection in this field.
Collapse
Affiliation(s)
- Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Qingqing Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
14
|
Zhang D, Jiang S, Xia N, Zhang Y, Zhang J, Liu A, Zhang C, Chen N, Meurens F, Zheng W, Zhu J. Rapid Visual Detection of African Swine Fever Virus with a CRISPR/Cas12a Lateral Flow Strip Based on Structural Protein Gene D117L. Animals (Basel) 2023; 13:3712. [PMID: 38067063 PMCID: PMC10705096 DOI: 10.3390/ani13233712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 03/31/2025] Open
Abstract
African swine fever virus (ASFV) is a large double-stranded DNA virus that is highly infectious and seriously affects domestic pigs and wild boars. African swine fever (ASF) has caused huge economic losses to endemic countries and regions. At present, there is still a lack of effective vaccines and therapeutics. Therefore, rapid and accurate detection is essential for the prevention and control of ASF. The portable DNA endonuclease (Cas12a)-mediated lateral flow strip detection method (Cas12a-LFS) combined with recombinant polymerase amplification (RPA) has been gradually recognized as effective for virus detection including ASFV. In this study, based on the ASFV structural protein p17 gene (D117L), an RPA-Cas12a-LFS detection method was established. The detection method exhibits a sensitivity of up to two gene copies and has no cross-reaction with nine other swine viruses. Thus, the method is highly sensitive and specific. In 68 clinical samples, the coincidence rate of the p17 strip was 100%, compared to the traditional quantitative PCR (qPCR). In conclusion, we have developed a simple, rapid, sensitive, and specific ASFV visual detection method and demonstrated the potential of on-site detection of ASFV.
Collapse
Affiliation(s)
- Desheng Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Sen Jiang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Nengwen Xia
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Youwen Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jiajia Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Anjing Liu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Chenyang Zhang
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Nanhua Chen
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Francois Meurens
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Wanglong Zheng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianzhong Zhu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China (Y.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Singh J, Liu KG, Allen A, Jiang W, Qin PZ. A DNA unwinding equilibrium serves as a checkpoint for CRISPR-Cas12a target discrimination. Nucleic Acids Res 2023; 51:8730-8743. [PMID: 37522352 PMCID: PMC10484686 DOI: 10.1093/nar/gkad636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
CRISPR-associated proteins such as Cas9 and Cas12a are programable RNA-guided nucleases that have emerged as powerful tools for genome manipulation and molecular diagnostics. However, these enzymes are prone to cleaving off-target sequences that contain mismatches between the RNA guide and DNA protospacer. In comparison to Cas9, Cas12a has demonstrated distinct sensitivity to protospacer-adjacent-motif (PAM) distal mismatches, and the molecular basis of Cas12a's enhanced target discrimination is of great interest. In this study, we investigated the mechanism of Cas12a target recognition using a combination of site-directed spin labeling, fluorescent spectroscopy, and enzyme kinetics. With a fully matched RNA guide, the data revealed an inherent equilibrium between a DNA unwound state and a DNA-paired duplex-like state. Experiments with off-target RNA guides and pre-nicked DNA substrates identified the PAM-distal DNA unwinding equilibrium as a mismatch sensing checkpoint prior to the first step of DNA cleavage. The finding sheds light on the distinct targeting mechanism of Cas12a and may better inform CRISPR based biotechnology developments.
Collapse
Affiliation(s)
- Jaideep Singh
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Kevin G Liu
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Aleique Allen
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Wei Jiang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter Z Qin
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
16
|
Singh J, Liu KG, Allen A, Jiang W, Qin PZ. A DNA Unwinding Equilibrium Serves as a Checkpoint for CRISPR-Cas12a Target Discrimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541046. [PMID: 37292754 PMCID: PMC10245671 DOI: 10.1101/2023.05.16.541046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CRISPR-associated proteins such as Cas9 and Cas12a are programable RNA-guided nucleases that have emerged as powerful tools for genome manipulation and molecular diagnostics. However, these enzymes are prone to cleaving off-target sequences that contain mismatches between the RNA guide and DNA protospacer. In comparison to Cas9, Cas12a has demonstrated distinct sensitivity to protospacer-adjacent-motif (PAM) distal mismatches, and the molecular basis of Cas12a's enhanced target discrimination is of great interest. In this study, we investigated the mechanism of Cas12a target recognition using a combination of site-directed spin labeling, fluorescent spectroscopy, and enzyme kinetics. With a fully matched RNA guide, the data revealed an inherent equilibrium between a DNA unwound state and a DNA-paired duplex-like state. Experiments with off-target RNA guides and pre-nicked DNA substrates identified the PAM-distal DNA unwinding equilibrium as a mismatch sensing checkpoint prior to the first step of DNA cleavage. The data sheds light on the distinct targeting mechanism of Cas12a and may better inform CRISPR based biotechnology developments.
Collapse
|
17
|
Nguyen GT, Dhingra Y, Sashital DG. Miniature CRISPR-Cas12 endonucleases - Programmed DNA targeting in a smaller package. Curr Opin Struct Biol 2022; 77:102466. [PMID: 36170778 PMCID: PMC10114186 DOI: 10.1016/j.sbi.2022.102466] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
CRISPR-associated (Cas) endonucleases specifically target and cleave RNA or DNA based on complementarity to a guide RNA. Cas endonucleases - including Cas9, Cas12a, and Cas13 - have been adopted for a wide array of biotechnological tools, including gene editing, transcriptional modulation, and diagnostics. These tools are facilitated by ready reprogramming of guide RNA sequences and the varied nucleic acid binding and cleavage activities observed across diverse Cas endonucleases. However, the large size of most Cas endonucleases (950-1400 amino acids) can restrict applications. The recent discovery of miniature Cas endonucleases (400-800 amino acids) provides the potential to overcome this limitation. Here, we review recent advances in understanding the structural mechanisms of two miniature Cas endonucleases, Cas12f and Cas12j.
Collapse
Affiliation(s)
- Giang T Nguyen
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50010, USA. https://twitter.com/GiangNg12638532
| | - Yukti Dhingra
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50010, USA. https://twitter.com/yukti__dhingra
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50010, USA.
| |
Collapse
|
18
|
Zhang X, Gao Y, Li J, Yan J, Liu P, Fan X, Song W. A novel TAPP-DHTA COF cathodic photoelectrochemical immunosensor based on CRISPR/Cas12a-induced nanozyme catalytic generation of heterojunction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Hall PM, Inman JT, Fulbright RM, Le TT, Brewer JJ, Lambert G, Darst SA, Wang MD. Polarity of the CRISPR roadblock to transcription. Nat Struct Mol Biol 2022; 29:1217-1227. [PMID: 36471058 PMCID: PMC9758054 DOI: 10.1038/s41594-022-00864-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/12/2022] [Indexed: 12/12/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) utility relies on a stable Cas effector complex binding to its target site. However, a Cas complex bound to DNA may be removed by motor proteins carrying out host processes and the mechanism governing this removal remains unclear. Intriguingly, during CRISPR interference, RNA polymerase (RNAP) progression is only fully blocked by a bound endonuclease-deficient Cas (dCas) from the protospacer adjacent motif (PAM)-proximal side. By mapping dCas-DNA interactions at high resolution, we discovered that the collapse of the dCas R-loop allows Escherichia coli RNAP read-through from the PAM-distal side for both Sp-dCas9 and As-dCas12a. This finding is not unique to RNAP and holds for the Mfd translocase. This mechanistic understanding allowed us to modulate the dCas R-loop stability by modifying the guide RNAs. This work highlights the importance of the R-loop in dCas-binding stability and provides valuable mechanistic insights for broad applications of CRISPR technology.
Collapse
Affiliation(s)
- Porter M Hall
- Biophysics Program, Cornell University, Ithaca, NY, USA
| | - James T Inman
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| | - Robert M Fulbright
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Tung T Le
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| | - Joshua J Brewer
- Laboratory of Molecular Biophysics, Rockefeller University, New York, NY, USA
| | - Guillaume Lambert
- Department of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, Rockefeller University, New York, NY, USA
| | - Michelle D Wang
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
20
|
Naqvi MM, Lee L, Montaguth OET, Diffin FM, Szczelkun MD. CRISPR-Cas12a-mediated DNA clamping triggers target-strand cleavage. Nat Chem Biol 2022; 18:1014-1022. [PMID: 35836018 PMCID: PMC9395263 DOI: 10.1038/s41589-022-01082-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 06/08/2022] [Indexed: 01/19/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a is widely used for genome editing and diagnostics, so it is important to understand how RNA-guided DNA recognition activates the cleavage of the target strand (TS) following non-target-strand (NTS) cleavage. Here we used single-molecule magnetic tweezers, gel-based assays and nanopore sequencing to explore DNA unwinding and cleavage. In addition to dynamic and heterogenous R-loop formation, we also directly observed transient double-stranded DNA unwinding downstream of the 20-bp heteroduplex and, following NTS cleavage, formation of a hyperstable 'clamped' Cas12a-DNA intermediate necessary for TS cleavage. Annealing of a 4-nucleotide 3' CRISPR RNA overhang to the unwound TS downstream of the heteroduplex inhibited clamping and slowed TS cleavage by ~16-fold. Alanine substitution of a conserved aromatic amino acid in the REC2 subdomain that normally caps the R-loop relieved this inhibition but favoured stabilisation of unwound states, suggesting that the REC2 subdomain regulates access of the 3' CRISPR RNA to downstream DNA.
Collapse
Affiliation(s)
- Mohsin M Naqvi
- DNA-Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Laura Lee
- DNA-Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Oscar E Torres Montaguth
- DNA-Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Fiona M Diffin
- DNA-Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
21
|
Liu Y, Ren Y, Li J, Wang F, Wang F, Ma C, Chen D, Jiang X, Fan C, Zhang H, Liu K. In vivo processing of digital information molecularly with targeted specificity and robust reliability. SCIENCE ADVANCES 2022; 8:eabo7415. [PMID: 35930647 PMCID: PMC9355361 DOI: 10.1126/sciadv.abo7415] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/22/2022] [Indexed: 05/28/2023]
Abstract
DNA has attracted increasing interest as an appealing medium for information storage. However, target-specific rewriting of the digital data stored in intracellular DNA remains a grand challenge because the highly repetitive nature and uneven guanine-cytosine content render the encoded DNA sequences poorly compatible with endogenous ones. In this study, a dual-plasmid system based on gene editing tools was introduced into Escherichia coli to process information accurately. Digital data containing large repeat units in binary codes, such as text, codebook, or image, were involved in the realization of target-specific rewriting in vivo, yielding up to 94% rewriting reliability. An optical reporter was introduced as an advanced tool for presenting data processing at the molecular level. Rewritten information was stored stably and amplified over hundreds of generations. Our work demonstrates a digital-to-biological information processing approach for highly efficient data storage, amplification, and rewriting, thus robustly promoting the application of DNA-based information technology.
Collapse
Affiliation(s)
- Yangyi Liu
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yubin Ren
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fei Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Ma
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Dong Chen
- College of Energy Engineering and State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
22
|
Fuchs RT, Curcuru JL, Mabuchi M, Noireterre A, Weigele PR, Sun Z, Robb GB. Characterization of Cme and Yme thermostable Cas12a orthologs. Commun Biol 2022; 5:325. [PMID: 35388146 PMCID: PMC8986864 DOI: 10.1038/s42003-022-03275-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
CRISPR-Cas12a proteins are RNA-guided endonucleases that cleave invading DNA containing target sequences adjacent to protospacer adjacent motifs (PAM). Cas12a orthologs have been repurposed for genome editing in non-native organisms by reprogramming them with guide RNAs to target specific sites in genomic DNA. After single-turnover dsDNA target cleavage, multiple-turnover, non-specific single-stranded DNA cleavage in trans is activated. This property has been utilized to develop in vitro assays to detect the presence of specific DNA target sequences. Most applications of Cas12a use one of three well-studied enzymes. Here, we characterize the in vitro activity of two previously unknown Cas12a orthologs. These enzymes are active at higher temperatures than widely used orthologs and have subtle differences in PAM preference, on-target cleavage, and trans nuclease activity. Together, our results enable refinement of Cas12a-based in vitro assays especially when elevated temperature is desirable.
Collapse
Affiliation(s)
- Ryan T Fuchs
- New England Biolabs Inc, Ipswich, MA, 01938, USA
| | | | | | - Audrey Noireterre
- New England Biolabs Inc, Ipswich, MA, 01938, USA
- Département de Biologie Cellulaire (BICEL), Université de Genève, CH - 1211, Genève 4, Switzerland
| | | | - Zhiyi Sun
- New England Biolabs Inc, Ipswich, MA, 01938, USA
| | - G Brett Robb
- New England Biolabs Inc, Ipswich, MA, 01938, USA.
| |
Collapse
|
23
|
Li J, Luo T, He Y, Liu H, Deng Z, Bu J, Long X, Zhong S, Yang Y. Discovery of the Rnase activity of CRISPR-Cas12a and its distinguishing cleavage efficiency on various substrates. Chem Commun (Camb) 2022; 58:2540-2543. [PMID: 35099480 DOI: 10.1039/d1cc06295f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We, herein, indicated for the first time the Rnase activities of LbCas12a on linear ssRNA above 11 bases, and hairpin RNA substrates. Meanwhile, the LbCas12a bound to ssDNA or ssRNA exhibited different cleavage efficiencies on various substrates, including short ssDNA, hairpin DNA, linear ssRNA and hairpin RNA. With hairpin DNA as a reporter, we attained a detection limit of 5 pM and 50 pM for the ssDNA and ssRNA targets, respectively. We believe that these findings will pave a new avenue for expanding the reporter toolbox for Cas12a-based diagnostics in biosensing and biochemistry.
Collapse
Affiliation(s)
- Jiacheng Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Tong Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Yao He
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - ZhiWei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Xi Long
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| |
Collapse
|
24
|
Son H, Park J, Choi YH, Jung Y, Lee JW, Bae S, Lee S. Exploring the dynamic nature of divalent metal ions involved in DNA cleavage by CRISPR-Cas12a. Chem Commun (Camb) 2022; 58:1978-1981. [PMID: 35045150 DOI: 10.1039/d1cc04446j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas12a has been widely used in genome editing and nucleic acid detection. In both of these applications, Cas12a cleaves target DNA in a divalent metal ion-dependent manner. However, when and how metal ions contribute to the cleavage reaction is unclear. Here, using a single-molecule FRET assay, we reveal that these metal ions are necessary for stabilising cleavage-competent conformations and that they are easily exchangeable, suggesting that they are dynamically coordinated.
Collapse
Affiliation(s)
- Heyjin Son
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Jaeil Park
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea. .,Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - You Hee Choi
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea. .,Ministry of Food and Drug Safety (MFDS), Cheongju 28159, Republic of Korea
| | - Youngri Jung
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Joong-Wook Lee
- Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Sanghwa Lee
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
25
|
Losito M, Smith QM, Newton MD, Cuomo ME, Rueda DS. Cas12a target search and cleavage on force-stretched DNA. Phys Chem Chem Phys 2021; 23:26640-26644. [PMID: 34494640 PMCID: PMC8653695 DOI: 10.1039/d1cp03408a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Using optical tweezers, we investigate target search and cleavage by CRISPR-Cas12a on force-stretched λ-DNA. Cas12a uses fast, one-dimensional hopping to locate its target. Binding and cleavage occur rapidly and specifically at low forces (≤5 pN), with a 1.8 nm rate-limiting conformational change. Mechanical distortion slows diffusion, increases off-target binding but hinders cleavage.
Collapse
Affiliation(s)
- Marialucrezia Losito
- Department of Infectious Disease, Section of Virology, Faculty of Medicine, Imperial College London, London W12 0NN, UK.
- Single Molecule Imaging Group, MRC London Institute of Medical Sciences, London W12 0NN, UK
- Discovery Sciences, AstraZeneca, Cambridge CB4 0WG, UK
| | - Quentin M Smith
- Department of Infectious Disease, Section of Virology, Faculty of Medicine, Imperial College London, London W12 0NN, UK.
- Single Molecule Imaging Group, MRC London Institute of Medical Sciences, London W12 0NN, UK
| | - Matthew D Newton
- Department of Infectious Disease, Section of Virology, Faculty of Medicine, Imperial College London, London W12 0NN, UK.
- Single Molecule Imaging Group, MRC London Institute of Medical Sciences, London W12 0NN, UK
| | | | - David S Rueda
- Department of Infectious Disease, Section of Virology, Faculty of Medicine, Imperial College London, London W12 0NN, UK.
- Single Molecule Imaging Group, MRC London Institute of Medical Sciences, London W12 0NN, UK
| |
Collapse
|
26
|
Son H, Park J, Hwang I, Jung Y, Bae S, Lee S. Mg 2+-dependent conformational rearrangements of CRISPR-Cas12a R-loop complex are mandatory for complete double-stranded DNA cleavage. Proc Natl Acad Sci U S A 2021; 118:e2113747118. [PMID: 34853172 PMCID: PMC8670479 DOI: 10.1073/pnas.2113747118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas12a, an RNA-guided DNA targeting endonuclease, has been widely used for genome editing and nucleic acid detection. As part of the essential processes for both of these applications, the two strands of double-stranded DNA are sequentially cleaved by a single catalytic site of Cas12a, but the mechanistic details that govern the generation of complete breaks in double-stranded DNA remain to be elucidated. Here, using single-molecule fluorescence resonance energy transfer assay, we identified two conformational intermediates that form consecutively following the initial cleavage of the nontarget strand. Specifically, these two intermediates are the result of further unwinding of the target DNA in the protospacer-adjacent motif (PAM)-distal region and the subsequent binding of the target strand to the catalytic site. Notably, the PAM-distal DNA unwound conformation was stabilized by Mg2+ ions, thereby significantly promoting the binding and cleavage of the target strand. These findings enabled us to propose a Mg2+-dependent kinetic model for the mechanism whereby Cas12a achieves cleavage of the target DNA, highlighting the presence of conformational rearrangements for the complete cleavage of the double-stranded DNA target.
Collapse
Affiliation(s)
- Heyjin Son
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jaeil Park
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Injoo Hwang
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Youngri Jung
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Sanghwa Lee
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| |
Collapse
|
27
|
Ma QN, Wang M, Zheng LB, Lin ZQ, Ehsan M, Xiao XX, Zhu XQ. RAA-Cas12a-Tg: A Nucleic Acid Detection System for Toxoplasma gondii Based on CRISPR-Cas12a Combined with Recombinase-Aided Amplification (RAA). Microorganisms 2021; 9:microorganisms9081644. [PMID: 34442722 PMCID: PMC8401747 DOI: 10.3390/microorganisms9081644] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Toxoplasmosis, caused by the intracellular protozoon Toxoplasma gondii, is a significant parasitic zoonosis with a world-wide distribution. As a main transmission route, human infection can be acquired by the ingestion of T. gondii oocysts from the environment (e.g., soil, water, fruits and vegetables). Regarding the detection of T. gondii oocysts in environmental samples, the development of a time-saving, cost-effective and highly sensitive technique is crucial for the surveillance, prevention and control of toxoplasmosis. In this study, we developed a new method by combining recombinase-aided amplification (RAA) with CRISPR-Cas12a, designated as the RAA-Cas12a-Tg system. Here, we compared this system targeting the 529 bp repeat element (529 bp-RE) with the routine PCR targeting both 529 bp-RE and ITS-1 gene, respectively, to assess its ability to detect T. gondii oocysts in soil samples. Our results indicated that the 529 bp RE-based RAA-Cas12a-Tg system was able to detect T. gondii successfully in nearly an hour at body temperature and was more sensitive than the routine PCR assay. The sensitivity of this system reached as low as 1 fM with high specificity. Thus, RAA-Cas12a-Tg system provided a rapid, sensitive and easily operable method for point-of-care detection of T. gondii oocysts in soil, which will facilitate the control of T. gondii infection in humans and animals.
Collapse
Affiliation(s)
- Qiao-Ni Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Q.-N.M.); (M.W.)
| | - Meng Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Q.-N.M.); (M.W.)
| | - Lai-Bao Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (L.-B.Z.); (Z.-Q.L.)
| | - Zi-Qin Lin
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (L.-B.Z.); (Z.-Q.L.)
| | - Muhammad Ehsan
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Xing-Xing Xiao
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; (L.-B.Z.); (Z.-Q.L.)
- Correspondence: (X.-X.X.); (X.-Q.Z.)
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (Q.-N.M.); (M.W.)
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (X.-X.X.); (X.-Q.Z.)
| |
Collapse
|
28
|
Wörle E, Jakob L, Schmidbauer A, Zinner G, Grohmann D. Decoupling the bridge helix of Cas12a results in a reduced trimming activity, increased mismatch sensitivity and impaired conformational transitions. Nucleic Acids Res 2021; 49:5278-5293. [PMID: 34009379 PMCID: PMC8136826 DOI: 10.1093/nar/gkab286] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022] Open
Abstract
The widespread and versatile prokaryotic CRISPR-Cas systems (clustered regularly interspaced short palindromic repeats and associated Cas proteins) constitute powerful weapons against foreign nucleic acids. Recently, the single-effector nuclease Cas12a that belongs to the type V CRISPR-Cas system was added to the Cas enzymes repertoire employed for gene editing purposes. Cas12a is a bilobal enzyme composed of the REC and Nuc lobe connected by the wedge, REC1 domain and bridge helix (BH). We generated BH variants and integrated biochemical and single-molecule FRET (smFRET) studies to elucidate the role of the BH for the enzymatic activity and conformational flexibility of Francisella novicida Cas12a. We demonstrate that the BH impacts the trimming activity and mismatch sensitivity of Cas12a resulting in Cas12a variants with improved cleavage accuracy. smFRET measurements reveal the hitherto unknown open and closed state of apo Cas12a. BH variants preferentially adopt the open state. Transition to the closed state of the Cas12a-crRNA complex is inefficient in BH variants but the semi-closed state of the ternary complex can be adopted even if the BH is deleted in its entirety. Taken together, these insights reveal that the BH is a structural element that influences the catalytic activity and impacts conformational transitions of FnCas12a.
Collapse
Affiliation(s)
- Elisabeth Wörle
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
| | - Leonhard Jakob
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
| | - Andreas Schmidbauer
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
| | - Gabriel Zinner
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
| | - Dina Grohmann
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
- Regensburg Center of Biochemistry (RCB), University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
29
|
Shi Y, Fu X, Yin Y, Peng F, Yin X, Ke G, Zhang X. CRISPR-Cas12a System for Biosensing and Gene Regulation. Chem Asian J 2021; 16:857-867. [PMID: 33638271 DOI: 10.1002/asia.202100043] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/26/2021] [Indexed: 12/14/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) is a promising technology in the biological world. As one of the CRISPR-associated (Cas) proteins, Cas12a is an RNA-guided nuclease in the type V CRISPR-Cas system, which has been a robust tool for gene editing. In addition, due to the discovery of target-binding-induced indiscriminate single-stranded DNase activity of Cas12a, CRISPR-Cas12a also exhibits great promise in biosensing. This minireview not only gives a brief introduction to the mechanism of CRISPR-Cas12a but also highlights the recent developments and applications in biosensing and gene regulation. Finally, future prospects of the CRISPR-Cas12a system are also discussed. We expect this minireview will inspire innovative work on the CRISPR-Cas12a system by making full use of its features and advantages.
Collapse
Affiliation(s)
- Yuyan Shi
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiaoyi Fu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yao Yin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Fangqi Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xia Yin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Guoliang Ke
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
30
|
Parameshwaran HP, Babu K, Tran C, Guan K, Allen A, Kathiresan V, Qin PZ, Rajan R. The bridge helix of Cas12a imparts selectivity in cis-DNA cleavage and regulates trans-DNA cleavage. FEBS Lett 2021; 595:892-912. [PMID: 33523494 PMCID: PMC8044059 DOI: 10.1002/1873-3468.14051] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/26/2022]
Abstract
Cas12a is an RNA-guided DNA endonuclease of the type V-A CRISPR-Cas system that has evolved convergently with the type II Cas9 protein. We previously showed that proline substitutions in the bridge helix (BH) impart target DNA cleavage selectivity in Streptococcus pyogenes (Spy) Cas9. Here, we examined a BH variant of Cas12a from Francisella novicida (FnoCas12aKD2P ) to test mechanistic conservation. Our results show that for RNA-guided DNA cleavage (cis-activity), FnoCas12aKD2P accumulates nicked products while cleaving supercoiled DNA substrates with mismatches, with certain mismatch positions being more detrimental for linearization. FnoCas12aKD2P also possess reduced trans-single-stranded DNA cleavage activity. These results implicate the BH in substrate selectivity in both cis- and trans-cleavages and show its conserved role in target discrimination among Cas nucleases.
Collapse
Affiliation(s)
- Hari Priya Parameshwaran
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, OK, USA
| | - Kesavan Babu
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, OK, USA
| | - Christine Tran
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, OK, USA
| | - Kevin Guan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, OK, USA
| | - Aleique Allen
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | | | - Peter Z Qin
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, OK, USA
| |
Collapse
|
31
|
Luo M, Meng FZ, Tan Q, Yin WX, Luo CX. Recombinase Polymerase Amplification/Cas12a-Based Identification of Xanthomonas arboricola pv. pruni on Peach. FRONTIERS IN PLANT SCIENCE 2021; 12:740177. [PMID: 34887884 PMCID: PMC8650578 DOI: 10.3389/fpls.2021.740177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/15/2021] [Indexed: 05/06/2023]
Abstract
Peach bacterial spot caused by Xanthomonas arboricola pv. pruni (Xap) is a devastating disease worldwide and frequently causes massive economic losses. In recent years, it has become a pandemic outbreak in most peach production areas of China, especially on precocious peaches in the middle reach of the Yangtze River. Rapid, user-friendly detection is extremely important to make the correct diagnosis and develop suitable control strategies. In this study, we described a recombinase polymerase amplification (RPA)/Cas12a-based system that combines RPA and CRISPR/Cas12a for Xap identification. A total of three crRNAs were designed to target a highly conserved ABC transporter ATP-binding protein-encoding gene ftsX to make specific detection of Xap. Results showed that crRNA 2 and crRNA 3 could get consistent detection for Xap. To realize the visualization of detection results, we additionally introduced FQ-reporter and FB-reporter. The developed method was highly sensitive and could detect as low as 10-18 M Xap gDNA with a mini-UV torch, corresponding to 1.63 copies/μl or 8.855 fg/μl gDNA of Xap, while with lateral flow strips, the sensitivity was 10-17 M. In addition, this method could specifically detect Xap from other closely related bacteria or pathogens associated with peach diseases. Furthermore, this method could make correct identification for Xap with crude DNA using NaOH-based extraction (3 min) directly from diseased peach samples. Considering that the developed method could get results within 2 h and could be performed at 37°C (body temperature), it is promising to be applied for Xap diagnosis and monitoring in fields.
Collapse
Affiliation(s)
- Mei Luo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Fan-Zhu Meng
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Qin Tan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wei-Xiao Yin
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
| | - Chao-Xi Luo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Chao-Xi Luo,
| |
Collapse
|
32
|
Mckay A, Burgio G. Harnessing CRISPR-Cas system diversity for gene editing technologies. J Biomed Res 2021; 35:91-106. [PMID: 33797415 PMCID: PMC8038530 DOI: 10.7555/jbr.35.20200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The discovery and utilization of RNA-guided surveillance complexes, such as CRISPR-Cas9, for sequence-specific DNA or RNA cleavage, has revolutionised the process of gene modification or knockdown. To optimise the use of this technology, an exploratory race has ensued to discover or develop new RNA-guided endonucleases with the most flexible sequence targeting requirements, coupled with high cleavage efficacy and specificity. Here we review the constraints of existing gene editing and assess the merits of exploiting the diversity of CRISPR-Cas effectors as a methodology for surmounting these limitations.
Collapse
Affiliation(s)
- Alexander Mckay
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
33
|
Target search and recognition mechanisms of glycosylase AlkD revealed by scanning FRET-FCS and Markov state models. Proc Natl Acad Sci U S A 2020; 117:21889-21895. [PMID: 32820079 PMCID: PMC7486748 DOI: 10.1073/pnas.2002971117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA glycosylase repairs DNA damage to maintain the genome integrity, and thus it is essential for the survival of all organisms. However, it remains a long-standing puzzle how glycosylase diffuses along the genomic DNA to locate the sparse and aberrant lesion sites efficiently and accurately in the genome containing numerous base pairs. Previously, only the high-speed–low-accuracy search mode has been characterized experimentally, while the low-speed–high-accuracy mode is undetectable. Here, we observed the low-speed mode of glycosylase AlkD translocating, and further dissected its molecular mechanisms. To achieve this, we developed an integrated platform by combining scanning FRET-FCS with Markov state model. We expect that this platform can be widely applied to investigate other glycosylases and DNA-binding proteins. DNA glycosylase is responsible for repairing DNA damage to maintain the genome stability and integrity. However, how glycosylase can efficiently and accurately recognize DNA lesions across the enormous DNA genome remains elusive. It has been hypothesized that glycosylase translocates along the DNA by alternating between a fast but low-accuracy diffusion mode and a slow but high-accuracy mode when searching for DNA lesions. However, the slow mode has not been successfully characterized due to the limitation in the spatial and temporal resolutions of current experimental techniques. Using a newly developed scanning fluorescence resonance energy transfer (FRET)–fluorescence correlation spectroscopy (FCS) platform, we were able to observe both slow and fast modes of glycosylase AlkD translocating on double-stranded DNA (dsDNA), reaching the temporal resolution of microsecond and spatial resolution of subnanometer. The underlying molecular mechanism of the slow mode was further elucidated by Markov state model built from extensive all-atom molecular dynamics simulations. We found that in the slow mode, AlkD follows an asymmetric diffusion pathway, i.e., rotation followed by translation. Furthermore, the essential role of Y27 in AlkD diffusion dynamics was identified both experimentally and computationally. Our results provided mechanistic insights on how conformational dynamics of AlkD–dsDNA complex coordinate different diffusion modes to accomplish the search for DNA lesions with high efficiency and accuracy. We anticipate that the mechanism adopted by AlkD to search for DNA lesions could be a general one utilized by other glycosylases and DNA binding proteins.
Collapse
|
34
|
Xing S, Lu Z, Huang Q, Li H, Wang Y, Lai Y, He Y, Deng M, Liu W. An ultrasensitive hybridization chain reaction-amplified CRISPR-Cas12a aptasensor for extracellular vesicle surface protein quantification. Theranostics 2020; 10:10262-10273. [PMID: 32929347 PMCID: PMC7481432 DOI: 10.7150/thno.49047] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
Tumor-derived extracellular vesicle (TEV) protein biomarkers facilitate cancer diagnosis and prognostic evaluations. However, the lack of reliable and convenient quantitative methods for evaluating TEV proteins prevents their clinical application. Methods: Here, based on dual amplification of hybridization chain reaction (HCR) and CRISPR-Cas12a, we developed the apta-HCR-CRISPR assay for direct high-sensitivity detection of TEV proteins. The TEV protein-targeted aptamer was amplified by HCR to produce a long-repeated sequence comprising multiple CRISPR RNA (crRNA) targetable barcodes, and the signals were further amplified by CRISPR-Cas12a collateral cleavage activities, resulting in a fluorescence signal. Results: The established strategy was verified by detecting the TEV protein markers nucleolin and programmed death ligand 1 (PD-L1). Both achieved limit of detection (LOD) values as low as 102 particles/µL, which is at least 104-fold more sensitive than aptamer-ELISA and 102-fold more sensitive than apta-HCR-ELISA. We directly applied our assay to a clinical analysis of circulating TEVs from 50 µL of serum, revealing potential applications of nucleolin+ TEVs for nasopharyngeal carcinoma cancer (NPC) diagnosis and PD-L1+ TEVs for therapeutic monitoring. Conclusion: The platform was simple and easy to operate, and this approach should be useful for the highly sensitive and versatile quantification of TEV proteins in clinical samples.
Collapse
|
35
|
Cofsky JC, Karandur D, Huang CJ, Witte IP, Kuriyan J, Doudna JA. CRISPR-Cas12a exploits R-loop asymmetry to form double-strand breaks. eLife 2020; 9:e55143. [PMID: 32519675 PMCID: PMC7286691 DOI: 10.7554/elife.55143] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Type V CRISPR-Cas interference proteins use a single RuvC active site to make RNA-guided breaks in double-stranded DNA substrates, an activity essential for both bacterial immunity and genome editing. The best-studied of these enzymes, Cas12a, initiates DNA cutting by forming a 20-nucleotide R-loop in which the guide RNA displaces one strand of a double-helical DNA substrate, positioning the DNase active site for first-strand cleavage. However, crystal structures and biochemical data have not explained how the second strand is cut to complete the double-strand break. Here, we detect intrinsic instability in DNA flanking the RNA-3' side of R-loops, which Cas12a can exploit to expose second-strand DNA for cutting. Interestingly, DNA flanking the RNA-5' side of R-loops is not intrinsically unstable. This asymmetry in R-loop structure may explain the uniformity of guide RNA architecture and the single-active-site cleavage mechanism that are fundamental features of all type V CRISPR-Cas systems.
Collapse
Affiliation(s)
- Joshua C Cofsky
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Deepti Karandur
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Carolyn J Huang
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Isaac P Witte
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- MBIB Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- MBIB Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Gladstone Institutes, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
36
|
Murugan K, Seetharam AS, Severin AJ, Sashital DG. CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects. J Biol Chem 2020; 295:5538-5553. [PMID: 32161115 PMCID: PMC7186167 DOI: 10.1074/jbc.ra120.012933] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/04/2020] [Indexed: 12/26/2022] Open
Abstract
Cas12a (Cpf1) is an RNA-guided endonuclease in the bacterial type V-A CRISPR-Cas anti-phage immune system that can be repurposed for genome editing. Cas12a can bind and cut dsDNA targets with high specificity in vivo, making it an ideal candidate for expanding the arsenal of enzymes used in precise genome editing. However, this reported high specificity contradicts Cas12a's natural role as an immune effector against rapidly evolving phages. Here, we employed high-throughput in vitro cleavage assays to determine and compare the native cleavage specificities and activities of three different natural Cas12a orthologs (FnCas12a, LbCas12a, and AsCas12a). Surprisingly, we observed pervasive sequence-specific nicking of randomized target libraries, with strong nicking of DNA sequences containing up to four mismatches in the Cas12a-targeted DNA-RNA hybrid sequences. We also found that these nicking and cleavage activities depend on mismatch type and position and vary with Cas12a ortholog and CRISPR RNA sequence. Our analysis further revealed robust nonspecific nicking of dsDNA when Cas12a is activated by binding to a target DNA. Together, our findings reveal that Cas12a has multiple nicking activities against dsDNA substrates and that these activities vary among different Cas12a orthologs.
Collapse
Affiliation(s)
- Karthik Murugan
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011; Molecular, Cellular, and Developmental Biology Interdepartmental Program, Iowa State University, Ames, Iowa 50011
| | - Arun S Seetharam
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, Iowa 50011
| | - Andrew J Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, Iowa 50011
| | - Dipali G Sashital
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011; Molecular, Cellular, and Developmental Biology Interdepartmental Program, Iowa State University, Ames, Iowa 50011.
| |
Collapse
|
37
|
Li J, Yang S, Zuo C, Dai L, Guo Y, Xie G. Applying CRISPR-Cas12a as a Signal Amplifier to Construct Biosensors for Non-DNA Targets in Ultralow Concentrations. ACS Sens 2020; 5:970-977. [PMID: 32157873 DOI: 10.1021/acssensors.9b02305] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Efficient signal amplification is essential to construct ultrasensitive biosensors for biologically relevant species with abundant concomitant interferences. Here, we apply LbaCas12a as a signal amplifier to develop a versatile CRISPR-Cas12a platform to detect a wide range of analytes in ultralow concentrations. The platform relies on the indiscriminate single-stranded DNase activity of LbaCas12a, which recognizes single-stranded DNA intermediates generated by non-DNA targets down to femtomolar concentrations and subsequently enhances the fluorescence signal output. With the help of functional nucleotides (DNAzyme and aptamer), ultrasensitive bioassays for Pb2+ and Acinetobacter baumannii have been designed with a limit of detection down to ∼0.053 nM and ∼3 CFU/mL, respectively. It also allows simultaneous detection of four microRNAs (miRNAs) at a picomolar concentration without significant interferences by other counterparts, suggesting the potential of multiplexed miRNA expression profiles analysis in high throughput. Given the versatility and generality of the CRISPR-Cas12a platform, we expect the current work to advance the application of CRISPR-Cas-based platforms in bioanalysis and provide new insights into ultrasensitive biosensor design.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, China
| | - Shuangshuang Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, China
| | - Chen Zuo
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, China
| | - Ling Dai
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, China
| | - Yongcan Guo
- Department of Laboratory Medicine, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Guoming Xie
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, China
| |
Collapse
|