1
|
Lu S, Wu J. Reply to: Concerns on Potential Risk of Roxadustat in Promoting Tumor Progression: Double-Edged Sword of Hypoxia-Inducible Factor-1α Activation. J Clin Oncol 2025; 43:1268-1269. [PMID: 39805067 DOI: 10.1200/jco-24-02684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025] Open
Affiliation(s)
- Shun Lu
- Shun Lu, MD, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; and Jiong Wu, MD, Cancer Hospital, Fudan University, Shanghai, China
| | - Jiong Wu
- Shun Lu, MD, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; and Jiong Wu, MD, Cancer Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Jacquemin C, El Orch W, Diaz O, Lalande A, Aublin-Gex A, Jacolin F, Toesca J, Si-Tahar M, Mathieu C, Lotteau V, Perrin-Cocon L, Vidalain PO. Pharmacological induction of the hypoxia response pathway in Huh7 hepatoma cells limits proliferation but increases resilience under metabolic stress. Cell Mol Life Sci 2024; 81:320. [PMID: 39078527 PMCID: PMC11335246 DOI: 10.1007/s00018-024-05361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024]
Abstract
The hypoxia response pathway enables adaptation to oxygen deprivation. It is mediated by hypoxia-inducible factors (HIF), which promote metabolic reprogramming, erythropoiesis, angiogenesis and tissue remodeling. This led to the successful development of HIF-inducing drugs for treating anemia and some of these molecules are now in clinic. However, elevated levels of HIFs are frequently associated with tumor growth, poor prognosis, and drug resistance in various cancers, including hepatocellular carcinoma (HCC). Consequently, there are concerns regarding the recommendation of HIF-inducing drugs in certain clinical situations. Here, we analyzed the effects of two HIF-inducing drugs, Molidustat and Roxadustat, in the well-characterized HCC cell line Huh7. These drugs increased HIF-1α and HIF-2α protein levels which both participate in inducing hypoxia response genes such as BNIP3, SERPINE1, LDHA or EPO. Combined transcriptomics, proteomics and metabolomics showed that Molidustat increased the expression of glycolytic enzymes, while the mitochondrial network was fragmented and cellular respiration decreased. This metabolic remodeling was associated with a reduced proliferation and a lower demand for pyrimidine supply, but an increased ability of cells to convert pyruvate to lactate. This was accompanied by a higher resistance to the inhibition of mitochondrial respiration by antimycin A, a phenotype confirmed in Roxadustat-treated Huh7 cells and Molidustat-treated hepatoblastoma cells (Huh6 and HepG2). Overall, this study shows that HIF-inducing drugs increase the metabolic resilience of liver cancer cells to metabolic stressors, arguing for careful monitoring of patients treated with HIF-inducing drugs, especially when they are at risk of liver cancer.
Collapse
Affiliation(s)
- Clémence Jacquemin
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Walid El Orch
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Olivier Diaz
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Alexandre Lalande
- CIRI, Centre International de Recherche en Infectiologie, Team NeuroInvasion, Tropism and Viral Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Anne Aublin-Gex
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Florentine Jacolin
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Johan Toesca
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Mustapha Si-Tahar
- Centre d'Etude des Pathologies Respiratoires (CEPR), Faculty of Medecine, Inserm, U1100, 37000, Tours, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, Team NeuroInvasion, Tropism and Viral Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Vincent Lotteau
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
- Laboratoire P4 INSERM-Jean Mérieux, Lyon, France
| | - Laure Perrin-Cocon
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France.
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Team Viral Infection, Metabolism and Immunity, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007, Lyon, France.
| |
Collapse
|
3
|
Lawson H, Holt-Martyn JP, Dembitz V, Kabayama Y, Wang LM, Bellani A, Atwal S, Saffoon N, Durko J, van de Lagemaat LN, De Pace AL, Tumber A, Corner T, Salah E, Arndt C, Brewitz L, Bowen M, Dubusse L, George D, Allen L, Guitart AV, Fung TK, So CWE, Schwaller J, Gallipoli P, O'Carroll D, Schofield CJ, Kranc KR. The selective prolyl hydroxylase inhibitor IOX5 stabilizes HIF-1α and compromises development and progression of acute myeloid leukemia. NATURE CANCER 2024; 5:916-937. [PMID: 38637657 PMCID: PMC11208159 DOI: 10.1038/s43018-024-00761-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024]
Abstract
Acute myeloid leukemia (AML) is a largely incurable disease, for which new treatments are urgently needed. While leukemogenesis occurs in the hypoxic bone marrow, the therapeutic tractability of the hypoxia-inducible factor (HIF) system remains undefined. Given that inactivation of HIF-1α/HIF-2α promotes AML, a possible clinical strategy is to target the HIF-prolyl hydroxylases (PHDs), which promote HIF-1α/HIF-2α degradation. Here, we reveal that genetic inactivation of Phd1/Phd2 hinders AML initiation and progression, without impacting normal hematopoiesis. We investigated clinically used PHD inhibitors and a new selective PHD inhibitor (IOX5), to stabilize HIF-α in AML cells. PHD inhibition compromises AML in a HIF-1α-dependent manner to disable pro-leukemogenic pathways, re-program metabolism and induce apoptosis, in part via upregulation of BNIP3. Notably, concurrent inhibition of BCL-2 by venetoclax potentiates the anti-leukemic effect of PHD inhibition. Thus, PHD inhibition, with consequent HIF-1α stabilization, is a promising nontoxic strategy for AML, including in combination with venetoclax.
Collapse
Affiliation(s)
- Hannah Lawson
- The Institute of Cancer Research, London, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - James P Holt-Martyn
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Vilma Dembitz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Department of Physiology and Immunology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Yuka Kabayama
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Lydia M Wang
- The Institute of Cancer Research, London, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Aarushi Bellani
- The Institute of Cancer Research, London, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Samanpreet Atwal
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Nadia Saffoon
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Jozef Durko
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Louie N van de Lagemaat
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Azzura L De Pace
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Thomas Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Christine Arndt
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Matthew Bowen
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Louis Dubusse
- The Institute of Cancer Research, London, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Derek George
- The Institute of Cancer Research, London, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lewis Allen
- The Institute of Cancer Research, London, UK
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Amelie V Guitart
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale INSERM U1035, Bordeaux, France
| | - Tsz Kan Fung
- Leukemia and Stem Cell Biology Group, Comprehensive Cancer Centre, King's College London, London, UK
- Department of Haematological Medicine, King's College Hospital, King's College London, London, UK
| | - Chi Wai Eric So
- Leukemia and Stem Cell Biology Group, Comprehensive Cancer Centre, King's College London, London, UK
- Department of Haematological Medicine, King's College Hospital, King's College London, London, UK
| | - Juerg Schwaller
- University Children's Hospital Basel (UKBB), Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Donal O'Carroll
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK.
| | - Kamil R Kranc
- The Institute of Cancer Research, London, UK.
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
4
|
Matsunaga S, Tomita S. [The effect of PHD inhibitor on tumor microenvironment and tumor immune response]. Nihon Yakurigaku Zasshi 2024; 159:169-172. [PMID: 38692882 DOI: 10.1254/fpj.23091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Since the approval of HIF-PH inhibitors, HIF-PH inhibitors have been used clinically, and many studies and clinical case reports have been reported in Japan. A lot of information has been accumulated on clinical usage. However, HIF-PH inhibitors require careful administration for cancer patients due to their action mechanism through upregulating hypoxia-inducible factors (HIFs) level. In cancer cells, HIFs affect tumor progression and contribute to chemo- and radio-resistance. On the other hand, upregulation of HIFs in immune cells is associated with inflammation and suppress tumor progression. However, these controversial effects are not clear in in vivo model. It is needed to reveal whether upregulating HIFs level is beneficial for cancer therapy or not. We have previously reported that HIF-PH inhibitor treatment in tumor bearing mice model led to reconstitute tumor blood vessel and inhibit tumor growth. In addition, these phenomena were caused by tumor infiltrated macrophages and they altered these phenotypes. In this review, we will describe our findings on the mechanism of tumor growth suppression by HIF-PH inhibitors. We also want to mention the risks and benefits of future HIF-PH inhibitors.
Collapse
Affiliation(s)
- Shinji Matsunaga
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine
| | - Shuhei Tomita
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine
| |
Collapse
|
5
|
García-del Río A, Prieto-Fernández E, Egia-Mendikute L, Antoñana-Vildosola A, Jimenez-Lasheras B, Lee SY, Barreira-Manrique A, Zanetti SR, de Blas A, Velasco-Beltrán P, Bosch A, Aransay AM, Palazon A. Factor-inhibiting HIF (FIH) promotes lung cancer progression. JCI Insight 2023; 8:e167394. [PMID: 37707961 PMCID: PMC10619494 DOI: 10.1172/jci.insight.167394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Factor-inhibiting HIF (FIH) is an asparagine hydroxylase that acts on hypoxia-inducible factors (HIFs) to control cellular adaptation to hypoxia. FIH is expressed in several tumor types, but its impact in tumor progression remains largely unexplored. We observed that FIH was expressed on human lung cancer tissue. Deletion of FIH in mouse and human lung cancer cells resulted in an increased glycolytic metabolism, consistent with increased HIF activity. FIH-deficient lung cancer cells exhibited decreased proliferation. Analysis of RNA-Seq data confirmed changes in the cell cycle and survival and revealed molecular pathways that were dysregulated in the absence of FIH, including the upregulation of angiomotin (Amot), a key component of the Hippo tumor suppressor pathway. We show that FIH-deficient tumors were characterized by higher immune infiltration of NK and T cells compared with FIH competent tumor cells. In vivo studies demonstrate that FIH deletion resulted in reduced tumor growth and metastatic capacity. Moreover, high FIH expression correlated with poor overall survival in non-small cell lung cancer (NSCLC). Our data unravel FIH as a therapeutic target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Ana García-del Río
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Endika Prieto-Fernández
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Asier Antoñana-Vildosola
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Borja Jimenez-Lasheras
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - So Young Lee
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Adrián Barreira-Manrique
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Samanta Romina Zanetti
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Ander de Blas
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Paloma Velasco-Beltrán
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Alexandre Bosch
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Ana M. Aransay
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Genome Analysis Platform, CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
6
|
Chou YH, Pan SY, Lin SL. Pleotropic effects of hypoxia-inducible factor-prolyl hydroxylase domain inhibitors: are they clinically relevant? Kidney Res Clin Pract 2023; 42:27-38. [PMID: 36634968 PMCID: PMC9902737 DOI: 10.23876/j.krcp.22.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022] Open
Abstract
Anemia is common in patients with chronic kidney disease (CKD) and is mainly caused by insufficient production of erythropoietin from fibrotic kidney. Because anemia impairs quality of life and overall prognosis, recombinant human erythropoietin-related products (erythropoiesis-stimulating agents, ESAs) have been developed to increase hemoglobin level for decades. However, many safety concerns have been announced regarding the use of ESAs, including an increased occurrence of cardiovascular events, vascular access thrombosis, cancer progression, and recurrence. Hypoxia-inducible factor (HIF) is crucial to erythropoietin production, as a result, prolyl hydroxylase domain (PHD) enzyme inhibitors have been new therapeutic agents for the treatment of anemia in CKD. They can be administered orally, which is a preferred route for patients not undergoing hemodialysis. In clinical trials, PHD inhibitor could induce noninferior effect on erythropoiesis and improve functional iron deficiency compared with ESAs. Although no serious adverse events were reported, safety is still a concern because HIF stabilization induced by PHD inhibitor has pleotropic effects, such as angiogenesis, metabolic change, and cell survival, which might lead to unwanted deleterious effects, including fibrosis, inflammation, cardiovascular risk, and tumor growth. More molecular mechanisms of PHD inhibition and long-term clinical trials are needed to observe these pleotropic effects for the confirmation of safety and efficacy of PHD inhibitors.
Collapse
Affiliation(s)
- Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Yu Pan
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan,Graduate Institute of Physiology, National Taiwan University School of Medicine, Taipei, Taiwan,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan,Correspondence: Shuei-Liong Lin Graduate Institute of Physiology, National Taiwan University School of Medicine, No. 1, Jen-Ai Road Section 1, Taipei, 100, Taiwan. E-mail:
| |
Collapse
|
7
|
Li ZL, Wang B, Wen Y, Wu QL, Lv LL, Liu BC. Disturbance of Hypoxia Response and Its Implications in Kidney Diseases. Antioxid Redox Signal 2022; 37:936-955. [PMID: 35044244 DOI: 10.1089/ars.2021.0271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The disturbance of the hypoxia response system is closely related to human diseases, because it is essential for the maintenance of homeostasis. Given the significant role of the hypoxia response system in human health, therapeutic applications targeting prolyl hydroxylase-hypoxia-inducible factor (HIF) signaling have been attempted. Thus, systemically reviewing the hypoxia response-based therapeutic strategies is of great significance. Recent Advances: Disturbance of the hypoxia response is a characteristic feature of various diseases. Targeting the hypoxia response system is, thus, a promising therapeutic strategy. Interestingly, several compounds and drugs are currently under clinical trials, and some have already been approved for use in the treatment of certain human diseases. Critical Issues: We summarize the molecular mechanisms of the hypoxia response system and address the potential therapeutic implications in kidney diseases. Given that the effects of hypoxia response in kidney diseases are likely to depend on the pathological context, specific cell types, and the differences in the activation pattern of HIF isoforms, the precise application is critical for the treatment of kidney diseases. Although HIF-PHIs (HIF-PHD inhibitors) have been proven to be effective and well tolerated in chronic kidney disease patients with anemia, the potential on-target consequence of HIF activation and some outstanding questions warrant further consideration. Future Direction: The mechanism of the hypoxia response system disturbance remains unclear. Elucidation of the molecular mechanism of hypoxia response and its precise effects on kidney diseases warrants clarification. Considering the complexity of the hypoxia response system and multiple biological processes controlled by HIF signaling, the development of more specific inhibitors is highly warranted. Antioxid. Redox Signal. 37, 936-955.
Collapse
Affiliation(s)
- Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yi Wen
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Qiu-Li Wu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
8
|
Ivan M, Fishel ML, Tudoran OM, Pollok KE, Wu X, Smith PJ. Hypoxia signaling: Challenges and opportunities for cancer therapy. Semin Cancer Biol 2022; 85:185-195. [PMID: 34628029 PMCID: PMC8986888 DOI: 10.1016/j.semcancer.2021.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
Hypoxia is arguably the first recognized cancer microenvironment hallmark and affects virtually all cellular populations present in tumors. During the past decades the complex adaptive cellular responses to oxygen deprivation have been largely elucidated, raising hope for new anti cancer agents. Despite undeniable preclinical progress, therapeutic targeting of tumor hypoxia is yet to transition from bench to bedside. This review focuses on new pharmacological agents that exploit tumor hypoxia or interfere with hypoxia signaling and discusses strategies to maximize their therapeutic impact.
Collapse
Affiliation(s)
- Mircea Ivan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Melissa L Fishel
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, IU Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Oana M Tudoran
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Cluj, Romania
| | - Karen E Pollok
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xue Wu
- Ohio State University, Columbus, OH, USA
| | - Paul J Smith
- School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
9
|
Rezaei M, Danilova ND, Soltani M, Savvateeva LV, V Tarasov V, Ganjalikhani-Hakemi M, V Bazhinf A, A Zamyatnin A. Cancer Vaccine in Cold Tumors: Clinical Landscape, Challenges, and Opportunities. Curr Cancer Drug Targets 2022; 22:437-453. [PMID: 35156572 DOI: 10.2174/1568009622666220214103533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
Abstract
The idea of cancer immunotherapy is to stimulate the immune system to fight tumors without destroying normal cells. One of the anticancer therapy methods, among many, is based on the use of cancer vaccines that contain tumor antigens in order to induce immune responses against tumors. However, clinical trials have shown that the use of such vaccines as a monotherapy is ineffective in many cases, since they do not cause a strong immune response. Particular tumors are resistant to immunotherapy due to the absence or insufficient infiltration of tumors with CD8+ T cells, and hence, they are called cold or non-inflamed tumors. Cold tumors are characterized by a lack of CD8+ T cell infiltration, the presence of anti-inflammatory myeloid cells, tumor-associated M2 macrophages, and regulatory T cells. It is very important to understand which stage of the antitumor response does not work properly in order to use the right strategy for the treatment of patients. Applying other therapeutic methods alongside cancer vaccines can be more rational for cold tumors which do not provoke the immune system strongly. Herein, we indicate some combinational therapies that have been used or are in progress for cold tumor treatment alongside vaccines.
Collapse
Affiliation(s)
- Mahnaz Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mozhdeh Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V Tarasov
- Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mazdak Ganjalikhani-Hakemi
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alexandr V Bazhinf
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
10
|
Jian CB, Yu XE, Gao HD, Chen HA, Jheng RH, Chen CY, Lee HM. Liposomal PHD2 Inhibitors and the Enhanced Efficacy in Stabilizing HIF-1α. NANOMATERIALS 2022; 12:nano12010163. [PMID: 35010112 PMCID: PMC8746909 DOI: 10.3390/nano12010163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/10/2022]
Abstract
Prolyl hydroxylase domain-containing protein 2 (PHD2) inhibition, which stabilizes hypoxia-inducible factor (HIF)-1α and thus triggers adaptation responses to hypoxia in cells, has become an important therapeutic target. Despite the proven high potency, small-molecule PHD2 inhibitors such as IOX2 may require a nanoformulation for favorable biodistribution to reduce off-target toxicity. A liposome formulation for improving the pharmacokinetics of an encapsulated drug while allowing a targeted delivery is a viable option. This study aimed to develop an efficient loading method that can encapsulate IOX2 and other PHD2 inhibitors with similar pharmacophore features in nanosized liposomes. Driven by a transmembrane calcium acetate gradient, a nearly 100% remote loading efficiency of IOX2 into liposomes was achieved with an optimized extraliposomal solution. The electron microscopy imaging revealed that IOX2 formed nanoprecipitates inside the liposome’s interior compartments after loading. For drug efficacy, liposomal IOX2 outperformed the free drug in inducing the HIF-1α levels in cell experiments, especially when using a targeting ligand. This method also enabled two clinically used inhibitors—vadadustat and roxadustat—to be loaded into liposomes with a high encapsulation efficiency, indicating its generality to load other heterocyclic glycinamide PHD2 inhibitors. We believe that the liposome formulation of PHD2 inhibitors, particularly in conjunction with active targeting, would have therapeutic potential for treating more specifically localized disease lesions.
Collapse
Affiliation(s)
- Cheng-Bang Jian
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei 11529, Taiwan
| | - Xu-En Yu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Department of Chemistry, National Central University, Taoyuan City 320317, Taiwan
| | - Hua-De Gao
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Huai-An Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
| | - Ren-Hua Jheng
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Department of Chemistry, National Central University, Taoyuan City 320317, Taiwan
| | - Chong-Yan Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
| | - Hsien-Ming Lee
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (C.-B.J.); (X.-E.Y.); (H.-D.G.); (H.-A.C.); (R.-H.J.); (C.-Y.C.)
- Correspondence: ; Tel.: +886-2-5572-8620
| |
Collapse
|
11
|
Mortezaee K, Majidpoor J. Key promoters of tumor hallmarks. Int J Clin Oncol 2021; 27:45-58. [PMID: 34773527 DOI: 10.1007/s10147-021-02074-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023]
Abstract
Evolution of tumor hallmarks is a result of accommodation of tumor cells with their nearby milieu called tumor microenvironment (TME). Accommodation or adaptive responses is highly important for a cell to survive, without which no cell is allowed to take any further steps in tumorigenesis. Metabolism of cancer cells is largely depended on stroma. Composition and plasticity of cells within the stroma is highly affected from inflammatory setting of TME. Hypoxia which is a common event in many solid cancers, is known as one of the key hallmarks of chronic inflammation and the master regulator of metastasis. Transforming growth factor (TGF)-β is produced in the chronic inflammatory and chronic hypoxic settings, and it is considered as a cardinal factor for induction of all tumor hallmarks. Aging, obesity and smoking are the main predisposing factors of cancer, acting mainly through modulation of TME.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
12
|
Kurata Y, Tanaka T, Nangaku M. An evaluation of roxadustat for the treatment of anemia associated with chronic kidney disease. Expert Opin Pharmacother 2021; 23:19-28. [PMID: 34686069 DOI: 10.1080/14656566.2021.1993821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Anemia is one of the major complications of chronic kidney disease (CKD). Erythropoiesis-stimulating agents (ESAs) have been the mainstay of renal anemia treatment. However, there are several safety drawbacks, and a safer and more effective alternative treatment has been sought. AREAS COVERED Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) have been developed as a novel orally active therapeutic agent for renal anemia. HIF-PHIs stimulate endogenous EPO and optimize iron utilization. Roxadustat is a first-in-class HIF-PHI for the treatment of anemia in CKD patients approved in China, Japan, South Korea, and Chile. The authors herein evaluate the pharmacology of roxadustat and give their expert perspectives on its use. EXPERT OPINION Phase 3 clinical trials have demonstrated that roxadustat effectively increases and maintains hemoglobin (Hb) levels in both nondialysis-dependent and dialysis-dependent CKD patients. Roxadustat also improved iron metabolism and reduced intravenous (IV) iron requirements. However, pooled analyses of phase 3 studies have revealed frequent thromboembolic events in the roxadustat group, which might be attributed to rapid changes in Hb and inadequate iron supplementation. Roxadustat is an attractive alternative treatment especially for patients with ESA hyporesponsive due to impaired iron utilization, and so appropriate selection of target patients and its proper use are crucially important.
Collapse
Affiliation(s)
- Yu Kurata
- Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Magnussen AL, Mills IG. Vascular normalisation as the stepping stone into tumour microenvironment transformation. Br J Cancer 2021; 125:324-336. [PMID: 33828258 PMCID: PMC8329166 DOI: 10.1038/s41416-021-01330-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/17/2021] [Accepted: 02/17/2021] [Indexed: 02/01/2023] Open
Abstract
A functional vascular system is indispensable for drug delivery and fundamental for responsiveness of the tumour microenvironment to such medication. At the same time, the progression of a tumour is defined by the interactions of the cancer cells with their surrounding environment, including neovessels, and the vascular network continues to be the major route for the dissemination of tumour cells in cancer, facilitating metastasis. So how can this apparent conflict be reconciled? Vessel normalisation-in which redundant structures are pruned and the abnormal vasculature is stabilised and remodelled-is generally considered to be beneficial in the course of anti-cancer treatments. A causality between normalised vasculature and improved response to medication and treatment is observed. For this reason, it is important to discern the consequence of vessel normalisation on the tumour microenvironment and to modulate the vasculature advantageously. This article will highlight the challenges of controlled neovascular remodelling and outline how vascular normalisation can shape disease management.
Collapse
Affiliation(s)
- Anette L Magnussen
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
- Patrick G Johnston Centre for Cancer Research, Queen's University of Belfast, Belfast, UK.
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway.
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
14
|
Hirota K. HIF-α Prolyl Hydroxylase Inhibitors and Their Implications for Biomedicine: A Comprehensive Review. Biomedicines 2021; 9:biomedicines9050468. [PMID: 33923349 PMCID: PMC8146675 DOI: 10.3390/biomedicines9050468] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Oxygen is essential for the maintenance of the body. Living organisms have evolved systems to secure an oxygen environment to be proper. Hypoxia-inducible factor (HIF) plays an essential role in this process; it is a transcription factor that mediates erythropoietin (EPO) induction at the transcriptional level under hypoxic environment. After successful cDNA cloning in 1995, a line of studies were conducted for elucidating the molecular mechanism of HIF activation in response to hypoxia. In 2001, cDNA cloning of dioxygenases acting on prolines and asparagine residues, which play essential roles in this process, was reported. HIF-prolyl hydroxylases (PHs) are molecules that constitute the core molecular mechanism of detecting a decrease in the partial pressure of oxygen, or hypoxia, in the cells; they can be called oxygen sensors. In this review, I discuss the process of molecular cloning of HIF and HIF-PH, which explains hypoxia-induced EPO expression; the development of HIF-PH inhibitors that artificially or exogenously activate HIF by inhibiting HIF-PH; and the significance and implications of medical intervention using HIF-PH inhibitors.
Collapse
Affiliation(s)
- Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
15
|
Majidpoor J, Mortezaee K. Angiogenesis as a hallmark of solid tumors - clinical perspectives. Cell Oncol (Dordr) 2021; 44:715-737. [PMID: 33835425 DOI: 10.1007/s13402-021-00602-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Angiogenesis is a key and early step in tumorigenesis, and is known as a hallmark of solid tumors and a key promoter of tumor recurrence. Unlike normal tissue vessels, the architecture of the tumor vasculature is abnormal, being leaky, tortuous, fragile and blind-ended. Perivascular cells are either detached or absent, causing reduction of vascular integrity, an increase in vessel immaturity, incoherent perfusion, defective functionality and enhanced tumor dissemination and metastasis. The abnormal tumor vasculature along with the defective tumor vessel functionality finally causes bouts of hypoxia and acidity in the tumor microenvironment (TME), further reinvigorating tumor aggression. Interstitial hypertension or high interstitial fluid pressure (IFP) is an outcome of tumor hyper-permeability. High IFP can be a barrier for either effective delivery of anti-cancer drugs toward the TME or accumulation of drugs within the tumor area, thus promoting tumor resistance to therapy. Some tumors do, however, not undergo angiogenesis but instead undergo vessel co-option or vascular mimicry, thereby adding another layer of complexity to cancer development and therapy. CONCLUSIONS Combination of anti-angiogenesis therapy with chemotherapy and particularly with immune checkpoint inhibitors (ICIs) is a promising strategy for a number of advanced cancers. Among the various approaches for targeting tumor angiogenesis, vascular normalization is considered as the most desired method, which allows effective penetration of chemotherapeutics into the tumor area, thus being an appropriate adjuvant to other cancer modalities.
Collapse
Affiliation(s)
- Jamal Majidpoor
- Department of Anatomy, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
16
|
Long G, Chen H, Wu M, Li Y, Gao L, Huang S, Zhang Y, Jia Z, Xia W. Antianemia Drug Roxadustat (FG-4592) Protects Against Doxorubicin-Induced Cardiotoxicity by Targeting Antiapoptotic and Antioxidative Pathways. Front Pharmacol 2020; 11:1191. [PMID: 32848792 PMCID: PMC7419679 DOI: 10.3389/fphar.2020.01191] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Doxorubicin (DOX) is broadly used in treating various malignant tumors. However, its cardiotoxicity limits its clinical use. Roxadustat (FG-4592) is a new hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) inhibitor and has been approved for treating anemia in chronic kidney diseases (CKD) patients. However, the role of FG-4592 in DOX-induced cardiotoxicity remains unknown. In this study, mouse cardiac function was evaluated by echocardiography, plasma LDH/CK-MB, and heart HE staining. Cell viability, apoptosis, oxidative stress, inflammation, and HIF-target genes were evaluated in mouse cardiac tissue and cardiac cells exposed to DOX with FG-4592 pretreatment. DOX-sensitive HepG2 and MCF-7 cell lines were used to evaluate FG-4592 effect on the anticancer activity of DOX. We found that FG-4592 alleviated DOX-induced cardiotoxicity shown by the protection against cardiac dysfunction, cardiac apoptosis, and oxidative stress without the effect on inflammatory response. FG-4592 alone did not change the cardiac function, cardiomyocyte morphology, oxidative stress, and inflammation in vivo. FG-4592 could protect cardiomyocytes against DOX-induced apoptosis and ROS production in line with the upregulation of HIF-1α and its target genes of Bcl-2 and SOD2. Importantly, FG-4592 displayed anticancer property in cancer cells treated with or without DOX. These findings highlighted the protective effect of FG-4592 on DOX-induced cardiotoxicity possibly through upregulating HIF-1α and its target genes antagonizing apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Guangfeng Long
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongbing Chen
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mengying Wu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Li
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Ling Gao
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Immune escape: A critical hallmark in solid tumors. Life Sci 2020; 258:118110. [PMID: 32698074 DOI: 10.1016/j.lfs.2020.118110] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Incapacitated immune system is a characteristic hallmark of solid tumors. Immune system within a tumor undergoes an imbalance in cellular dispersion and functionality. Effector cells are precluded from the invasive margin of tumor; instead, immune suppressor cells are present at high fractions. Conditions in the tumor microenvironment (TME) like altered metabolism, chronic hypoxia and chronic inflammation are the known predisposing factors, implicated in the immune malfunctioning. Deficiency of innate immune sensing mediated by checkpoint receptors including programmed death-1 receptor (PD-1), CTL-associated antigen-4 (CTLA-4) hijacked by tumor cells takes a major part of the blame, requiring a need for appropriate strategies in order to bring back the balance in the immune system. Immune checkpoint inhibitor (ICI) therapy has been in the eye of the current research rendering promising results. The story is not, however, that easy in which it is not so effective for Cold tumors, it may cause severe adverse effects, and that patients may acquire resistance to such therapy; this requires for updating the current knowledge about the immune ecosystem, using tumor type dependent dose calculation and exploiting proper adjuvants in order for evolving desired responses.
Collapse
|
18
|
Hulley PA, Papadimitriou-Olivgeri I, Knowles HJ. Osteoblast-Osteoclast Coculture Amplifies Inhibitory Effects of FG-4592 on Human Osteoclastogenesis and Reduces Bone Resorption. JBMR Plus 2020; 4:e10370. [PMID: 32666021 PMCID: PMC7340438 DOI: 10.1002/jbm4.10370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/31/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022] Open
Abstract
The link between bone and blood vessels is regulated by hypoxia and the hypoxia‐inducible transcription factor, HIF, which drives both osteogenesis and angiogenesis. The recent clinical approval of PHD enzyme inhibitors, which stabilize HIF protein, introduces the potential for a new clinical strategy to treat osteolytic conditions such as osteoporosis, osteonecrosis, and skeletal fracture and nonunion. However, bone‐resorbing osteoclasts also play a central role in bone remodeling and pathological osteolysis, and HIF promotes osteoclast activation and bone loss in vitro. It is therefore likely that the result of PHD enzyme inhibition in vivo would be mediated by a balance between increased bone formation and increased bone resorption. It is essential that we improve our understanding of the effects of HIF on osteoclast formation and function and consider the potential contribution of inhibitory interactions with other musculoskeletal cells. The PHD enzyme inhibitor FG‐4592 stabilized HIF protein and stimulated osteoclast‐mediated bone resorption, but inhibited differentiation of human CD14+ monocytes into osteoclasts. Formation of osteoclasts in a more physiologically relevant 3D collagen gel did not affect the sensitivity of osteoclastogenesis to FG‐4592, but increased sensitivity to reduced concentrations of RANKL. Coculture with osteoblasts amplified inhibition of osteoclastogenesis by FG‐4592, whether the osteoblasts were proliferating, differentiating, or in the presence of exogenous M‐CSF and RANKL. Osteoblast coculture dampened the ability of high concentrations of FG‐4592 to increase bone resorption. These data provide support for the therapeutic use of PHD enzyme inhibitors to improve bone formation and/or reduce bone loss for the treatment of osteolytic pathologies and indicate that FG‐4592 might act in vivo to inhibit the formation and activity of the osteoclasts that drive osteolysis. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Philippa A Hulley
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences University of Oxford Oxford UK
| | - Ioanna Papadimitriou-Olivgeri
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences University of Oxford Oxford UK.,Department of Anatomy Histology & Embryology University of Patras Patras Greece
| | - Helen J Knowles
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences University of Oxford Oxford UK
| |
Collapse
|
19
|
Nishide S, Uchida J, Matsunaga S, Tokudome K, Yamaguchi T, Kabei K, Moriya T, Miura K, Nakatani T, Tomita S. Prolyl-hydroxylase inhibitors reconstitute tumor blood vessels in mice. J Pharmacol Sci 2020; 143:122-126. [PMID: 32199747 DOI: 10.1016/j.jphs.2020.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/24/2020] [Accepted: 02/21/2020] [Indexed: 11/18/2022] Open
Abstract
Tumor blood vessels have leaky and low blood flow properties, which lead to hypoxia and low nutrient levels in the tumor tissue area known as the tumor microenvironment (TME). We reported that the prolyl-hydroxylase (PHD) inhibitor Roxadustat normalized tumor blood vessels, improved tumor tissue perfusion, and re-oxygenated the tumor tissue. Recently, several PHD inhibitors including Roxadustat, Daprodustat, Molidustat, and Vadadustat, were evaluated in clinical trials and approved for treating renal anemia. In this study, we showed that PHD inhibitors reconstituted tumor blood vessels and improved the TME, and some agents exhibited differential effects on tumors in a mouse model.
Collapse
Affiliation(s)
- Shunji Nishide
- Department of Pharmacology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; Department of Urology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Junji Uchida
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Shinji Matsunaga
- Department of Pharmacology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.
| | - Kentaro Tokudome
- Department of Pharmacology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Takehiro Yamaguchi
- Department of Pharmacology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Kazuya Kabei
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Taiki Moriya
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka 584-8540, Japan
| | - Katsuyuki Miura
- Department of Pharmacology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tatsuya Nakatani
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Shuhei Tomita
- Department of Pharmacology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan.
| |
Collapse
|
20
|
Nagy A, Pethő D, Gáll T, Zavaczki E, Nyitrai M, Posta J, Zarjou A, Agarwal A, Balla G, Balla J. Zinc Inhibits HIF-Prolyl Hydroxylase Inhibitor-Aggravated VSMC Calcification Induced by High Phosphate. Front Physiol 2020; 10:1584. [PMID: 32009983 PMCID: PMC6974455 DOI: 10.3389/fphys.2019.01584] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
Vascular calcification is a life-threatening clinical condition in chronic kidney disease (CKD) and is associated with reduced zinc serum levels. Anemia is another frequent complication of CKD. Hypoxia-inducible factor (HIF) stabilizers, also known as HIF prolyl hydroxylase inhibitors (PHI), are promising candidates to treat CKD-associated anemia by increasing erythropoietin synthesis. Recent evidence suggests that HIFs play a pivotal role in vascular calcification. Our study explored feasible impacts of HIF PHI on phosphate (Pi)-induced calcification of vascular smooth muscle cells (VSMCs) and tested whether zinc might inhibit this mineralization process. Treatment of VSMCs with PHI aggravated Pi-induced calcium deposition and Pi uptake. PHI promoted Pi-induced loss of smooth muscle cell markers (ACTA-2, MYH11, SM22α) and enhanced osteochondrogenic gene expression (Msx-2, BMP-2, Sp7) triggering osteochondrogenic phenotypic switch of VSMCs. These effects of PHI paralleled with increased pyruvate dehydrogenase kinase 4 (PDK4) expression, decreased Runx2 Ser451 phosphorylation, and reduced cell viability. Zinc inhibited Pi-induced mineralization of VSMCs in a dose-dependent manner and also attenuated the pro-calcification effect of PHI in Pi-induced mineralization. Zinc inhibited osteochondrogenic phenotypic switch of VSMCs reflected by lowering Pi uptake, decreasing the expressions of Msx-2, BMP-2, and Sp7 as well as the loss of smooth muscle cell-specific markers. Zinc preserved phosphorylation state of Runx2 Ser451, decreased PDK4 level, and restored cell viability. PHI alone reduced the expression of smooth muscle markers without inducing mineralization, which was also inhibited by zinc. In addition, we observed a significantly lower serum zinc level in CKD as well as in patients undergoing carotid endarterectomy compared to healthy individuals. Conclusion - PHI promoted the loss of smooth muscle markers and augmented Pi-induced osteochondrogenic phenotypic switch leading to VSMCs calcification. This mineralization process was attenuated by zinc. Enhanced vascular calcification is a potential risk factor during PHI therapy in CKD which necessitates the strict follow up of vascular calcification and zinc supplementation.
Collapse
Affiliation(s)
- Annamária Nagy
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Dávid Pethő
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Tamás Gáll
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erzsébet Zavaczki
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| | - Mónika Nyitrai
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| | - József Posta
- Department of Inorganic and Analytical Chemistry, UD Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Abolfazl Zarjou
- Nephrology Research and Training Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anupam Agarwal
- Nephrology Research and Training Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - József Balla
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| |
Collapse
|