1
|
Li L, Zhang Q, Geng D, Meng H, Hu W. Atomic engineering of two-dimensional materials via liquid metals. Chem Soc Rev 2024; 53:7158-7201. [PMID: 38847021 DOI: 10.1039/d4cs00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Two-dimensional (2D) materials, known for their distinctive electronic, mechanical, and thermal properties, have attracted considerable attention. The precise atomic-scale synthesis of 2D materials opens up new frontiers in nanotechnology, presenting novel opportunities for material design and property control but remains challenging due to the high expense of single-crystal solid metal catalysts. Liquid metals, with their fluidity, ductility, dynamic surface, and isotropy, have significantly enhanced the catalytic processes crucial for synthesizing 2D materials, including decomposition, diffusion, and nucleation, thus presenting an unprecedented precise control over material structures and properties. Besides, the emergence of liquid alloy makes the creation of diverse heterostructures possible, offering a new dimension for atomic engineering. Significant achievements have been made in this field encompassing defect-free preparation, large-area self-aligned array, phase engineering, heterostructures, etc. This review systematically summarizes these contributions from the aspects of fundamental synthesis methods, liquid catalyst selection, resulting 2D materials, and atomic engineering. Moreover, the review sheds light on the outlook and challenges in this evolving field, providing a valuable resource for deeply understanding this field. The emergence of liquid metals has undoubtedly revolutionized the traditional nanotechnology for preparing 2D materials on solid metal catalysts, offering flexible possibilities for the advancement of next-generation electronics.
Collapse
Affiliation(s)
- Lin Li
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Qing Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Dechao Geng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Hong Meng
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
2
|
Zhu B, Wu Y, Zhou Z, Zheng W, Hu Y, Ji Y, Kong L, Zhang R. Visualizing Large Facet-Dependent Electronic Tuning in Monolayer WSe 2 on Au Surfaces. NANO LETTERS 2022; 22:9630-9637. [PMID: 36383028 DOI: 10.1021/acs.nanolett.2c03785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) have shown great importance in the development of novel ultrathin optoelectronic devices owing to their exceptional electronic and photonic properties. Effectively tuning their electronic band structures is not only desired in electronics applications but also can facilitate more novel properties. In this work, we demonstrate that large electronic tuning on a WSe2 monolayer can be realized by different facets of a Au-foil substrate, forming in-plane p-n junctions with remarkable built-in electric fields. This facet-dependent tuning effect is directly visualized by using scanning tunneling microscopy and differential conductance (dI/dV) spectroscopy. First-principles calculations reveal that the atomic arrangement of the Au facet effectively changes the interfacial coupling and charge transfer, leading to different magnitudes of charge doping in WSe2. Our study would be beneficial for future customized fabrication of TMD-junction devices via facet-specific construction on the substrate.
Collapse
Affiliation(s)
- Bo Zhu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Yanwei Wu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Zeyi Zhou
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Wenjie Zheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Yuchen Hu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, 510006 Guangzhou, China
| | - Lingyao Kong
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Rui Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
3
|
Xie H, Li Z, Cheng L, Haidry AA, Tao J, Xu Y, Xu K, Ou JZ. Recent advances in the fabrication of 2D metal oxides. iScience 2022; 25:103598. [PMID: 35005545 PMCID: PMC8717458 DOI: 10.1016/j.isci.2021.103598] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atomically thin two-dimensional (2D) metal oxides exhibit unique optical, electrical, magnetic, and chemical properties, rendering them a bright application prospect in high-performance smart devices. Given the large variety of both layered and non-layered 2D metal oxides, the controllable synthesis is the critical prerequisite for enabling the exploration of their great potentials. In this review, recent progress in the synthesis of 2D metal oxides is summarized and categorized. Particularly, a brief overview of categories and crystal structures of 2D metal oxides is firstly introduced, followed by a critical discussion of various synthesis methods regarding the growth mechanisms, advantages, and limitations. Finally, the existing challenges are presented to provide possible future research directions regarding the synthesis of 2D metal oxides. This work can provide useful guidance on developing innovative approaches for producing both 2D layered and non-layered nanostructures and assist with the acceleration of the research of 2D metal oxides.
Collapse
Affiliation(s)
- Huaguang Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Liang Cheng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Azhar Ali Haidry
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jiaqi Tao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yi Xu
- School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China
| | - Kai Xu
- School of Engineering, RMIT University, Melbourne 3000, Australia
| | - Jian Zhen Ou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- School of Engineering, RMIT University, Melbourne 3000, Australia
| |
Collapse
|
4
|
Abstract
Chemical vapor deposition (CVD) is a promising approach for the controllable synthesis of two-dimensional (2D) materials. Many studies have demonstrated that the morphology and structure of 2D materials are highly dependent on growth substrates. Hence, the choice of growth substrates is essential to achieve the precise control of CVD growth. Noble metal substrates have attracted enormous interest owing to the high catalytic activity and rich surface morphology for 2D material growth. In this review, we introduce recent progress in noble metals as substrates for the controllable growth of 2D materials. The underlying growth mechanism and substrate designs of noble metals based on their unique features are thoroughly discussed. In the end, we outline the advantages and challenges of using noble metal substrates and prospect the possible approaches to extend the uses of noble metal substrates for 2D material growth and enhance the structural controllability of the grown materials.
Collapse
Affiliation(s)
- Yang Gao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yang Liu
- Cyber Security Research Centre, Nanyang Technological University, Singapore 639798, Singapore.,School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.,CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Singapore 637553, Singapore.,School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
5
|
Chen SS, Su HF, Long LS, Zheng LS, Kong XJ. Hydrolysis-Promoted Building Block Assembly: Structure Transformation from Y12 Wheel and Y34 Ship to Y60 Cage. Inorg Chem 2021; 60:16922-16926. [PMID: 34709786 DOI: 10.1021/acs.inorgchem.1c03019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurately controlling the hydrolysis of metal ions can not only yield the desired structure of metal hydroxide clusters but also provide a deeper understanding of the formation process of natural hydroxide minerals. However, the capture of hydrolysis intermediates remains a significant challenge, and metal hydroxide clusters are mainly obtained by employing adventitious hydrolysis. In this study, we realized a hierarchical building block assembly from Y3+ ions to large Y12, Y34, and Y60 clusters by controlling the hydrolysis process of lanthanide ions under different pH conditions. Single-crystal structural analysis showed that the Y12 wheel, Y34 ship, and Y60 sodalite cage contain 4, 12, and 24 cubane-like [Y4(μ3-OH)4]8+ units, respectively. The structure of the Y60 cluster can be attributed to two Y34 clusters or six Y12 clusters linked by vertices. These clusters can be synthesized through the hydrolysis of Y3+ under different pH conditions, and Y60 can be prepared from the obtained Y12 or Y34 crystals by the simple addition of Y3+ ions. The capture and conversion of the intermediates of lanthanide series hydroxide clusters, Y12 or Y34, during the assembly from Y3+ ions to Y60 can facilitate an understanding of the formation process of high-nuclearity lanthanide clusters.
Collapse
Affiliation(s)
- Shan-Shan Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Hai-Feng Su
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 Fujian, China
| |
Collapse
|
6
|
Zhao S, Zhang J, Fu L. Liquid Metals: A Novel Possibility of Fabricating 2D Metal Oxides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005544. [PMID: 33448060 DOI: 10.1002/adma.202005544] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Indexed: 06/12/2023]
Abstract
2D metal oxides (2DMOs) have been widely applied in the fields of electronic, magnetic, optical, and catalytic materials, owing to their rich surface chemistry and unique electronic structures. However, their further development faces challenges such as the difficulty in fabricating 2DMOs with unstable surface induced by strong surface polarizability, or the high cost and limited yield of the fabrication process. Recently, liquid metals have shown great potential in the fabrication of 2DMOs. The native oxide skin formed on the surface of liquid metals can be considered as a perfect 2D planar material. Due to the solubility, fluidity, and reactivity of liquid metals, they can act as the solvent, reactant, and interface in the fabrication of 2DMOs. Moreover, liquid metals undergo a liquid-solid phase transition, enabling them to be a symmetric matched substrate for growing high-quality 2DMOs. An insightful survey of the recent progress in this research direction is presented. The features of liquid metals including good solubility, chemical reactivity, weak interface force, and liquid-solid phase transitions are introduced in detail. Furthermore, strategies for the fabrication of 2DMOs by virtue of these features are summarized comprehensively. Finally, current challenges and prospects regarding the future development in the fabrication of 2DMOs via liquid metals are highlighted.
Collapse
Affiliation(s)
- Shasha Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiaqian Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
7
|
Han N, Yang D, Zhang C, Zhang X, Shao J, Cheng Y, Huang W. Role of Buffer Layer and Building Unit in the Monolayer CrI 3 Growth: A First-Principles Perspective. J Phys Chem Lett 2020; 11:9453-9460. [PMID: 33108205 DOI: 10.1021/acs.jpclett.0c02717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CrI3, a two-dimensional layered material, has recently attracted a lot of research interest due to its exotic magnetic property. However, the synthesis of a CrI3 monolayer (ML) by vapor-phase deposition has not been achieved by current experimental endeavors, which require a better understanding of the vapor-phase growth mechanism involved. In this study, we theoretically simulate the growth of the CrI3 ML on the Si(111) surface by using a first-principles calculation. Our key finding is that an iodine buffer layer on the Si surface is crucial to the formation of the CrI3 ML by stabilizing the precursor and also reacting with the precursor. Moreover, our simulation reveals that the CrI2 cluster as the growth building unit, which can be formed by controlling the chemical potential of the I source, is preferred for the formation of CrI3 ML. We think that our work will provide insightful guidance for the experimental synthesis of CrI3 ML in the future.
Collapse
Affiliation(s)
- Nannan Han
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dian Yang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chenhui Zhang
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xixiang Zhang
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yingchun Cheng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|