1
|
Eccles-Miller JA, Johnson TD, Baldwin WS. Sexually Dimorphic Effects of CYP2B6 in the Development of Fasting-Mediated Steatosis in Mice: Role of the Oxylipin Products 9-HODE and 9-HOTrE. Biomedicines 2025; 13:295. [PMID: 40002708 PMCID: PMC11853041 DOI: 10.3390/biomedicines13020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Cytochrome P450 2B6 (CYP2B6) is a sexually dimorphic, anti-obesity CYP enzyme responsible for the metabolism of xeno- and endobiotics, including the metabolism of polyunsaturated fatty acids (PUFAs) into 9-hydroxyoctadecadienoic acid (9-HODE) and 9-hydroxyoctadecatrienoic acid (9-HOTrE). However, humanized CYP2B6 transgenic (hCYP2B6-Tg) mice are sensitive to diet-induced hepatic steatosis despite their resistance to obesity. The purpose of this study was to determine if 9-HODE, 9-HOTrE, or other factors contribute to the sexually dimorphic steatosis observed in hCYP2B6-Tg mice. Results: Cyp2b9/10/13-null (Cyp2b-null) mice were injected with either 9-HODE or 9-HOTrE for 2 days and were then subjected to a fasting period of 20 h to induce steatosis. Serum lipids were moderately increased, especially in females, after 9-HODE (triglycerides (TGs), very low-density lipoproteins (VLDLs)) and 9-HOTrE (high-density lipoproteins (HDLs), low-density lipoproteins (LDLs), cholesterol) treatment. No change in hepatic lipids and few changes in hepatic gene expression were observed in mice treated with either oxylipin, suggesting that these oxylipins had minimal to moderate effects. Therefore, to further investigate CYP2B6's role in steatosis, hCYP2B6-Tg and Cyp2b-null mice were subjected to a 20 h fast and compared. Both male and female hCYP2B6-Tg mice exhibited increased steatosis compared to Cyp2b-null mice. Serum cholesterol, triglycerides, HDLs, and VLDLs were increased in hCYP2B6-Tg males. Serum triglycerides and VLDLs were decreased in hCYP2B6-Tg females, suggesting the greater hepatic retention of lipids in females. Hepatic oxylipin profiles revealed eight perturbed oxylipins in female hCYP2B6-Tg mice and only one in males when compared to Cyp2b-null mice. RNA-seq also demonstrated greater effects in females in terms of the number of genes and gene ontology (GO) terms perturbed. There were only a few overlapping GO terms between sexes, and lipid metabolic processes were enriched in hCYP2B6-Tg male mice but were repressed in hCYP2B6-Tg females compared to Cyp2b-nulls. Conclusions: hCYP2B6-Tg mice are sensitive to fasting-mediated steatosis in males and females, although the responses are different. In addition, the oxylipins 9-HODE and 9-HOTrE are unlikely to be the primary cause of CYP2B6's pro-steatotic effects.
Collapse
Affiliation(s)
| | | | - William S. Baldwin
- Biological Sciences, Clemson University, Clemson, SC 29634, USA; (J.A.E.-M.); (T.D.J.)
| |
Collapse
|
2
|
Li X, Ran L, Li Y, Wang Y, Xiong Y, Wang Y, Xing J, Lin Y. Molecular Characterizations of FAM13A and Its Functional Role in Inhibiting the Differentiation of Goat Intramuscular Adipocytes through RIG-I Receptor Signaling Pathway. Genes (Basel) 2024; 15:1143. [PMID: 39336734 PMCID: PMC11430868 DOI: 10.3390/genes15091143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of this study was to elucidate the effect of FAM13A on the differentiation of goat intramuscular precursor adipocytes and its mechanism of action. Here, we cloned the CDS region 2094 bp of the goat FAM13A gene, encoding a total of 697 amino acid residues. Functionally, overexpression of FAM13A inhibited the differentiation of goat intramuscular adipocytes with a concomitant reduction in lipid droplets, whereas interference with FAM13A expression promoted the differentiation of goat intramuscular adipocytes. To further investigate the mechanism of FAM13A inhibiting adipocyte differentiation, 104 differentially expressed genes were screened by RNA-seq, including 95 up-regulated genes and 9 down-regulated genes. KEGG analysis found that the RIG-I receptor signaling pathway, NOD receptor signaling pathway and toll-like receptor signaling pathway may affect adipogenesis. We selected the RIG-I receptor signaling pathway enriched with more differential genes as a potential adipocyte differentiation signaling pathway for verification. Convincingly, the RIG-I like receptor signaling pathway inhibitor (HY-P1934A) blocked this pathway to save the phenotype observed in intramuscular adipocyte with FAM13A overexpression. Finally, the upstream miRNA of FAM13A was predicted, and the targeted inhibition of miR-21-5p on the expression of FAM13A gene was confirmed. In this study, it was found that FAM13A inhibited the differentiation of goat intramuscular adipocytes through the RIG-I receptor signaling pathway, and the upstream miRNA of FAM13A (miR-21-5p) promoted the differentiation of goat intramuscular adipocytes. This work extends the genetic regulatory network of IMF deposits and provides theoretical support for improving human health and meat quality from the perspective of IMF deposits.
Collapse
Affiliation(s)
- Xuening Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Li Ran
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Youli Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Jiani Xing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
3
|
Khademi Z, Mahmoudi Z, Sukhorukov VN, Jamialahmadi T, Sahebkar A. CRISPR/Cas9 Technology: A Novel Approach to Obesity Research. Curr Pharm Des 2024; 30:1791-1803. [PMID: 38818919 DOI: 10.2174/0113816128301465240517065848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 06/01/2024]
Abstract
Gene editing technology, particularly Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has transformed medical research. As a newly developed genome editing technique, CRISPR technology has strongly assisted scientists in enriching their comprehension of the roles of individual genes and their influences on a vast spectrum of human malignancies. Despite considerable progress in elucidating obesity's molecular pathways, current anti-obesity medications fall short in effectiveness. A thorough understanding of the genetic foundations underlying various neurobiological pathways related to obesity, as well as the neuro-molecular mechanisms involved, is crucial for developing effective obesity treatments. Utilizing CRISPR-based technologies enables precise determination of the roles of genes that encode transcription factors or enzymes involved in processes, such as lipogenesis, lipolysis, glucose metabolism, and lipid storage within adipose tissue. This innovative approach allows for the targeted suppression or activation of genes regulating obesity, potentially leading to effective weight management strategies. In this review, we have provided a detailed overview of obesity's molecular genetics, the fundamentals of CRISPR/Cas9 technology, and how this technology contributes to the discovery and therapeutic targeting of new genes associated with obesity.
Collapse
Affiliation(s)
- Zahra Khademi
- Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Mahmoudi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Duan YY, Chen XF, Zhu RJ, Jia YY, Huang XT, Zhang M, Yang N, Dong SS, Zeng M, Feng Z, Zhu DL, Wu H, Jiang F, Shi W, Hu WX, Ke X, Chen H, Liu Y, Jing RH, Guo Y, Li M, Yang TL. High-throughput functional dissection of noncoding SNPs with biased allelic enhancer activity for insulin resistance-relevant phenotypes. Am J Hum Genet 2023; 110:1266-1288. [PMID: 37506691 PMCID: PMC10432149 DOI: 10.1016/j.ajhg.2023.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Most of the single-nucleotide polymorphisms (SNPs) associated with insulin resistance (IR)-relevant phenotypes by genome-wide association studies (GWASs) are located in noncoding regions, complicating their functional interpretation. Here, we utilized an adapted STARR-seq to evaluate the regulatory activities of 5,987 noncoding SNPs associated with IR-relevant phenotypes. We identified 876 SNPs with biased allelic enhancer activity effects (baaSNPs) across 133 loci in three IR-relevant cell lines (HepG2, preadipocyte, and A673), which showed pervasive cell specificity and significant enrichment for cell-specific open chromatin regions or enhancer-indicative markers (H3K4me1, H3K27ac). Further functional characterization suggested several transcription factors (TFs) with preferential allelic binding to baaSNPs. We also incorporated multi-omics data to prioritize 102 candidate regulatory target genes for baaSNPs and revealed prevalent long-range regulatory effects and cell-specific IR-relevant biological functional enrichment on them. Specifically, we experimentally verified the distal regulatory mechanism at IRS1 locus, in which rs952227-A reinforces IRS1 expression by long-range chromatin interaction and preferential binding to the transcription factor HOXC6 to augment the enhancer activity. Finally, based on our STARR-seq screening data, we predicted the enhancer activity of 227,343 noncoding SNPs associated with IR-relevant phenotypes (fasting insulin adjusted for BMI, HDL cholesterol, and triglycerides) from the largest available GWAS summary statistics. We further provided an open resource (http://www.bigc.online/fnSNP-IR) for better understanding genetic regulatory mechanisms of IR-relevant phenotypes.
Collapse
Affiliation(s)
- Yuan-Yuan Duan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiao-Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ren-Jie Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ying-Ying Jia
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiao-Ting Huang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Meng Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ning Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Mengqi Zeng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhihui Feng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Dong-Li Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hao Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Feng Jiang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wei Shi
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wei-Xin Hu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xin Ke
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Rui-Hua Jing
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710000, China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Meng Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
5
|
Gong L, Bates S, Li Y, Lin X, Wei W, Zhou X. AKT Phosphorylates FAM13A and Promotes Its Degradation via CUL4A/DDB1/DCAF1 E3 Complex. Am J Respir Cell Mol Biol 2023; 68:577-590. [PMID: 36749583 PMCID: PMC10174174 DOI: 10.1165/rcmb.2022-0362oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/07/2023] [Indexed: 02/08/2023] Open
Abstract
SNPs within FAM13A (family with sequence similarity 13 member A) gene are significantly associated with chronic obstructive pulmonary disease and lung function in genome-wide association studies (GWAS). However, how FAM13A protein is regulated under physiological and pathological conditions remains largely elusive. Herein, we report that FAM13A is phosphorylated at the serine 312 residue by AKT kinase after cigarette smoke extract treatment and thereby recognized by the CULLIN4A/DCAF1 (DDB1 and CUL4 associated factor 1) E3 ligase complex, rendering the ubiquitination-mediated degradation of FAM13A. More broadly, downregulation of FAM13A protein upon AKT activation, as a general cellular response to acute stress, was also detected in influenza- or naphthalene-injured lungs in mice. Functionally, reduced protein levels of FAM13A lead to accelerated epithelial cell proliferation in murine lungs during the recovery phase after injury. In summary, we characterized a novel molecular mechanism that regulates the stability of FAM13A protein, which enables the fine-tuning of lung epithelial repair after injury. These significant findings will expand our molecular understanding of the regulation of protein stability, which may modulate lung epithelial repair implicated in the development of chronic obstructive pulmonary disease and other lung diseases.
Collapse
Affiliation(s)
- Lu Gong
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| | - Samuel Bates
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| | - Yujun Li
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| | - Xin Lin
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
6
|
Grygiel-Górniak B, Ziółkowska-Suchanek I, Szymkowiak L, Rozwadowska N, Kaczmarek E. The Influence of FAM13A and PPAR-γ2 Gene Polymorphisms on the Metabolic State of Postmenopausal Women. Genes (Basel) 2023; 14:genes14040914. [PMID: 37107672 PMCID: PMC10137345 DOI: 10.3390/genes14040914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Recently, we have observed two significant pandemics caused by communicable (COVID-19) and non-communicable factors (obesity). Obesity is related to a specific genetic background and characterized by immunogenetic features, such as low-grade systemic inflammation. The specific genetic variants include the presence of polymorphism of the Peroxisome Proliferator-Activated Receptors gene (PPAR-γ2; Pro12Ala, rs1801282, and C1431T, rs3856806 polymorphisms), β-adrenergic receptor gene (3β-AR; Trp64Arg, rs4994), and Family With Sequence Similarity 13 Member A gene (FAM13A; rs1903003, rs7671167, rs2869967). This study aimed to analyze the genetic background, body fat distribution, and hypertension risk in obese metabolically healthy postmenopausal women (n = 229, including 105 lean and 124 obese subjects). Each patient underwent anthropometric and genetic evaluations. The study has shown that the highest value of BMI was associated with visceral fat distribution. The analysis of particular genotypes has revealed no differences between lean and obese women except for FAM13A rs1903003 (CC), which was more prevalent in lean patients. The co-existence of the PPAR-γ2 C1431C variant with other FAM13A gene polymorphisms [rs1903003(TT) or rs7671167(TT), or rs2869967(CC)] was related to higher BMI values and visceral fat distribution (WHR > 0.85). The co-association of FAM13A rs1903003 (CC) and 3β-AR Trp64Arg was associated with higher values of systolic (SBP) and diastolic blood pressure (DBP). We conclude that the co-existence of FAM13A variants with C1413C polymorphism of the PPAR-γ2 gene is responsible for body fat amount and distribution.
Collapse
Affiliation(s)
- Bogna Grygiel-Górniak
- Department of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | | | - Lidia Szymkowiak
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Natalia Rozwadowska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Elżbieta Kaczmarek
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| |
Collapse
|
7
|
Li X, Cui W, Cui Y, Song X, Jia L, Zhang J. Stropharia rugoso-annulata acetylated polysaccharides alleviate NAFLD via Nrf2/JNK1/AMPK signaling pathways. Int J Biol Macromol 2022; 215:560-570. [PMID: 35772637 DOI: 10.1016/j.ijbiomac.2022.06.156] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022]
Abstract
The acetylated Stropharia rugoso-annulata polysaccharides (ASRP) was successfully characterized, and the effects and mechanism on alleviating NAFLD were investigated in HFD-induced mice models. The characterization showed that ASRP was successfully acetylated and rich in galactose. The animal studies demonstrated that ASRP at the dose of 400 mg/kg possessed hepatoprotective effects by potential antioxidation, anti-inflammation and improving hepatocellular histopathology, with the possible mechanisms on regulating the JNK1/AP-1 and activating the Nrf2 signaling pathways. Besides, ASRP could improve the fat metabolism by activating the AMPK/SREBP-1c signaling pathways. The results provided basal theories for the development of ASRP on treating the NAFLD and its complications.
Collapse
Affiliation(s)
- Xueping Li
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Weijun Cui
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Yanfei Cui
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Xinling Song
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China
| | - Le Jia
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China.
| | - Jianjun Zhang
- College of Life Science, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
8
|
Zhang X, Li TY, Xiao HM, Ehrlich KC, Shen H, Deng HW, Ehrlich M. Epigenomic and Transcriptomic Prioritization of Candidate Obesity-Risk Regulatory GWAS SNPs. Int J Mol Sci 2022; 23:1271. [PMID: 35163195 PMCID: PMC8836216 DOI: 10.3390/ijms23031271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Concern about rising rates of obesity has prompted searches for obesity-related single nucleotide polymorphisms (SNPs) in genome-wide association studies (GWAS). Identifying plausible regulatory SNPs is very difficult partially because of linkage disequilibrium. We used an unusual epigenomic and transcriptomic analysis of obesity GWAS-derived SNPs in adipose versus heterologous tissues. From 50 GWAS and 121,064 expanded SNPs, we prioritized 47 potential causal regulatory SNPs (Tier-1 SNPs) for 14 gene loci. A detailed examination of seven loci revealed that four (CABLES1, PC, PEMT, and FAM13A) had Tier-1 SNPs positioned so that they could regulate use of alternative transcription start sites, resulting in different polypeptides being generated or different amounts of an intronic microRNA gene being expressed. HOXA11 and long noncoding RNA gene RP11-392O17.1 had Tier-1 SNPs in their 3' or promoter region, respectively, and strong preferences for expression in subcutaneous versus visceral adipose tissue. ZBED3-AS1 had two intragenic Tier-1 SNPs, each of which could contribute to mediating obesity risk through modulating long-distance chromatin interactions. Our approach not only revealed especially credible novel regulatory SNPs, but also helped evaluate previously highlighted obesity GWAS SNPs that were candidates for transcription regulation.
Collapse
Affiliation(s)
- Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Tian-Ying Li
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China; (T.-Y.L.); (H.-M.X.)
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China; (T.-Y.L.); (H.-M.X.)
| | - Kenneth C. Ehrlich
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
| | - Melanie Ehrlich
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (X.Z.); (K.C.E.); (H.S.)
- Tulane Cancer Center and Hayward Genetics Center, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Liang C, Wang G, Raza SHA, Wang X, Li B, Zhang W, Zan L. FAM13A promotes proliferation of bovine preadipocytes by targeting Hypoxia-Inducible factor-1 signaling pathway. Adipocyte 2021; 10:546-557. [PMID: 34672860 PMCID: PMC8547837 DOI: 10.1080/21623945.2021.1986327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The family with sequence similarity 13 member A (FAM13A) gene has been discovered in recent years and is related to metabolism. In this study, the function of FAM13A in precursor adipocyte proliferation in Qinchuan cattle was investigated using fluorescence quantitative polymerase chain reaction (PCR), western blotting, 5-ethynyl-2'-deoxyuridine staining, and other tests. FAM13A promoted precursor adipocyte proliferation. To determine the pathway FAM13A was involved in, transcriptome sequencing, fluorescence quantitative PCR, western blotting, and other tests were used, which identified the hypoxia inducible factor-1 (HIF-1) signalling pathway. Finally, cobalt chloride, a chemical mimic of hypoxia, was used to treat precursor adipocytes. mRNA and protein levels of FAM13A were significantly increased after hypoxia. Thus, FAM13A promoted bovine precursor adipocyte proliferation by inhibiting the HIF-1 signalling pathway, whereas chemically induced hypoxia negatively regulated FAM13A expression, regulating cell proliferation.
Collapse
Affiliation(s)
- Chengcheng Liang
- College of Animal Science and Technology, Northwest A&f University, Yangling, P.R. China
| | - Guohua Wang
- College of Animal Science and Technology, Northwest A&f University, Yangling, P.R. China
| | | | - Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&f University, Yangling, P.R. China
| | - Bingzhi Li
- College of Animal Science and Technology, Northwest A&f University, Yangling, P.R. China
| | - Wenzhen Zhang
- College of Animal Science and Technology, Northwest A&f University, Yangling, P.R. China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&f University, Yangling, P.R. China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, P.R. China
| |
Collapse
|
10
|
Wang E, Zhang Y, Ding R, Wang X, Zhang S, Li X. miR‑30a‑5p induces the adipogenic differentiation of bone marrow mesenchymal stem cells by targeting FAM13A/Wnt/β‑catenin signaling in aplastic anemia. Mol Med Rep 2021; 25:27. [PMID: 34821370 PMCID: PMC8630822 DOI: 10.3892/mmr.2021.12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022] Open
Abstract
Aplastic anemia (AA) is a bone marrow failure syndrome with high morbidity and mortality. Bone marrow (BM)-mesenchymal stem cells (MSCs) are the main components of the BM microenvironment, and dysregulation of BM-MSC adipogenic differentiation is a pathologic hallmark of AA. MicroRNAs (miRNAs/miRs) are crucial regulators of multiple pathological processes such as AA. However, the role of miR-30a-5p in the modulation of BM-MSC adipogenic differentiation in AA remains unclear. The present study aimed to explore the effect of miR-30a-5p on AA BM-MSC adipogenic differentiation and the underlying mechanism. The levels of miR-30a-5p expression and family with sequence similarity 13, member A (FAM13A) mRNA expression in BM-MSCs were quantified using reverse transcription-quantitative (RT-q) PCR. The mRNA expression levels of adipogenesis-associated factors [fatty acid-binding protein 4 (FABP4), lipoprotein lipase (LPL), perilipin-1 (PLIN1), peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα)] were analyzed using RT-qPCR. Lipid droplet accumulation was evaluated using Oil Red O staining in BM-MSCs. The interaction between miR-30a-5p and the FAM13A 3′-untranslated region was identified by TargetScan, and a dual-luciferase reporter assay was used to confirm the interaction. The expression levels of FAM13A and Wnt/β-catenin pathway-related proteins were examined via western blotting. The results showed that miR-30a-5p expression levels were significantly elevated in BM-MSCs from patients with AA compared with those in control subjects (iron deficiency anemia). miR-30a-5p expression levels were also significantly increased in adipose-induced BM-MSCs in a time-dependent manner. miR-30a-5p significantly promoted AA BM-MSC adipogenic differentiation, and significantly enhanced the mRNA expression levels of FABP4, LPL, PLIN1, PPARγ and C/EBPα as well as lipid droplet accumulation. miR-30a-5p was also demonstrated to target FAM13A in AA BM-MSCs. FAM13A significantly reduced BM-MSC adipogenic differentiation by activating the Wnt/β-catenin signaling pathway. In conclusion, miR-30a-5p was demonstrated to serve a role in AA BM-MSC adipogenic differentiation by targeting the FAM13A/Wnt/β-catenin signaling pathway. These findings suggest that miR-30a-5p may be a therapeutic target for AA.
Collapse
Affiliation(s)
- Enbo Wang
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Yunyan Zhang
- Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Rongmei Ding
- Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Xiaohua Wang
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Shumin Zhang
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Xinghua Li
- Department of Blood Transfusion, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| |
Collapse
|
11
|
Balliu B, Carcamo-Orive I, Gloudemans MJ, Nachun DC, Durrant MG, Gazal S, Park CY, Knowles DA, Wabitsch M, Quertermous T, Knowles JW, Montgomery SB. An integrated approach to identify environmental modulators of genetic risk factors for complex traits. Am J Hum Genet 2021; 108:1866-1879. [PMID: 34582792 PMCID: PMC8546041 DOI: 10.1016/j.ajhg.2021.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Complex traits and diseases can be influenced by both genetics and environment. However, given the large number of environmental stimuli and power challenges for gene-by-environment testing, it remains a critical challenge to identify and prioritize specific disease-relevant environmental exposures. We propose a framework for leveraging signals from transcriptional responses to environmental perturbations to identify disease-relevant perturbations that can modulate genetic risk for complex traits and inform the functions of genetic variants associated with complex traits. We perturbed human skeletal-muscle-, fat-, and liver-relevant cell lines with 21 perturbations affecting insulin resistance, glucose homeostasis, and metabolic regulation in humans and identified thousands of environmentally responsive genes. By combining these data with GWASs from 31 distinct polygenic traits, we show that the heritability of multiple traits is enriched in regions surrounding genes responsive to specific perturbations and, further, that environmentally responsive genes are enriched for associations with specific diseases and phenotypes from the GWAS Catalog. Overall, we demonstrate the advantages of large-scale characterization of transcriptional changes in diversely stimulated and pathologically relevant cells to identify disease-relevant perturbations.
Collapse
Affiliation(s)
- Brunilda Balliu
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Ivan Carcamo-Orive
- Department of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute and Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael J Gloudemans
- Biomedical Informatics Training Program and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel C Nachun
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew G Durrant
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven Gazal
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chong Y Park
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A Knowles
- New York Genome Center, New York, NY 10013, USA; Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology, Ulm University, Ulm 89075, Germany
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiology and Cardiovascular Institute, Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua W Knowles
- Department of Medicine, Division of Cardiology and Cardiovascular Institute, Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Stephen B Montgomery
- Department of Pathology and Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Canouil M, Khamis A, Keikkala E, Hummel S, Lobbens S, Bonnefond A, Delahaye F, Tzala E, Mustaniemi S, Vääräsmäki M, Jarvelin MR, Sebert S, Kajantie E, Froguel P, Andrew T. Epigenome-Wide Association Study Reveals Methylation Loci Associated With Offspring Gestational Diabetes Mellitus Exposure and Maternal Methylome. Diabetes Care 2021; 44:1992-1999. [PMID: 34116986 PMCID: PMC8740918 DOI: 10.2337/dc20-2960] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/26/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Gestational diabetes mellitus (GDM) is associated with an increased risk of obesity and insulin resistance in offspring later in life, which might be explained by epigenetic changes in response to maternal hyperglycemic exposure. RESEARCH DESIGN AND METHODS We explored the association between GDM exposure and maternal blood and newborn cord blood methylation in 536 mother-offspring pairs from the prospective FinnGeDi cohort using Illumina MethylationEPIC 850K BeadChip arrays. We assessed two hypotheses. First, we tested for shared maternal and offspring epigenetic effects resulting from GDM exposure. Second, we tested whether GDM exposure and maternal methylation had an epigenetic effect on the offspring. RESULTS We did not find any epigenetic marks (differentially methylated CpG probes) with shared and consistent effects between mothers and offspring. After including maternal methylation in the model, we identified a single significant (false discovery rate 1.38 × 10-2) CpG at the cg22790973 probe (TFCP2) associated with GDM. We identified seven additional FDR-significant interactions of maternal methylation and GDM status, with the strongest association at the same cg22790973 probe (TFCP2), as well as cg03456133, cg24440941 (H3C6), cg20002843 (LOC127841), cg19107264, and cg11493553 located within the UBE3C gene and cg17065901 in FAM13A, both susceptibility genes for type 2 diabetes and BMI, and cg23355087 within the DLGAP2 gene, known to be involved in insulin resistance during pregnancy. CONCLUSIONS Our study reveals the potential complexity of the epigenetic transmission between mothers with GDM and their offspring, likely determined by not only GDM exposure but also other factors indicated by maternal epigenetic status, such as maternal metabolic history.
Collapse
Affiliation(s)
- Mickaël Canouil
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Amna Khamis
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Elina Keikkala
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology (PEDEGO), Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Sandra Hummel
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- Forschergruppe Diabetes, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
- Forschergruppe Diabetes e.V., Munich-Neuherberg, Germany
| | - Stephane Lobbens
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Amélie Bonnefond
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Fabien Delahaye
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Evangelia Tzala
- Department of Epidemiology and Biostatistics, Medical Research Council-Public Health England Centre for Environment and Health, School of Public Health, Imperial College London, London, U.K
| | - Sanna Mustaniemi
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology (PEDEGO), Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Marja Vääräsmäki
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology (PEDEGO), Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, Medical Research Council-Public Health England Centre for Environment and Health, School of Public Health, Imperial College London, London, U.K
- Center for Lifecourse Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, U.K
| | - Sylvain Sebert
- Center for Lifecourse Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Eero Kajantie
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology (PEDEGO), Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Philippe Froguel
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Toby Andrew
- Inserm U1283, CNRS UMR 8199, European Genomic Institute for Diabetes, Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| |
Collapse
|
13
|
Porro S, Genchi VA, Cignarelli A, Natalicchio A, Laviola L, Giorgino F, Perrini S. Dysmetabolic adipose tissue in obesity: morphological and functional characteristics of adipose stem cells and mature adipocytes in healthy and unhealthy obese subjects. J Endocrinol Invest 2021; 44:921-941. [PMID: 33145726 DOI: 10.1007/s40618-020-01446-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
The way by which subcutaneous adipose tissue (SAT) expands and undergoes remodeling by storing excess lipids through expansion of adipocytes (hypertrophy) or recruitment of new precursor cells (hyperplasia) impacts the risk of developing cardiometabolic and respiratory diseases. In unhealthy obese subjects, insulin resistance, type 2 diabetes, hypertension, and obstructive sleep apnoea are typically associated with pathologic SAT remodeling characterized by adipocyte hypertrophy, as well as chronic inflammation, hypoxia, increased visceral adipose tissue (VAT), and fatty liver. In contrast, metabolically healthy obese individuals are generally associated with SAT development characterized by the presence of smaller and numerous mature adipocytes, and a lower degree of VAT inflammation and ectopic fat accumulation. The remodeling of SAT and VAT is under genetic regulation and influenced by inherent depot-specific differences of adipose tissue-derived stem cells (ASCs). ASCs have multiple functions such as cell renewal, adipogenic capacity, and angiogenic properties, and secrete a variety of bioactive molecules involved in vascular and extracellular matrix remodeling. Understanding the mechanisms regulating the proliferative and adipogenic capacity of ASCs from SAT and VAT in response to excess calorie intake has become a focus of interest over recent decades. Here, we summarize current knowledge about the biological mechanisms able to foster or impair the recruitment and adipogenic differentiation of ASCs during SAT and VAT development, which regulate body fat distribution and favorable or unfavorable metabolic responses.
Collapse
Affiliation(s)
- S Porro
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - V A Genchi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Cignarelli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Natalicchio
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - L Laviola
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - F Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - S Perrini
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| |
Collapse
|
14
|
Manigandan S, Mukherjee S, Yun JW. Loss of family with sequence similarity 107, member A (FAM107A) induces browning in 3T3-L1 adipocytes. Arch Biochem Biophys 2021; 704:108885. [PMID: 33878327 DOI: 10.1016/j.abb.2021.108885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
Induction of white fat browning (beiging) and activation of brown fat has been considered a promising strategy to treat obesity and associated metabolic complications. However, the molecular mechanisms regulating brown and beige fat-mediated thermogenesis remains unclear. Our study aimed to identify genes with a hitherto unknown mechanism in the metabolic functions of adipocytes and identified family with sequence similarity 107, member A (FAM107A) as a factor that interferes with fat browning in white adipocytes. We explored physiological roles of FAM107A in cultured 3T3-L1 white adipocytes and HIB1B brown adipocytes by using FAM107A-deficient adipocytes. Significant loss in FAM107A gene functionality induced fat browning was evidenced by evaluating the gene and protein expression level of brown fat-associated markers through real-time qRT-PCR and immunoblot analysis, respectively. Deficiency of FAM107A promoted mitochondrial biogenesis and significantly upregulated core fat-browning marker proteins (PGC-1α, PRDM16, and UCP1) and beige-specific genes (Cd137, Cited1, Tbx1, and Tmem26). Furthermore, FAM107A increased adipogenesis and negatively regulated lipid metabolism in 3T3-L1 adipocytes. In addition, in-silico analysis revealed a strong interaction between FAM107A and β3-AR based on their energy binding score. Next, mechanistic study revealed that specific knockdown of FAM107A induces browning in white adipocytes via activation of β3-AR, AMPK and p38 MAPK-dependent signaling pathways. Our data unveiled a previously unknown mechanism of FAM107A in the regulation of lipid metabolism and identified its significant role in metabolic homeostasis. This highlighted the potential of FAM107A as a pharmacotherapeutic target in treating obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Subramani Manigandan
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
15
|
Global discovery of lupus genetic risk variant allelic enhancer activity. Nat Commun 2021; 12:1611. [PMID: 33712590 PMCID: PMC7955039 DOI: 10.1038/s41467-021-21854-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Genome-wide association studies of Systemic Lupus Erythematosus (SLE) nominate 3073 genetic variants at 91 risk loci. To systematically screen these variants for allelic transcriptional enhancer activity, we construct a massively parallel reporter assay (MPRA) library comprising 12,396 DNA oligonucleotides containing the genomic context around every allele of each SLE variant. Transfection into the Epstein-Barr virus-transformed B cell line GM12878 reveals 482 variants with enhancer activity, with 51 variants showing genotype-dependent (allelic) enhancer activity at 27 risk loci. Comparison of MPRA results in GM12878 and Jurkat T cell lines highlights shared and unique allelic transcriptional regulatory mechanisms at SLE risk loci. In-depth analysis of allelic transcription factor (TF) binding at and around allelic variants identifies one class of TFs whose DNA-binding motif tends to be directly altered by the risk variant and a second class of TFs that bind allelically without direct alteration of their motif by the variant. Collectively, our approach provides a blueprint for the discovery of allelic gene regulation at risk loci for any disease and offers insight into the transcriptional regulatory mechanisms underlying SLE. Thousands of genetic variants have been associated with lupus, but causal variants and mechanisms are unknown. Here, the authors combine a massively parallel reporter assay with genome-wide ChIP experiments to identify risk variants with allelic enhancer activity mediated through transcription factor binding.
Collapse
|