1
|
Gazzano V, Di Filippo M, Licitra R, Ogi A, Fronte B, Curadi MC, Gazzano A. Rearing in a Physically Enriched Environment Affects Shoaling and Stress Responses of Zebrafish ( Danio rerio) Exposed to Novel Conditions. Vet Sci 2025; 12:38. [PMID: 39852914 PMCID: PMC11769135 DOI: 10.3390/vetsci12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
The impact of enrichment on stress reduction in zebrafish (Danio rerio) exposed to a novel environment was assessed. Four control shoals (CTRL) and five treated shoals (TRT), each with eight fish, were observed; in TRT tanks, a PVC pipe was included (three-way tube, 11.7 × 4 cm) as enrichment for 90 days. Subsequently, fish were moved to a new tank for a shoaling test, and behavior was evaluated over periods of 0'-5' and 5'-10'. Cortisol dissolved in water was measured before and after the test. No differences were found between the two groups in distance moved, swimming speed, or shoal acceleration. Both groups reduced interindividual distance in the second phase of the test (CTRL: t = 8.977, p ≤ 0.0001; TRT: t = 8.247, p ≤ 0.0001), though TRT fish maintained greater spacing (t = 2.292, p ≤ 0.05). TRT fish spent more time without contact during both phases (first: t = 2.645, p ≤ 0.05; second: t = 3.134, p ≤ 0.01), while CTRL fish reduced this time in the second phase (t = 2.991, p ≤ 0.05). Cortisol rose significantly in CTRL after the test (t = 2.452, p ≤ 0.05) but not in TRT fish. These results suggest that environmental enrichment mitigates stress, as seen by reduced cohesiveness and cortisol in TRT fish.
Collapse
Affiliation(s)
- Valentina Gazzano
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (M.D.F.); (R.L.); (M.C.C.); (A.G.)
| | - Martina Di Filippo
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (M.D.F.); (R.L.); (M.C.C.); (A.G.)
| | - Rosario Licitra
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (M.D.F.); (R.L.); (M.C.C.); (A.G.)
| | - Asahi Ogi
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Stella Maris, 56128 Pisa, Italy;
| | - Baldassare Fronte
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (M.D.F.); (R.L.); (M.C.C.); (A.G.)
| | - Maria Claudia Curadi
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (M.D.F.); (R.L.); (M.C.C.); (A.G.)
| | - Angelo Gazzano
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy; (M.D.F.); (R.L.); (M.C.C.); (A.G.)
| |
Collapse
|
2
|
Yang Y, Kawafi A, Tong Q, Kague E, Hammond CL, Royall CP. Tuning collective behaviour in zebrafish with genetic modification. PLoS Comput Biol 2024; 20:e1012034. [PMID: 39466814 PMCID: PMC11542821 DOI: 10.1371/journal.pcbi.1012034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/07/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
Zebrafish collective behaviour is widely used to assess their physical and mental state, serving as a valuable tool to assess the impact of ageing, disease genetics, and the effect of drugs. The essence of these macroscopic phenomena can be represented by active matter models, where the individuals are abstracted as interactive self-propelling agents. The behaviour of these agents depends on a set of parameters in a manner reminiscent of those between the constituents of physical systems. In a few cases, the system may be controlled at the level of the individual constituents such as the interactions between colloidal particles, or the enzymatic behaviour of de novo proteins. Usually, however, while the collective behaviour may be influenced by environmental factors, it typically cannot be changed at will. Here, we challenge this scenario in a biological context by genetically modifying zebrafish. We thus demonstrate the potential of genetic modification in the context of controlling the collective behaviour of biological active matter systems at the level of the constituents, rather than externally. In particular, we probe the effect of the lack of col11a2 gene in zebrafish, which causes the early onset of osteoarthritis. The resulting col11a2 -/- zebrafish exhibited compromised vertebral column properties, bent their body less while swimming, and took longer to change their orientations. Surprisingly, a group of 25 mutant fish exhibited more orderly collective motion than the wildtype. We show that the collective behaviour of wildtype and col11a2 -/- zebrafish are captured with a simple active matter model, in which the mutant fish are modelled by self-propelling agents with a higher orientational noise on average. In this way, we demonstrate the possibility of tuning a biological system, changing the state space it occupies when interpreted with a simple active matter model.
Collapse
Affiliation(s)
- Yushi Yang
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, United Kingdom
| | - Abdelwahab Kawafi
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Qiao Tong
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Erika Kague
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
- Institute of Genetics and Cancer, Centre for Genomic and Experimental Medicine, University of Edinburgh, Crewe Road South, Edinburgh, United Kingdom
| | - Chrissy L. Hammond
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
3
|
Fricker BA, Kelly AM. From grouping and cooperation to menstruation: Spiny mice (Acomys cahirinus) are an emerging mammalian model for sociality and beyond. Horm Behav 2024; 158:105462. [PMID: 38000170 DOI: 10.1016/j.yhbeh.2023.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/22/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
While spiny mice are primarily used as a model for Type II diabetes and for studying complex tissue regeneration, they are also an emerging model for a variety of studies examining hormones, behavior, and the brain. We began studying the spiny mouse to take advantage of their highly gregarious phenotype to examine how the brain facilitates large group-living. However, this unique rodent can be readily bred and maintained in the lab and can be used to ask a wide variety of scientific questions. In this brief communication we provide an overview of studies that have used spiny mice for exploring physiology and behavior. Additionally, we describe how the spiny mouse can serve as a useful model for researchers interested in studying precocial development, menstruation, cooperation, and various grouping behaviors. With increasingly available technological advancements for non-traditional organisms, spiny mice are well-positioned to become a valuable organism in the behavioral neuroscience community.
Collapse
Affiliation(s)
- Brandon A Fricker
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States of America.
| | - Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States of America.
| |
Collapse
|
4
|
Paz A, Holt KJ, Clarke A, Aviles A, Abraham B, Keene AC, Duboué ER, Fily Y, Kowalko JE. Changes in local interaction rules during ontogeny underlie the evolution of collective behavior. iScience 2023; 26:107431. [PMID: 37636065 PMCID: PMC10448030 DOI: 10.1016/j.isci.2023.107431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/17/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Collective motion emerges from individual interactions which produce group-wide patterns in behavior. While adaptive changes to collective motion are observed across animal species, how local interactions change when these collective behaviors evolve is poorly understood. Here, we use the Mexican tetra, Astyanax mexicanus, which exists as a schooling surface form and a non-schooling cave form, to study differences in how fish alter their swimming in response to neighbors across ontogeny and between evolutionarily diverged populations. We find that surface fish undergo a transition to schooling mediated by changes in the way fish modulate speed and turning relative to neighbors. This transition begins with the tendency to align to neighbors emerging by 28 days post-fertilization and ends with the emergence of robust attraction by 70 days post-fertilization. Cavefish exhibit neither alignment nor attraction at any stage of development. These results reveal how evolution alters local interactions to produce striking differences in collective behavior.
Collapse
Affiliation(s)
- Alexandra Paz
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Karla J. Holt
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Anik Clarke
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Ari Aviles
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Briana Abraham
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Alex C. Keene
- Department of Biology, Texas A&M, College Station, TX 77840, USA
| | - Erik R. Duboué
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Yaouen Fily
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Johanna E. Kowalko
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
5
|
Zhou J, Zhao Y, Dai J, Zhang K. Environmentally relevant concentrations of antidepressant mirtazapine impair the neurodevelopment of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115335. [PMID: 37567106 DOI: 10.1016/j.ecoenv.2023.115335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Mirtazapine is a commonly prescribed antidepressant and has been found widespread in aquatic environments. However, its toxicities to aquatic organisms has rarely been explored. Herein, we conducted a comprehensive study on the developmental effects of mirtazapine on early life stages of zebrafish at environmentally relevant concentrations (3.9 ng/L and 43.5 ng/L). Out of the endpoints measured, spontaneous contraction of embryos at 24 h post fertilization (hpf) and hatching rate and heart rate of embryos at 50 hpf and 56 hpf, respectively, were significantly affected. In light-dark transition behavior test, mirtazapine significantly reduced the swimming frequency and swimming speed of embryos at both concentrations of 3.9 ng/L and 43.5 ng/L. Furthermore, the total swimming distances in dark conditions were also significantly reduced. Transcriptomic analysis was further conducted. It demonstrated that the decreased neural activities in embryos may be associated with altered epinephrine and neuregulin signaling. The present results fill a data gap regarding the exposure of fish to mirtazapine at environmentally relevant concentrations and provide new insights into the neurotoxic mechanisms of mirtazapine exposure.
Collapse
Affiliation(s)
- Jie Zhou
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
6
|
Pluimer BR, Harrison DL, Boonyavairoje C, Prinssen EP, Rogers-Evans M, Peterson RT, Thyme SB, Nath AK. Behavioral analysis through the lifespan of disc1 mutant zebrafish identifies defects in sensorimotor transformation. iScience 2023; 26:107099. [PMID: 37416451 PMCID: PMC10320522 DOI: 10.1016/j.isci.2023.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/27/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
DISC1 is a genetic risk factor for multiple psychiatric disorders. Compared to the dozens of murine Disc1 models, there is a paucity of zebrafish disc1 models-an organism amenable to high-throughput experimentation. We conducted the longitudinal neurobehavioral analysis of disc1 mutant zebrafish across key stages of life. During early developmental stages, disc1 mutants exhibited abrogated behavioral responses to sensory stimuli across multiple testing platforms. Moreover, during exposure to an acoustic sensory stimulus, loss of disc1 resulted in the abnormal activation of neurons in the pallium, cerebellum, and tectum-anatomical sites involved in the integration of sensory perception and motor control. In adulthood, disc1 mutants exhibited sexually dimorphic reduction in anxiogenic behavior in novel paradigms. Together, these findings implicate disc1 in sensorimotor processes and the genesis of anxiogenic behaviors, which could be exploited for the development of novel treatments in addition to investigating the biology of sensorimotor transformation in the context of disc1 deletion.
Collapse
Affiliation(s)
- Brock R. Pluimer
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Devin L. Harrison
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Chanon Boonyavairoje
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Eric P. Prinssen
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Mark Rogers-Evans
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Randall T. Peterson
- Deparment of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Summer B. Thyme
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA
| | - Anjali K. Nath
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Dedoni S, Scherma M, Camoglio C, Siddi C, Dazzi L, Puliga R, Frau J, Cocco E, Fadda P. An overall view of the most common experimental models for multiple sclerosis. Neurobiol Dis 2023:106230. [PMID: 37453561 DOI: 10.1016/j.nbd.2023.106230] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Multiple sclerosis (MS) is a complex chronic disease with an unknown etiology. It is considered an inflammatory demyelinating and neurodegenerative disorder of the central nervous system (CNS) characterized, in most cases, by an unpredictable onset of relapse and remission phases. The disease generally starts in subjects under 40; it has a higher incidence in women and is described as a multifactorial disorder due to the interaction between genetic and environmental risk factors. Unfortunately, there is currently no definitive cure for MS. Still, therapies can modify the disease's natural history, reducing the relapse rate and slowing the progression of the disease or managing symptoms. The limited access to human CNS tissue slows down. It limits the progression of research on MS. This limit has been partially overcome over the years by developing various experimental models to study this disease. Animal models of autoimmune demyelination, such as experimental autoimmune encephalomyelitis (EAE) and viral and toxin or transgenic MS models, represent the most significant part of MS research approaches. These models have now been complemented by ex vivo studies, using organotypic brain slice cultures and in vitro, through induced Pluripotent Stem cells (iPSCs). We will discuss which clinical features of the disorders might be reproduced and investigated in vivo, ex vivo, and in vitro in models commonly used in MS research to understand the processes behind the neuropathological events occurring in the CNS of MS patients. The primary purpose of this review is to give the reader a global view of the main paradigms used in MS research, spacing from the classical animal models to transgenic mice and 2D and 3D cultures.
Collapse
Affiliation(s)
- S Dedoni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy.
| | - M Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy.
| | - C Camoglio
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy.
| | - C Siddi
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - L Dazzi
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato (Cagliari), Italy.
| | - R Puliga
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato (Cagliari), Italy.
| | - J Frau
- Regional Multiple Sclerosis Center, ASSL Cagliari, ATS Sardegna, Italy
| | - E Cocco
- Regional Multiple Sclerosis Center, ASSL Cagliari, ATS Sardegna, Italy; Department Medical Science and Public Health, University of Cagliari, Italy.
| | - P Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy.
| |
Collapse
|
8
|
Kulikov PA, Sorokin IE, Evsiukova VS, Kulikov AV. Long-Term Continuous Computer Registration and Analysis of Motor Activity of a Group of Zebrafish Danio rerio. Bull Exp Biol Med 2023:10.1007/s10517-023-05820-3. [PMID: 37335450 DOI: 10.1007/s10517-023-05820-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 06/21/2023]
Abstract
A new algorithm for long-term continuous computer recording and analysis of motor activity of a group of zebrafish in the home tank has been developed. The movements of a group of Danio rerio during the entire light period and for several days are recorded at a frequency of 1 frame/sec in the form of short (15 min) files. Then these files are analyzed by the unique DanioStudo software, which, using a threshold algorithm and appropriate masks, calculates for each frame the sum of pixels associated with fish (the sum of fish silhouettes), and for two consecutive frames, the sum of altered pixels (the sum of altered fish silhouettes). The following indexes are calculated: the rate of sum of silhouettes alteration as the ratio of the sum of altered silhouettes to the sum of silhouettes (1) and the time spent in the selected area of the home tank as the ratio of the sum of silhouettes in this area to the sum of silhouettes in the entire tank (2). The mean rate of silhouette alteration correlates to the length of the path travelled by the fish and, therefore, serves as a correct measure of the motor activity of a group of fish. Using these algorithms, completely new data were obtained: it was shown that the motor activity of fish remains constant throughout the entire light period, but depends on the size of the home tank. The proposed approach, together with the DanioStudio software, can be effective in studying the dynamics of changes in the behavior of fish under long-term exposure to short daylight, drugs and toxic substances.
Collapse
Affiliation(s)
- P A Kulikov
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I E Sorokin
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V S Evsiukova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Kulikov
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
9
|
Ioannou CC, Laskowski KL. A multi-scale review of the dynamics of collective behaviour: from rapid responses to ontogeny and evolution. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220059. [PMID: 36802782 PMCID: PMC9939272 DOI: 10.1098/rstb.2022.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/21/2023] Open
Abstract
Collective behaviours, such as flocking in birds or decision making by bee colonies, are some of the most intriguing behavioural phenomena in the animal kingdom. The study of collective behaviour focuses on the interactions between individuals within groups, which typically occur over close ranges and short timescales, and how these interactions drive larger scale properties such as group size, information transfer within groups and group-level decision making. To date, however, most studies have focused on snapshots, typically studying collective behaviour over short timescales up to minutes or hours. However, being a biological trait, much longer timescales are important in animal collective behaviour, particularly how individuals change over their lifetime (the domain of developmental biology) and how individuals change from one generation to the next (the domain of evolutionary biology). Here, we give an overview of collective behaviour across timescales from the short to the long, illustrating how a full understanding of this behaviour in animals requires much more research attention on its developmental and evolutionary biology. Our review forms the prologue of this special issue, which addresses and pushes forward understanding the development and evolution of collective behaviour, encouraging a new direction for collective behaviour research. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
| | - Kate L. Laskowski
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
10
|
Sridhar VH, Davidson JD, Twomey CR, Sosna MMG, Nagy M, Couzin ID. Inferring social influence in animal groups across multiple timescales. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220062. [PMID: 36802787 PMCID: PMC9939267 DOI: 10.1098/rstb.2022.0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
Many animal behaviours exhibit complex temporal dynamics, suggesting there are multiple timescales at which they should be studied. However, researchers often focus on behaviours that occur over relatively restricted temporal scales, typically ones that are more accessible to human observation. The situation becomes even more complex when considering multiple animals interacting, where behavioural coupling can introduce new timescales of importance. Here, we present a technique to study the time-varying nature of social influence in mobile animal groups across multiple temporal scales. As case studies, we analyse golden shiner fish and homing pigeons, which move in different media. By analysing pairwise interactions among individuals, we show that predictive power of the factors affecting social influence depends on the timescale of analysis. Over short timescales the relative position of a neighbour best predicts its influence and the distribution of influence across group members is relatively linear, with a small slope. At longer timescales, however, both relative position and kinematics are found to predict influence, and nonlinearity in the influence distribution increases, with a small number of individuals being disproportionately influential. Our results demonstrate that different interpretations of social influence arise from analysing behaviour at different timescales, highlighting the importance of considering its multiscale nature. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Vivek H. Sridhar
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany,Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany,Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, 78467 Konstanz, Germany
| | - Jacob D. Davidson
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany,Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| | - Colin R. Twomey
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA,Mind Center for Outreach, Research, and Education, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew M. G. Sosna
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Máté Nagy
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany,Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany,MTA-ELTE Statistical and Biological Physics Research Group, Hungarian Academy of Sciences, Budapest 1117, Hungary,MTA-ELTE ‘Lendület’ Collective Behaviour Research Group, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest 1117, Hungary,Department of Biological Physics, Eötvös Loránd University, Pázmány Péter sétány 1A, Budapest 1117, Hungary
| | - Iain D. Couzin
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany,Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
| |
Collapse
|
11
|
Paz A, Holt KJ, Clarke A, Aviles A, Abraham B, Keene AC, Duboué ER, Fily Y, Kowalko JE. Changes in local interaction rules during ontogeny underlie the evolution of collective behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534467. [PMID: 37034671 PMCID: PMC10081253 DOI: 10.1101/2023.03.28.534467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Collective motion emerges from individual interactions which produce groupwide patterns in behavior. While adaptive changes to collective motion are observed across animal species, how local interactions change when these collective behaviors evolve is poorly understood. Here, we use the Mexican tetra, A. mexicanus, which exists as a schooling surface form and a non-schooling cave form, to study differences in how fish alter their swimming in response to neighbors across ontogeny and between evolutionarily diverged populations. We find that surface fish undergo a transition to schooling during development that occurs through increases in inter-individual alignment and attraction mediated by changes in the way fish modulate speed and turning relative to neighbors. Cavefish, which have evolved loss of schooling, exhibit neither of these schooling-promoting interactions at any stage of development. These results reveal how evolution alters local interaction rules to produce striking differences in collective behavior.
Collapse
Affiliation(s)
- Alexandra Paz
- Wilkes Honors College, Florida Atlantic University, Jupiter FL
| | - Karla J. Holt
- Wilkes Honors College, Florida Atlantic University, Jupiter FL
| | - Anik Clarke
- Wilkes Honors College, Florida Atlantic University, Jupiter FL
| | - Ari Aviles
- Wilkes Honors College, Florida Atlantic University, Jupiter FL
| | - Briana Abraham
- Wilkes Honors College, Florida Atlantic University, Jupiter FL
| | | | - Erik R. Duboué
- Wilkes Honors College, Florida Atlantic University, Jupiter FL
| | - Yaouen Fily
- Wilkes Honors College, Florida Atlantic University, Jupiter FL
| | | |
Collapse
|
12
|
Wen Y, Zhang L, Li N, Tong A, Zhao C. Nutritional assessment models for Alzheimer's disease: Advances and perspectives. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Affiliation(s)
- Yuxi Wen
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry Faculty of Sciences Ourense Spain
| | - Lizhu Zhang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Na Li
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Aijun Tong
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Chao Zhao
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
13
|
Jiang M, Zhou A, Chen R, Yang Y, Dong H, Wang W. Collective motions of fish originate from balanced local perceptual interactions and individual stochastics. Phys Rev E 2023; 107:024411. [PMID: 36932600 DOI: 10.1103/physreve.107.024411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The movement of a group of biological individuals, such as fish schools, can evolve from disordered motions to synergistic movements or even ordered patterns. However, the physical origins behind such emergent phenomena of complex systems remain elusive. Here, we established a high-precision protocol for studying the collective behavior of biological groups in quasi-two-dimensional systems. Based on our video recording of ∼600h of fish movements, we extracted a force map of the interactions between fish from their trajectories using the convolution neural network. Presumably, this force implies the fish's perception of the surrounding individuals, the environment, and their response to social information. Interestingly, the fish in our experiments were predominantly in a seemingly disordered swarm state, but their local interactions were clearly specific. Combining such local interactions with the inherent stochasticity of the fish movements, we reproduced the collective motions of the fish through simulations. We demonstrated that a delicate balance between the specific local force and the intrinsic stochasticity is essential for ordered movements. This study presents implications for self-organized systems that use basic physical characterization to produce higher-level sophistication.
Collapse
Affiliation(s)
- Mingjie Jiang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Anyu Zhou
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- School of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Runping Chen
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Yuqin Yang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- School of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
14
|
Geng Y, Yates C, Peterson RT. Social behavioral profiling by unsupervised deep learning reveals a stimulative effect of dopamine D3 agonists on zebrafish sociality. CELL REPORTS METHODS 2023; 3:100381. [PMID: 36814839 PMCID: PMC9939379 DOI: 10.1016/j.crmeth.2022.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
It has been a major challenge to systematically evaluate and compare how pharmacological perturbations influence social behavioral outcomes. Although some pharmacological agents are known to alter social behavior, precise description and quantification of such effects have proven difficult. We developed a scalable social behavioral assay for zebrafish named ZeChat based on unsupervised deep learning to characterize sociality at high resolution. High-dimensional and dynamic social behavioral phenotypes are automatically classified using this method. By screening a neuroactive compound library, we found that different classes of chemicals evoke distinct patterns of social behavioral fingerprints. By examining these patterns, we discovered that dopamine D3 agonists possess a social stimulative effect on zebrafish. The D3 agonists pramipexole, piribedil, and 7-hydroxy-DPAT-HBr rescued social deficits in a valproic-acid-induced zebrafish autism model. The ZeChat platform provides a promising approach for dissecting the pharmacology of social behavior and discovering novel social-modulatory compounds.
Collapse
Affiliation(s)
- Yijie Geng
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher Yates
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Randall T. Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
15
|
MacRae CA, Peterson RT. Zebrafish as a Mainstream Model for In Vivo Systems Pharmacology and Toxicology. Annu Rev Pharmacol Toxicol 2023; 63:43-64. [PMID: 36151053 DOI: 10.1146/annurev-pharmtox-051421-105617] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pharmacology and toxicology are part of a much broader effort to understand the relationship between chemistry and biology. While biomedicine has necessarily focused on specific cases, typically of direct human relevance, there are real advantages in pursuing more systematic approaches to characterizing how health and disease are influenced by small molecules and other interventions. In this context, the zebrafish is now established as the representative screenable vertebrate and, through ongoing advances in the available scale of genome editing and automated phenotyping, is beginning to address systems-level solutions to some biomedical problems. The addition of broader efforts to integrate information content across preclinical model organisms and the incorporation of rigorous analytics, including closed-loop deep learning, will facilitate efforts to create systems pharmacology and toxicology with the ability to continuously optimize chemical biological interactions around societal needs. In this review, we outline progress toward this goal.
Collapse
Affiliation(s)
- Calum A MacRae
- Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA;
| | | |
Collapse
|
16
|
Scott E, Edgley DE, Smith A, Joyce DA, Genner MJ, Ioannou CC, Hauert S. Lateral line morphology, sensory perception and collective behaviour in African cichlid fish. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221478. [PMID: 36704254 PMCID: PMC9874273 DOI: 10.1098/rsos.221478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
The lateral line system of fishes provides cues for collective behaviour, such as shoaling, but it remains unclear how anatomical lateral line variation leads to behavioural differences among species. Here we studied associations between lateral line morphology and collective behaviour using two morphologically divergent species and their second-generation hybrids. We identify collective behaviours associated with variation in canal and superficial lateral line morphology, with closer proximities to neighbouring fish associated with larger canal pore sizes and fewer superficial neuromasts. A mechanistic understanding of the observed associations was provided by hydrodynamic modelling of an artificial lateral line sensor, which showed that simulated canal-based neuromasts were less susceptible to saturation during unidirectional movement than simulated superficial neuromasts, while increasing the canal pore size of the simulated lateral line sensor elevated sensitivity to vortices shed by neighbouring fish. Our results propose a mechanism behind lateral line flow sensing during collective behaviour in fishes.
Collapse
Affiliation(s)
- Elliott Scott
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Duncan E. Edgley
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Alan Smith
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, UK
| | - Domino A. Joyce
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, UK
| | - Martin J. Genner
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Sabine Hauert
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| |
Collapse
|
17
|
CRISPR/Cas9-Induced Inactivation of the Autism-Risk Gene setd5 Leads to Social Impairments in Zebrafish. Int J Mol Sci 2022; 24:ijms24010167. [PMID: 36613611 PMCID: PMC9820161 DOI: 10.3390/ijms24010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Haploinsufficiency of the SETD5 gene, encoding a SET domain-containing histone methyltransferase, has been identified as a cause of intellectual disability and Autism Spectrum Disorder (ASD). Recently, the zebrafish has emerged as a valuable model to study neurodevelopmental disorders because of its genetic tractability, robust behavioral traits and amenability to high-throughput drug screening. To model human SETD5 haploinsufficiency, we generated zebrafish setd5 mutants using the CRISPR/Cas9 technology and characterized their morphological, behavioral and molecular phenotypes. According to our observation that setd5 is expressed in adult zebrafish brain, including those areas controlling social behavior, we found that setd5 heterozygous mutants exhibit defective aggregation and coordination abilities required for shoaling interactions, as well as indifference to social stimuli. Interestingly, impairment in social interest is rescued by risperidone, an antipsychotic drug used to treat behavioral traits in ASD individuals. The molecular analysis underscored the downregulation of genes encoding proteins involved in the synaptic structure and function in the adult brain, thus suggesting that brain hypo-connectivity could be responsible for the social impairments of setd5 mutant fishes. The zebrafish setd5 mutants display ASD-like features and are a promising setd5 haploinsufficiency model for drug screening aimed at reversing the behavioral phenotypes.
Collapse
|
18
|
Differential Gene Expression Correlates with Behavioural Polymorphism during Collective Behaviour in Cockroaches. Animals (Basel) 2022; 12:ani12182354. [PMID: 36139214 PMCID: PMC9495117 DOI: 10.3390/ani12182354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary It is currently well accepted that animals differ from one another in their behaviour and tendency to perform actions, a property we refer to as animal personality. In group-living animals, variation in animal personality can be important to determine group survival, as it determines how individuals interact with each other and with their environment. However, we have little knowledge of the proximal mechanisms underlying personality, particularly in group-living organisms. Here, we investigate the relationship between gene expression and two behavioural types (bold and shy) in a gregarious species: the American cockroach. Our results show that bold individuals have upregulated genes with functions associated with sensory activity (phototaxis and odour detection) and aggressive/dominant behaviour, and suggest that social context can modulate gene expression related to bold/shy characteristics. This work could help identify genes important in the earliest stages of group living and social life, and provides a first step toward establishing cockroaches as a focal group for the study of the evolution of sociality. Abstract Consistent inter-individual variation in the propensity to perform different tasks (animal personality) can contribute significantly to the success of group-living organisms. The distribution of different personalities in a group influences collective actions and therefore how these organisms interact with their environment. However, we have little understanding of the proximate mechanisms underlying animal personality in animal groups, and research on this theme has often been biased towards organisms with advanced social systems. The goal of this study is to investigate the mechanistic basis for personality variation during collective behaviour in a species with rudimentary societies: the American cockroach. We thus use an approach which combines experimental classification of individuals into behavioural phenotypes (‘bold’ and ‘shy’ individuals) with comparative gene expression. Our analyses reveal differences in gene expression between behavioural phenotypes and suggest that social context may modulate gene expression related to bold/shy characteristics. We also discuss how cockroaches could be a valuable model for the study of genetic mechanisms underlying the early steps in the evolution of social behaviour and social complexity. This study provides a first step towards a better understanding of the molecular mechanisms associated with differences in boldness and behavioural plasticity in these organisms.
Collapse
|
19
|
Bashirzade AA, Zabegalov KN, Volgin AD, Belova AS, Demin KA, de Abreu MS, Babchenko VY, Bashirzade KA, Yenkoyan KB, Tikhonova MA, Amstislavskaya TG, Kalueff AV. Modeling neurodegenerative disorders in zebrafish. Neurosci Biobehav Rev 2022; 138:104679. [PMID: 35490912 DOI: 10.1016/j.neubiorev.2022.104679] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/11/2022] [Accepted: 04/24/2022] [Indexed: 12/15/2022]
Abstract
Neurodegeneration is a major cause of Alzheimer's, Parkinson's, Huntington's, multiple and amyotrophic lateral sclerosis, pontocerebellar hypoplasia, dementia and other related brain disorders. Their complex pathogenesis commonly includes genetic and neurochemical deficits, misfolded protein toxicity, demyelination, apoptosis and mitochondrial dysfunctions. Albeit differing in specific underlying mechanisms, neurodegenerative disorders typically display evolutionarily conserved mechanisms across taxa. Here, we review the role of zebrafish models in recapitulating major human and rodent neurodegenerative conditions, demonstrating this species as a highly relevant experimental model for research on neurodegenerative diseases, and discussing how these fish models can further clarify the underlying genetic, neurochemical, neuroanatomical and behavioral pathogenic mechanisms.
Collapse
Affiliation(s)
- Alim A Bashirzade
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | | | - Andrey D Volgin
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Alisa S Belova
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Scientific Research Center of Radiology and Surgical Technologies, St. Petersburg, Russia; Almazov Medical Research Center, St. Petersburg, Russia
| | | | - Vladislav Ya Babchenko
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Kseniya A Bashirzade
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, M Heratsi Yerevan State Medical University, Yerevan, Armenia; COBRAIN Center - Scientific Educational Center for Fundamental Brain Research, Yerevan, Armenia
| | - Maria A Tikhonova
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Tamara G Amstislavskaya
- Novosibirsk State University, Institute of Medicine and Psychology, Novosibirsk, Russia; Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, Russia
| | - Allan V Kalueff
- The Russian Academy of Sciences, Moscow, Russia; Ural Federal University, Yekaterinburg, Russia; COBRAIN Center - Scientific Educational Center for Fundamental Brain Research, Yerevan, Armenia.
| |
Collapse
|
20
|
Kennedy A. The what, how, and why of naturalistic behavior. Curr Opin Neurobiol 2022; 74:102549. [PMID: 35537373 PMCID: PMC9273162 DOI: 10.1016/j.conb.2022.102549] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/03/2023]
Abstract
In the past few years, advances in machine learning have fueled an explosive growth of descriptive and generative models of animal behavior. These new approaches offer higher levels of detail and granularity than has previously been possible, allowing for fine-grained segmentation of animals' actions and precise quantitative mappings between an animal's sensory environment and its behavior. How can these new methods help us understand the governing principles shaping complex and naturalistic behavior? In this review, we will recap ways in which our ability to detect and model behavior have improved in recent years, and consider how these techniques might be used to revisit classical normative theories of behavioral control.
Collapse
Affiliation(s)
- Ann Kennedy
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
21
|
Tran S, Prober DA. Validation of Candidate Sleep Disorder Risk Genes Using Zebrafish. Front Mol Neurosci 2022; 15:873520. [PMID: 35465097 PMCID: PMC9021570 DOI: 10.3389/fnmol.2022.873520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 12/31/2022] Open
Abstract
Sleep disorders and chronic sleep disturbances are common and are associated with cardio-metabolic diseases and neuropsychiatric disorders. Several genetic pathways and neuronal mechanisms that regulate sleep have been described in animal models, but the genes underlying human sleep variation and sleep disorders are largely unknown. Identifying these genes is essential in order to develop effective therapies for sleep disorders and their associated comorbidities. To address this unmet health problem, genome-wide association studies (GWAS) have identified numerous genetic variants associated with human sleep traits and sleep disorders. However, in most cases, it is unclear which gene is responsible for a sleep phenotype that is associated with a genetic variant. As a result, it is necessary to experimentally validate candidate genes identified by GWAS using an animal model. Rodents are ill-suited for this endeavor due to their poor amenability to high-throughput sleep assays and the high costs associated with generating, maintaining, and testing large numbers of mutant lines. Zebrafish (Danio rerio), an alternative vertebrate model for studying sleep, allows for the rapid and cost-effective generation of mutant lines using the CRISPR/Cas9 system. Numerous zebrafish mutant lines can then be tested in parallel using high-throughput behavioral assays to identify genes whose loss affects sleep. This process identifies a gene associated with each GWAS hit that is likely responsible for the human sleep phenotype. This strategy is a powerful complement to GWAS approaches and holds great promise to identify the genetic basis for common human sleep disorders.
Collapse
Affiliation(s)
| | - David A. Prober
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
22
|
Patch A, Paz A, Holt KJ, Duboué ER, Keene AC, Kowalko JE, Fily Y. Kinematic analysis of social interactions deconstructs the evolved loss of schooling behavior in cavefish. PLoS One 2022; 17:e0265894. [PMID: 35385509 PMCID: PMC8985933 DOI: 10.1371/journal.pone.0265894] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/09/2022] [Indexed: 11/19/2022] Open
Abstract
Fish display a remarkable diversity of social behaviors, both within and between species. While social behaviors are likely critical for survival, surprisingly little is known about how they evolve in response to changing environmental pressures. With its highly social surface form and multiple populations of a largely asocial, blind, cave-dwelling form, the Mexican tetra, Astyanax mexicanus, provides a powerful model to study the evolution of social behavior. Here we use motion tracking and analysis of swimming kinematics to quantify social swimming in four Astyanax mexicanus populations. In the light, surface fish school, maintaining both close proximity and alignment with each other. In the dark, surface fish no longer form coherent schools, however, they still show evidence of an attempt to align and maintain proximity when they find themselves near another fish. In contrast, cavefish from three independently-evolved populations (Pachón, Molino, Tinaja) show little preference for proximity or alignment, instead exhibiting behaviors that suggest active avoidance of each other. Two of the three cave populations we studied also slow down when more fish are present in the tank, a behavior which is not observed in surface fish in light or the dark, suggesting divergent responses to conspecifics. Using data-driven computer simulations, we show that the observed reduction in swimming speed is sufficient to alter the way fish explore their environment: it can increase time spent exploring away from the walls. Thus, the absence of schooling in cavefish is not merely a consequence of their inability to see, but may rather be a genuine behavioral adaptation that impacts the way they explore their environment.
Collapse
Affiliation(s)
- Adam Patch
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
| | - Alexandra Paz
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States of America
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, United States of America
| | - Karla J. Holt
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
| | - Erik R. Duboué
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL, United States of America
| | - Alex C. Keene
- Department of Biology, Texas A&M University, College Station, TX, United States of America
| | - Johanna E. Kowalko
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States of America
| | - Yaouen Fily
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, United States of America
| |
Collapse
|
23
|
Anneser L, Gemmer A, Eilers T, Alcantara IC, Loos AY, Ryu S, Schuman EM. The neuropeptide Pth2 modulates social behavior and anxiety in zebrafish. iScience 2022; 25:103868. [PMID: 35243231 PMCID: PMC8861652 DOI: 10.1016/j.isci.2022.103868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/16/2021] [Accepted: 02/01/2022] [Indexed: 01/09/2023] Open
Abstract
Behavior is context-dependent and often modulated by an animal's internal state. In particular, different social contexts can alter anxiety levels and modulate social behavior. The vertebrate-specific neuropeptide parathyroid hormone 2 (pth2) is regulated by the presence of conspecifics in zebrafish. As its cognate receptor, the parathyroid hormone 2 receptor (pth2r), is widely expressed across the brain, we tested fish lacking the functional Pth2 peptide in several anxiety-related and social behavior paradigms. Here, we show that the propensity to react to sudden stimuli with an escape response was increased in pth2 -/- zebrafish, consistent with an elevated anxiety level. While overall social preference for conspecifics was maintained in pth2 -/- fish until the early juvenile stage, we found that both social preference and shoaling were altered later in development. The data presented suggest that the neuropeptide Pth2 modulates several conserved behaviors and may thus enable the animal to react appropriately in different social contexts.
Collapse
Affiliation(s)
- Lukas Anneser
- Max Planck Institute for Brain Research, Frankfurt am Main 60438, Germany
| | - Anja Gemmer
- Max Planck Institute for Brain Research, Frankfurt am Main 60438, Germany
| | - Tim Eilers
- Max Planck Institute for Brain Research, Frankfurt am Main 60438, Germany
| | - Ivan C. Alcantara
- Max Planck Institute for Brain Research, Frankfurt am Main 60438, Germany
| | - Anett-Yvonn Loos
- Max Planck Institute for Brain Research, Frankfurt am Main 60438, Germany
| | - Soojin Ryu
- Living Systems Institute & College of Medicine and Health, University of Exeter, Exeter EX4 4QD, UK
- Johannes Gutenberg University Medical Center, Mainz 55131, Germany
| | - Erin M. Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main 60438, Germany
| |
Collapse
|
24
|
Oxytocin receptors influence the development and maintenance of social behavior in zebrafish (Danio rerio). Sci Rep 2022; 12:4322. [PMID: 35279678 PMCID: PMC8918347 DOI: 10.1038/s41598-022-07990-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/21/2022] [Indexed: 11/28/2022] Open
Abstract
Zebrafish are highly social teleost fish and an excellent model to study social behavior. The neuropeptide Oxytocin is associated different social behaviors as well as disorders resulting in social impairment like autism spectrum disorder. However, how Oxytocin receptor signaling affects the development and expression kinetics of social behavior is not known. In this study we investigated the role of the two oxytocin receptors, Oxtr and Oxtrl, in the development and maintenance of social preference and shoaling behavior in 2- to 8-week-old zebrafish. Using CRISPR/Cas9 mediated oxtr and oxtrl knock-out fish, we found that the development of social preference is accelerated if one of the Oxytocin receptors is knocked-out and that the knock-out fish reach significantly higher levels of social preference. Moreover, oxtr−/− fish showed impairments in the maintenance of social preference. Social isolation prior to testing led to impaired maintenance of social preference in both wild-type and oxtr and oxtrl knock-out fish. Knocking-out either of the Oxytocin receptors also led to increased group spacing and reduced polarization in a 20-fish shoal at 8 weeks post fertilization, but not at 4. These results show that the development and maintenance of social behavior is influenced by the Oxytocin receptors and that the effects are not just pro- or antisocial, but dependent on both the age and social context of the fish.
Collapse
|
25
|
Multiplexed Genome Editing for Efficient Phenotypic Screening in Zebrafish. Vet Sci 2022; 9:vetsci9020092. [PMID: 35202345 PMCID: PMC8879510 DOI: 10.3390/vetsci9020092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/30/2022] Open
Abstract
Zebrafish are widely used to investigate candidate genes for human diseases. While the emergence of CRISPR-Cas9 technology has revolutionized gene editing, the use of individual guide RNAs limits the efficiency and application of this technology in functional genetics research. Multiplexed genome editing significantly enhances the efficiency and scope of gene editing. Herein, we describe an efficient multiplexed genome editing strategy to generate zebrafish mutants. Following behavioural tests and histological examination, we identified one new candidate gene (tmem183a) for hearing loss. This study provides a robust genetic platform to quickly obtain zebrafish mutants and to identify candidate genes by phenotypic readouts.
Collapse
|
26
|
Yang Y, Turci F, Kague E, Hammond CL, Russo J, Royall CP. Dominating lengthscales of zebrafish collective behaviour. PLoS Comput Biol 2022; 18:e1009394. [PMID: 35025883 PMCID: PMC8797201 DOI: 10.1371/journal.pcbi.1009394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/28/2022] [Accepted: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
Collective behaviour in living systems is observed across many scales, from bacteria to insects, to fish shoals. Zebrafish have emerged as a model system amenable to laboratory study. Here we report a three-dimensional study of the collective dynamics of fifty zebrafish. We observed the emergence of collective behaviour changing between ordered to randomised, upon adaptation to new environmental conditions. We quantify the spatial and temporal correlation functions of the fish and identify two length scales, the persistence length and the nearest neighbour distance, that capture the essence of the behavioural changes. The ratio of the two length scales correlates robustly with the polarisation of collective motion that we explain with a reductionist model of self-propelled particles with alignment interactions.
Collapse
Affiliation(s)
- Yushi Yang
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, United Kingdom
- H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
- * E-mail:
| | - Francesco Turci
- H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
| | - Erika Kague
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Chrissy L. Hammond
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - John Russo
- Department of Physics, Sapienza Università di Roma, Rome, Italy
| | - C. Patrick Royall
- H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
- Gulliver UMR CNRS 7083, ESPCI Paris, Università PSL, Paris, France
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
27
|
Li SW, Williams ZM, Báez-Mendoza R. Investigating the Neurobiology of Abnormal Social Behaviors. Front Neural Circuits 2021; 15:769314. [PMID: 34916912 PMCID: PMC8670406 DOI: 10.3389/fncir.2021.769314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- S William Li
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Harvard-MIT Division of Health Sciences and Technology, Boston, MA, United States.,Program in Neuroscience, Harvard Medical School, Boston, MA, United States
| | - Raymundo Báez-Mendoza
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Harpaz R, Nguyen MN, Bahl A, Engert F. Precise visuomotor transformations underlying collective behavior in larval zebrafish. Nat Commun 2021; 12:6578. [PMID: 34772934 PMCID: PMC8590009 DOI: 10.1038/s41467-021-26748-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Complex schooling behaviors result from local interactions among individuals. Yet, how sensory signals from neighbors are analyzed in the visuomotor stream of animals is poorly understood. Here, we studied aggregation behavior in larval zebrafish and found that over development larvae transition from overdispersed groups to tight shoals. Using a virtual reality assay, we characterized the algorithms fish use to transform visual inputs from neighbors into movement decisions. We found that young larvae turn away from virtual neighbors by integrating and averaging retina-wide visual occupancy within each eye, and by using a winner-take-all strategy for binocular integration. As fish mature, their responses expand to include attraction to virtual neighbors, which is based on similar algorithms of visual integration. Using model simulations, we show that the observed algorithms accurately predict group structure over development. These findings allow us to make testable predictions regarding the neuronal circuits underlying collective behavior in zebrafish.
Collapse
Affiliation(s)
- Roy Harpaz
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, 02138, USA.
- Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA.
| | - Minh Nguyet Nguyen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Armin Bahl
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, 78464, Germany
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
29
|
Harpaz R, Aspiras AC, Chambule S, Tseng S, Bind MA, Engert F, Fishman MC, Bahl A. Collective behavior emerges from genetically controlled simple behavioral motifs in zebrafish. SCIENCE ADVANCES 2021; 7:eabi7460. [PMID: 34613782 PMCID: PMC8494438 DOI: 10.1126/sciadv.abi7460] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
It is not understood how changes in the genetic makeup of individuals alter the behavior of groups of animals. Here, we find that, even at early larval stages, zebrafish regulate their proximity and alignment with each other. Two simple visual responses, one that measures relative visual field occupancy and one that accounts for global visual motion, suffice to account for the group behavior that emerges. Mutations in genes known to affect social behavior in humans perturb these simple reflexes in individual larval zebrafish and change their emergent collective behaviors in the predicted fashion. Model simulations show that changes in these two responses in individual mutant animals predict well the distinctive collective patterns that emerge in a group. Hence, group behaviors reflect in part genetically defined primitive sensorimotor “motifs,” which are evident even in young larvae.
Collapse
Affiliation(s)
- Roy Harpaz
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Ariel C. Aspiras
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sydney Chambule
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sierra Tseng
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marie-Abèle Bind
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Mark C. Fishman
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Armin Bahl
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78464, Germany
| |
Collapse
|
30
|
Parvez S, Herdman C, Beerens M, Chakraborti K, Harmer ZP, Yeh JRJ, MacRae CA, Yost HJ, Peterson RT. MIC-Drop: A platform for large-scale in vivo CRISPR screens. Science 2021; 373:1146-1151. [PMID: 34413171 DOI: 10.1126/science.abi8870] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Chelsea Herdman
- Department of Neurobiology and Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Manu Beerens
- Department of Cardiovascular Medicine, Genetics and Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Korak Chakraborti
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Zachary P Harmer
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Jing-Ruey J Yeh
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Calum A MacRae
- Department of Cardiovascular Medicine, Genetics and Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - H Joseph Yost
- Department of Neurobiology and Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
31
|
Phenotypic analysis of catastrophic childhood epilepsy genes. Commun Biol 2021; 4:680. [PMID: 34083748 PMCID: PMC8175701 DOI: 10.1038/s42003-021-02221-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/17/2021] [Indexed: 01/06/2023] Open
Abstract
Genetic engineering techniques have contributed to the now widespread use of zebrafish to investigate gene function, but zebrafish-based human disease studies, and particularly for neurological disorders, are limited. Here we used CRISPR-Cas9 to generate 40 single-gene mutant zebrafish lines representing catastrophic childhood epilepsies. We evaluated larval phenotypes using electrophysiological, behavioral, neuro-anatomical, survival and pharmacological assays. Local field potential recordings (LFP) were used to screen ∼3300 larvae. Phenotypes with unprovoked electrographic seizure activity (i.e., epilepsy) were identified in zebrafish lines for 8 genes; ARX, EEF1A, GABRB3, GRIN1, PNPO, SCN1A, STRADA and STXBP1. We also created an open-source database containing sequencing information, survival curves, behavioral profiles and representative electrophysiology data. We offer all zebrafish lines as a resource to the neuroscience community and envision them as a starting point for further functional analysis and/or identification of new therapies. Griffin et al used CRISPR-Cas9 to generate 40 single-gene mutant zebrafish lines representing childhood epilepsies for which they evaluated larval phenotypes using electrophysiological, behavioral, neuro-anatomical, survival and pharmacological assays. Their study provides a useful resource for the future functional analysis and/or identification of potential anti-epileptic therapies.
Collapse
|
32
|
Rawsthorne H, Calahorro F, Holden-Dye L, O’ Connor V, Dillon J. Investigating autism associated genes in C. elegans reveals candidates with a role in social behaviour. PLoS One 2021; 16:e0243121. [PMID: 34043629 PMCID: PMC8158995 DOI: 10.1371/journal.pone.0243121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by a triad of behavioural impairments and includes disruption in social behaviour. ASD has a clear genetic underpinning and hundreds of genes are implicated in its aetiology. However, how single penetrant genes disrupt activity of neural circuits which lead to affected behaviours is only beginning to be understood and less is known about how low penetrant genes interact to disrupt emergent behaviours. Investigations are well served by experimental approaches that allow tractable investigation of the underpinning genetic basis of circuits that control behaviours that operate in the biological domains that are neuro-atypical in autism. The model organism C. elegans provides an experimental platform to investigate the effect of genetic mutations on behavioural outputs including those that impact social biology. Here we use progeny-derived social cues that modulate C. elegans food leaving to assay genetic determinants of social behaviour. We used the SAFRI Gene database to identify C. elegans orthologues of human ASD associated genes. We identified a number of mutants that displayed selective deficits in response to progeny. The genetic determinants of this complex social behaviour highlight the important contribution of synaptopathy and implicates genes within cell signalling, epigenetics and phospholipid metabolism functional domains. The approach overlaps with a growing number of studies that investigate potential molecular determinants of autism in C. elegans. However, our use of a complex, sensory integrative, emergent behaviour provides routes to enrich new or underexplored biology with the identification of novel candidate genes with a definable role in social behaviour.
Collapse
Affiliation(s)
- Helena Rawsthorne
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Fernando Calahorro
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Lindy Holden-Dye
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Vincent O’ Connor
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - James Dillon
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Abstract
Early-life experience has a long-lasting influence on social behaviour. A new study has revealed a role for mechanosensation in shaping social avoidance responses in zebrafish.
Collapse
Affiliation(s)
- Elena Dreosti
- Wolfson Institute for Biomedical Research, University College of London, The Cruciform Building, Gower Street, London WC1 6BT, UK
| | - Hernán López-Schier
- Sensory Biology and Organogenesis, Helmholtz Zentrum München, Munich, Germany.
| |
Collapse
|
34
|
|
35
|
Friedrich RW, Wanner AA. Dense Circuit Reconstruction to Understand Neuronal Computation: Focus on Zebrafish. Annu Rev Neurosci 2021; 44:275-293. [PMID: 33730512 DOI: 10.1146/annurev-neuro-110220-013050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dense reconstruction of neuronal wiring diagrams from volumetric electron microscopy data has the potential to generate fundamentally new insights into mechanisms of information processing and storage in neuronal circuits. Zebrafish provide unique opportunities for dynamical connectomics approaches that combine reconstructions of wiring diagrams with measurements of neuronal population activity and behavior. Such approaches have the power to reveal higher-order structure in wiring diagrams that cannot be detected by sparse sampling of connectivity and that is essential for neuronal computations. In the brain stem, recurrently connected neuronal modules were identified that can account for slow, low-dimensional dynamics in an integrator circuit. In the spinal cord, connectivity specifies functional differences between premotor interneurons. In the olfactory bulb, tuning-dependent connectivity implements a whitening transformation that is based on the selective suppression of responses to overrepresented stimulus features. These findings illustrate the potential of dynamical connectomics in zebrafish to analyze the circuit mechanisms underlying higher-order neuronal computations.
Collapse
Affiliation(s)
- Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; .,Faculty of Natural Sciences, University of Basel, 4003 Basel, Switzerland
| | - Adrian A Wanner
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA;
| |
Collapse
|
36
|
Ogawa S, Pfaff DW, Parhar IS. Fish as a model in social neuroscience: conservation and diversity in the social brain network. Biol Rev Camb Philos Soc 2021; 96:999-1020. [PMID: 33559323 DOI: 10.1111/brv.12689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Mechanisms for fish social behaviours involve a social brain network (SBN) which is evolutionarily conserved among vertebrates. However, considerable diversity is observed in the actual behaviour patterns amongst nearly 30000 fish species. The huge variation found in socio-sexual behaviours and strategies is likely generated by a morphologically and genetically well-conserved small forebrain system. Hence, teleost fish provide a useful model to study the fundamental mechanisms underlying social brain functions. Herein we review the foundations underlying fish social behaviours including sensory, hormonal, molecular and neuroanatomical features. Gonadotropin-releasing hormone neurons clearly play important roles, but the participation of vasotocin and isotocin is also highlighted. Genetic investigations of developing fish brain have revealed the molecular complexity of neural development of the SBN. In addition to straightforward social behaviours such as sex and aggression, new experiments have revealed higher order and unique phenomena such as social eavesdropping and social buffering in fish. Finally, observations interpreted as 'collective cognition' in fish can likely be explained by careful observation of sensory determinants and analyses using the dynamics of quantitative scaling. Understanding of the functions of the SBN in fish provide clues for understanding the origin and evolution of higher social functions in vertebrates.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, Rockefeller University, New York, NY, 10065, U.S.A
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| |
Collapse
|
37
|
Ogi A, Licitra R, Naef V, Marchese M, Fronte B, Gazzano A, Santorelli FM. Social Preference Tests in Zebrafish: A Systematic Review. Front Vet Sci 2021; 7:590057. [PMID: 33553276 PMCID: PMC7862119 DOI: 10.3389/fvets.2020.590057] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
The use of animal models in biology research continues to be necessary for the development of new technologies and medicines, and therefore crucial for enhancing human and animal health. In this context, the need to ensure the compliance of research with the principles Replacement, Reduction and Refinement (the 3 Rs), which underpin the ethical and human approach to husbandry and experimental design, has become a central issue. The zebrafish (Danio rerio) is becoming a widely used model in the field of behavioral neuroscience. In particular, studying zebrafish social preference, by observing how an individual fish interacts with conspecifics, may offer insights into several neuropsychiatric and neurodevelopmental disorders. The main aim of this review is to summarize principal factors affecting zebrafish behavior during social preference tests. We identified three categories of social research using zebrafish: studies carried out in untreated wild-type zebrafish, in pharmacologically treated wild-type zebrafish, and in genetically engineered fish. We suggest guidelines for standardizing social preference testing in the zebrafish model. The main advances gleaned from zebrafish social behavior testing are discussed, together with the relevance of this method to scientific research, including the study of behavioral disorders in humans. The authors stress the importance of adopting an ethical approach that considers the welfare of animals involved in experimental procedures. Ensuring a high standard of animal welfare is not only good for the animals, but also enhances the quality of our science.
Collapse
Affiliation(s)
- Asahi Ogi
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy.,Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Rosario Licitra
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| | - Valentina Naef
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| | - Maria Marchese
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| | | | - Angelo Gazzano
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Filippo M Santorelli
- Neurobiology and Molecular Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Stella Maris, Pisa, Italy
| |
Collapse
|
38
|
Fontana BD, Müller TE, Cleal M, de Abreu MS, Norton WHJ, Demin KA, Amstislavskaya TG, Petersen EV, Kalueff AV, Parker MO, Rosemberg DB. Using zebrafish (Danio rerio) models to understand the critical role of social interactions in mental health and wellbeing. Prog Neurobiol 2021; 208:101993. [PMID: 33440208 DOI: 10.1016/j.pneurobio.2021.101993] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/24/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Social behavior represents a beneficial interaction between conspecifics that is critical for maintaining health and wellbeing. Dysfunctional or poor social interaction are associated with increased risk of physical (e.g., vascular) and psychiatric disorders (e.g., anxiety, depression, and substance abuse). Although the impact of negative and positive social interactions is well-studied, their underlying mechanisms remain poorly understood. Zebrafish have well-characterized social behavior phenotypes, high genetic homology with humans, relative experimental simplicity and the potential for high-throughput screens. Here, we discuss the use of zebrafish as a candidate model organism for studying the fundamental mechanisms underlying social interactions, as well as potential impacts of social isolation on human health and wellbeing. Overall, the growing utility of zebrafish models may improve our understanding of how the presence and absence of social interactions can differentially modulate various molecular and physiological biomarkers, as well as a wide range of other behaviors.
Collapse
Affiliation(s)
- Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK.
| | - Talise E Müller
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil; Laboratory of Experimental Neuropscychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Madeleine Cleal
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Scientific Research Center of Radiology and Surgical Technologies, St. Petersburg, Russia
| | | | - Elena V Petersen
- Laboratory of Molecular Biology, Neuroscience and Bioscreening, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Beibei, Chongqing, China; Ural Federal University, Ekaterinburg, Russia
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Denis B Rosemberg
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil; Laboratory of Experimental Neuropscychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA.
| |
Collapse
|
39
|
Kroll F, Powell GT, Ghosh M, Gestri G, Antinucci P, Hearn TJ, Tunbak H, Lim S, Dennis HW, Fernandez JM, Whitmore D, Dreosti E, Wilson SW, Hoffman EJ, Rihel J. A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes. eLife 2021; 10:e59683. [PMID: 33416493 PMCID: PMC7793621 DOI: 10.7554/elife.59683] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Hundreds of human genes are associated with neurological diseases, but translation into tractable biological mechanisms is lagging. Larval zebrafish are an attractive model to investigate genetic contributions to neurological diseases. However, current CRISPR-Cas9 methods are difficult to apply to large genetic screens studying behavioural phenotypes. To facilitate rapid genetic screening, we developed a simple sequencing-free tool to validate gRNAs and a highly effective CRISPR-Cas9 method capable of converting >90% of injected embryos directly into F0 biallelic knockouts. We demonstrate that F0 knockouts reliably recapitulate complex mutant phenotypes, such as altered molecular rhythms of the circadian clock, escape responses to irritants, and multi-parameter day-night locomotor behaviours. The technique is sufficiently robust to knockout multiple genes in the same animal, for example to create the transparent triple knockout crystal fish for imaging. Our F0 knockout method cuts the experimental time from gene to behavioural phenotype in zebrafish from months to one week.
Collapse
Affiliation(s)
- François Kroll
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Gareth T Powell
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Marcus Ghosh
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Gaia Gestri
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Paride Antinucci
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Timothy J Hearn
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Hande Tunbak
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Sumi Lim
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Harvey W Dennis
- School of Biological Sciences, Faculty of Science, University of BristolBristolUnited Kingdom
| | | | - David Whitmore
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
- Department of Molecular and Cell Biology, James Cook UniversityTownsvilleAustralia
| | - Elena Dreosti
- Wolfson Institute for Biomedical Research, University College LondonLondonUnited Kingdom
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Ellen J Hoffman
- Child Study Center, Yale School of MedicineNew HavenUnited States
- Department of Neuroscience, Yale School of MedicineNew HavenUnited States
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| |
Collapse
|
40
|
Loring MD, Thomson EE, Naumann EA. Whole-brain interactions underlying zebrafish behavior. Curr Opin Neurobiol 2020; 65:88-99. [PMID: 33221591 PMCID: PMC10697041 DOI: 10.1016/j.conb.2020.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022]
Abstract
Detailed quantification of neural dynamics across the entire brain will be the key to genuinely understanding perception and behavior. With the recent developments in microscopy and biosensor engineering, the zebrafish has made a grand entrance in neuroscience as its small size and optical transparency enable imaging access to its entire brain at cellular and even subcellular resolution. However, until recently many neurobiological insights were largely correlational or provided little mechanistic insight into the brain-wide population dynamics generated by diverse types of neurons. Now with increasingly sophisticated behavioral, imaging, and causal intervention paradigms, zebrafish are revealing how entire vertebrate brains function. Here we review recent research that fulfills promises made by the early wave of technical advances. These studies reveal new features of brain-wide neural processing and the importance of integrative investigation and computational modelling. Moreover, we outline the future tools necessary for solving broader brain-scale circuit problems.
Collapse
Affiliation(s)
- Matthew D Loring
- Duke School of Medicine, Department of Neurobiology, Durham, NC 27710, United States
| | - Eric E Thomson
- Duke School of Medicine, Department of Neurobiology, Durham, NC 27710, United States
| | - Eva A Naumann
- Duke School of Medicine, Department of Neurobiology, Durham, NC 27710, United States.
| |
Collapse
|
41
|
Karakaya M, Macrì S, Porfiri M. Behavioral Teleporting of Individual Ethograms onto Inanimate Robots: Experiments on Social Interactions in Live Zebrafish. iScience 2020; 23:101418. [PMID: 32818837 PMCID: PMC7452384 DOI: 10.1016/j.isci.2020.101418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/11/2020] [Accepted: 07/26/2020] [Indexed: 01/19/2023] Open
Abstract
Social behavior is widespread in the animal kingdom, and it remarkably influences human personal and professional lives. However, a thorough understanding of the mechanisms underlying social behavior is elusive. Integrating the seemingly different fields of robotics and preclinical research could bring new insight on social behavior. Toward this aim, we established "behavioral teleporting" as an experimental solution to independently manipulate multiple factors underpinning social interactions. Behavioral teleporting consists of real-time transfer of the complete ethogram of a live zebrafish onto a remotely-located robotic replica. Through parallel and simultaneous behavioral teleporting, we studied the interaction between two live fish swimming in remotely-located tanks: each live fish interacted with an inanimate robot that mirrored the behavior of the other fish, and the morphology of each robot was independently tailored. Our results indicate that behavioral teleporting can preserve natural interaction between two live animals, while allowing fine control over morphological features that modulate social behavior.
Collapse
Affiliation(s)
- Mert Karakaya
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA
| | - Simone Macrì
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA; Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA; Department of Biomedical Engineering, New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn NY 11201, USA.
| |
Collapse
|
42
|
Rubbini D, Cornet C, Terriente J, Di Donato V. CRISPR Meets Zebrafish: Accelerating the Discovery of New Therapeutic Targets. SLAS DISCOVERY 2020; 25:552-567. [PMID: 32462967 DOI: 10.1177/2472555220926920] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bringing a new drug to the market costs an average of US$2.6 billion and takes more than 10 years from discovery to regulatory approval. Despite the need to reduce cost and time to increase productivity, pharma companies tend to crowd their efforts in the same indications and drug targets. This results in the commercialization of drugs that share the same mechanism of action (MoA) and, in many cases, equivalent efficacies among them-an outcome that helps neither patients nor the balance sheet of the companies trying to bring therapeutics to the same patient population. Indeed, the discovery of new therapeutic targets, based on a deeper understanding of the disease biology, would likely provide more innovative MoAs and potentially greater drug efficacies. It would also bring better chances for identifying appropriate treatments according to the patient's genetic stratification. Nowadays, we count with an enormous amount of unprocessed information on potential disease targets that could be extracted from omics data obtained from patient samples. In addition, hundreds of pharmacological and genetic screenings have been performed to identify innovative drug targets. Traditionally, rodents have been the animal models of choice to perform functional genomic studies. The high experimental cost, combined with the low throughput provided by those models, however, is a bottleneck for discovering and validating novel genetic disease associations. To overcome these limitations, we propose that zebrafish, in conjunction with the use of CRISPR/Cas9 genome-editing tools, could streamline functional genomic processes to bring biologically relevant knowledge on innovative disease targets in a shorter time frame.
Collapse
Affiliation(s)
- Davide Rubbini
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
| | - Carles Cornet
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
| | - Javier Terriente
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
| | - Vincenzo Di Donato
- ZeClinics SL, IGTP (Germans Trias I Pujol Research Institute), Barcelona, Spain
| |
Collapse
|