1
|
Gui T, Liu Y, Fu M, Wu H, Su P, Feng X, Zheng M, Huang Z, Luo X, Boron WF, Chen LM. Redox state of NAD modulates the activation of Na-bicarbonate cotransporter NBCe1-B via IRBIT and L-IRBIT. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1452-1462. [PMID: 39985648 DOI: 10.1007/s11427-024-2750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/29/2024] [Indexed: 02/24/2025]
Abstract
Nicotinamide adenine dinucleotide (NAD) is well known as a coenzyme involved in many redox reactions in cellular energy metabolism, or as a substrate for many NAD+-consuming enzymes, including those that generate the second messenger cyclic ADP-ribose or deacetylate proteins (e.g., histones). The role of NAD in non-catalytic proteins is poorly understood. IRBIT and L-IRBIT (the IRBITs) are two cytosolic proteins that are structurally related to dehydrogenases but lack catalytic activity. Instead, by interacting directly with their targets, the IRBITs modulate the function of numerous proteins with important roles, ranging from Ca2+ signaling and intracellular pH (pHi) regulation to DNA metabolism to autophagy. Among the targets of the IRBITs is the Na+-HCO3- cotransporter NBCe1-B, which plays a central role in intracellular pH (pHi) regulation and epithelial electrolyte transport. Here, we demonstrate that NAD modulates NBCe1-B activation by serving as a cofactor of IRBIT or L-IRBIT. Blocking NAD salvage pathway greatly decreases NBCe1-B activation by the IRBITs. Administration of the oxidized form NAD+ enhances, whereas the reduced form NADH decreases NBCe1-B activity. Our study represents the first example in which the redox state of NAD, via IRBIT or L-IRBIT, modulates the function of a membrane transport protein. Our findings reveal a new role of NAD and greatly expand our understanding of NAD biology. Because the NAD redox state fluctuates greatly with metabolic status, our work provides insight into how, via the IRBITs, energy metabolism could affect pHi regulation and many other IRBIT-dependent processes.
Collapse
Affiliation(s)
- Tianxiang Gui
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China.
| | - Mingfeng Fu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Han Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Pan Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Xuhui Feng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Mengmeng Zheng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Zixuan Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Xudong Luo
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science & Technology, Huazhong University of Science & Technology, Wuhan, 430074, China.
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen, 518063, China.
| |
Collapse
|
2
|
Budnik N, Leroux AE, Cooke M, Kazanietz MG, Vigliano C, Kobayashi K, Perez-Castro C. The role of S-adenosylhomocysteine hydrolase-like 1 in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119819. [PMID: 39154900 DOI: 10.1016/j.bbamcr.2024.119819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
This integrative review aims to highlight the importance of investigating the functional role of AHCYL1, also known as IRBIT, in cancer cells. It has recently been suggested that AHCYL1 regulates cell survival/death, stemness capacity, and the host adaptive response to the tumor microenvironment. Despite this knowledge, the role of AHCYL1 in cancer is still controversial, probably due to its ability to interact with multiple factors in a tissue-specific manner. Understanding the mechanisms regulating the functional interplay between the tumor and the tumor microenvironment that controls the expression of AHCYL1 could provide a deeper comprehension of the regulation of tumor development. Addressing how AHCYL1 modulates cellular plasticity processes in a tumoral context is potentially relevant to developing translational approaches in cancer biology.
Collapse
Affiliation(s)
- Nicolás Budnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Mariana Cooke
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marcelo G Kazanietz
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Carlos Vigliano
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, C1078AAI Buenos Aires, Argentina; Servicio de Anatomía Patológica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS Buenos Aires, Argentina
| | - Ken Kobayashi
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina; Laboratorio de Agrobiotecnología, Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA-CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Perez-Castro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Nguyen TH, Vicidomini R, Choudhury SD, Han TH, Maric D, Brody T, Serpe M. scRNA-seq data from the larval Drosophila ventral cord provides a resource for studying motor systems function and development. Dev Cell 2024; 59:1210-1230.e9. [PMID: 38569548 PMCID: PMC11078614 DOI: 10.1016/j.devcel.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/05/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
The Drosophila larval ventral nerve cord (VNC) shares many similarities with the spinal cord of vertebrates and has emerged as a major model for understanding the development and function of motor systems. Here, we use high-quality scRNA-seq, validated by anatomical identification, to create a comprehensive census of larval VNC cell types. We show that the neural lineages that comprise the adult VNC are already defined, but quiescent, at the larval stage. Using fluorescence-activated cell sorting (FACS)-enriched populations, we separate all motor neuron bundles and link individual neuron clusters to morphologically characterized known subtypes. We discovered a glutamate receptor subunit required for basal neurotransmission and homeostasis at the larval neuromuscular junction. We describe larval glia and endorse the general view that glia perform consistent activities throughout development. This census represents an extensive resource and a powerful platform for future discoveries of cellular and molecular mechanisms in repair, regeneration, plasticity, homeostasis, and behavioral coordination.
Collapse
Affiliation(s)
| | | | | | | | - Dragan Maric
- Flow and Imaging Cytometry Core, NINDS, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
4
|
Muñoz-Bernart M, Budnick N, Castro A, Manzi M, Monge ME, Pioli J, Defranchi S, Parrilla G, Santilli JP, Davies K, Espinosa JM, Kobayashi K, Vigliano C, Perez-Castro C. S-adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) inhibits lung cancer tumorigenesis by regulating cell plasticity. Biol Direct 2023; 18:8. [PMID: 36872327 PMCID: PMC9985837 DOI: 10.1186/s13062-023-00364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/21/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Lung cancer is one of the most frequently diagnosed cancers characterized by high mortality, metastatic potential, and recurrence. Deregulated gene expression of lung cancer, likewise in many other solid tumors, accounts for their cell heterogeneity and plasticity. S-adenosylhomocysteine hydrolase-like protein 1 (AHCYL1), also known as Inositol triphosphate (IP(3)) receptor-binding protein released with IP(3) (IRBIT), plays roles in many cellular functions, including autophagy and apoptosis but AHCYL1 role in lung cancer is largely unknown. RESULTS Here, we analyzed the expression of AHCYL1 in Non-Small Cell Lung Cancer (NSCLC) cells from RNA-seq public data and surgical specimens, which revealed that AHCYL1 expression is downregulated in tumors and inverse correlated to proliferation marker Ki67 and the stemness signature expression. AHCYL1-silenced NSCLC cells showed enhanced stem-like properties in vitro, which correlated with higher expression levels of stem markers POU5F1 and CD133. Also, the lack of AHCYL1 enhanced tumorigenicity and angiogenesis in mouse xenograft models highlighting stemness features. CONCLUSIONS These findings indicate that AHCYL1 is a negative regulator in NSCLC tumorigenesis by modulating cell differentiation state and highlighting AHCYL1 as a potential prognostic biomarker for lung cancer.
Collapse
Affiliation(s)
- Melina Muñoz-Bernart
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Nicolás Budnick
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Araceli Castro
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, C1078AAI, Buenos Aires, Argentina
| | - Malena Manzi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, 2160 C1428EGA, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Desarrollo Analítico y Control de Procesos, Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, B1650WAB, Buenos Aires, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina
| | - Julieta Pioli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Sebastián Defranchi
- Servicio de Cirugía Torácica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Gustavo Parrilla
- Servicio de Cirugía Torácica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Juan Pablo Santilli
- Servicio de Anatomía Patológica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Kevin Davies
- Servicio de Anatomía Patológica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Joaquín M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Ken Kobayashi
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, 2160 C1428EGA, Buenos Aires, Argentina.,Laboratorio de Agrobiotecnología, Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA-CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Vigliano
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, C1078AAI, Buenos Aires, Argentina.,Servicio de Anatomía Patológica, Hospital Universitario de la Fundación Favaloro, Av. Belgrano 1746, C1093AAS, Buenos Aires, Argentina
| | - Carolina Perez-Castro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Long MJC, Ly P, Aye Y. Still no Rest for the Reductases: Ribonucleotide Reductase (RNR) Structure and Function: An Update. Subcell Biochem 2022; 99:155-197. [PMID: 36151376 DOI: 10.1007/978-3-031-00793-4_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein we present a multidisciplinary discussion of ribonucleotide reductase (RNR), the essential enzyme uniquely responsible for conversion of ribonucleotides to deoxyribonucleotides. This chapter primarily presents an overview of this multifaceted and complex enzyme, covering RNR's role in enzymology, biochemistry, medicinal chemistry, and cell biology. It further focuses on RNR from mammals, whose interesting and often conflicting roles in health and disease are coming more into focus. We present pitfalls that we think have not always been dealt with by researchers in each area and further seek to unite some of the field-specific observations surrounding this enzyme. Our work is thus not intended to cover any one topic in extreme detail, but rather give what we consider to be the necessary broad grounding to understand this critical enzyme holistically. Although this is an approach we have advocated in many different areas of scientific research, there is arguably no other single enzyme that embodies the need for such broad study than RNR. Thus, we submit that RNR itself is a paradigm of interdisciplinary research that is of interest from the perspective of the generalist and the specialist alike. We hope that the discussions herein will thus be helpful to not only those wanting to tackle RNR-specific problems, but also those working on similar interdisciplinary projects centering around other enzymes.
Collapse
Affiliation(s)
- Marcus J C Long
- University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Biochemistry, UNIL, Epalinges, Switzerland
| | - Phillippe Ly
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- EPFL SB ISIC LEAGO, Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- EPFL SB ISIC LEAGO, Lausanne, Switzerland.
| |
Collapse
|
6
|
Chen S, Lyanguzova M, Kaufhold R, Plevock Haase KM, Lee H, Arnaoutov A, Dasso M. Association of RanGAP to nuclear pore complex component, RanBP2/Nup358, is required for pupal development in Drosophila. Cell Rep 2021; 37:110151. [PMID: 34965423 PMCID: PMC11166264 DOI: 10.1016/j.celrep.2021.110151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/15/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Ran's GTPase-activating protein (RanGAP) is tethered to the nuclear envelope (NE) in multicellular organisms. We investigated the consequences of RanGAP localization in human tissue culture cells and Drosophila. In tissue culture cells, disruption of RanGAP1 NE localization surprisingly has neither obvious impacts on viability nor nucleocytoplasmic transport of a model substrate. In Drosophila, we identified a region within nucleoporin dmRanBP2 required for direct tethering of dmRanGAP to the NE. A dmRanBP2 mutant lacking this region shows no apparent growth defects during larval stages but arrests at the early pupal stage. A direct fusion of dmRanGAP to the dmRanBP2 mutant rescues this arrest, indicating that dmRanGAP recruitment to dmRanBP2 per se is necessary for the pupal ecdysis sequence. Our results indicate that while the NE localization of RanGAP is widely conserved in multicellular organisms, the targeting mechanisms are not. Further, we find a requirement for this localization during pupal development.
Collapse
Affiliation(s)
- Shane Chen
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA
| | - Maria Lyanguzova
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA
| | - Ross Kaufhold
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA
| | - Karen M Plevock Haase
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA
| | - Hangnoh Lee
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA
| | - Alexei Arnaoutov
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institutes for Child Health and Human Development, 49 Convent Drive, Building 49, Room 5A30, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Boumard B, Bardin AJ. An amuse-bouche of stem cell regulation: Underlying principles and mechanisms from adult Drosophila intestinal stem cells. Curr Opin Cell Biol 2021; 73:58-68. [PMID: 34217969 DOI: 10.1016/j.ceb.2021.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022]
Abstract
Stem cells have essential functions in the development and maintenance of our organs. Improper regulation of adult stem cells and tissue homeostasis can result in cancers and age-dependent decline. Therefore, understanding how tissue-specific stem cells can accurately renew tissues is an important aim of regenerative medicine. The Drosophila midgut harbors multipotent adult stem cells that are essential to renew the gut in homeostatic conditions and upon stress-induced regeneration. It is now a widely used model system to decipher regulatory mechanisms of stem cell biology. Here, we review recent findings on how adult intestinal stem cells differentiate, interact with their environment, and change during aging.
Collapse
Affiliation(s)
- Benjamin Boumard
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France
| | - Allison J Bardin
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France.
| |
Collapse
|