1
|
Verstappen K, Klymov A, Cicuéndez M, da Silva DM, Barroca N, Fernández-San-Argimiro FJ, Madarieta I, Casarrubios L, Feito MJ, Diez-Orejas R, Ferreira R, Leeuwenburgh SC, Portolés MT, Marques PA, Walboomers XF. Biocompatible adipose extracellular matrix and reduced graphene oxide nanocomposite for tissue engineering applications. Mater Today Bio 2024; 26:101059. [PMID: 38693996 PMCID: PMC11061343 DOI: 10.1016/j.mtbio.2024.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024] Open
Abstract
Despite the immense need for effective treatment of spinal cord injury (SCI), no successful repair strategy has yet been clinically implemented. Multifunctional biomaterials, based on porcine adipose tissue-derived extracellular matrix (adECM) and reduced graphene oxide (rGO), were recently shown to stimulate in vitro neural stem cell growth and differentiation. Nevertheless, their functional performance in clinically more relevant in vivo conditions remains largely unknown. Before clinical application of these adECM-rGO nanocomposites can be considered, a rigorous assessment of the cytotoxicity and biocompatibility of these biomaterials is required. For instance, xenogeneic adECM scaffolds could still harbour potential immunogenicity following decellularization. In addition, the toxicity of rGO has been studied before, yet often in experimental settings that do not bear relevance to regenerative medicine. Therefore, the present study aimed to assess both the in vitro as well as in vivo safety of adECM and adECM-rGO scaffolds. First, pulmonary, renal and hepato-cytotoxicity as well as macrophage polarization studies showed that scaffolds were benign invitro. Then, a laminectomy was performed at the 10th thoracic vertebra, and scaffolds were implanted directly contacting the spinal cord. For a total duration of 6 weeks, animal welfare was not negatively affected. Histological analysis demonstrated the degradation of adECM scaffolds and subsequent tissue remodeling. Graphene-based scaffolds showed a very limited fibrous encapsulation, while rGO sheets were engulfed by foreign body giant cells. Furthermore, all scaffolds were infiltrated by macrophages, which were largely polarized towards a pro-regenerative phenotype. Lastly, organ-specific histopathology and biochemical analysis of blood did not reveal any adverse effects. In summary, both adECM and adECM-rGO implants were biocompatible upon laminectomy while establishing a pro-regenerative microenvironment, which justifies further research on their therapeutic potential for treatment of SCI.
Collapse
Affiliation(s)
- Kest Verstappen
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 EX, Nijmegen, the Netherlands
| | - Alexey Klymov
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 EX, Nijmegen, the Netherlands
| | - Mónica Cicuéndez
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Daniela M. da Silva
- Centre for Mechanical Technology and Automation (TEMA), Intelligent Systems Associate Laboratory (LASI), Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Nathalie Barroca
- Centre for Mechanical Technology and Automation (TEMA), Intelligent Systems Associate Laboratory (LASI), Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | - Iratxe Madarieta
- TECNALIA, Basque Research and Technology Alliance (BRTA), E20009, Donostia-San Sebastian, Spain
| | - Laura Casarrubios
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - María José Feito
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Rosalía Diez-Orejas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Rita Ferreira
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sander C.G. Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 EX, Nijmegen, the Netherlands
| | - María Teresa Portolés
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III (ISCIII), 28040, Madrid, Spain
| | - Paula A.A.P. Marques
- Centre for Mechanical Technology and Automation (TEMA), Intelligent Systems Associate Laboratory (LASI), Department of Mechanical Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| | - X. Frank Walboomers
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 EX, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Ou L, Tan X, Qiao S, Wu J, Su Y, Xie W, Jin N, He J, Luo R, Lai X, Liu W, Zhang Y, Zhao F, Liu J, Kang Y, Shao L. Graphene-Based Material-Mediated Immunomodulation in Tissue Engineering and Regeneration: Mechanism and Significance. ACS NANO 2023; 17:18669-18687. [PMID: 37768738 DOI: 10.1021/acsnano.3c03857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Tissue engineering and regenerative medicine hold promise for improving or even restoring the function of damaged organs. Graphene-based materials (GBMs) have become a key player in biomaterials applied to tissue engineering and regenerative medicine. A series of cellular and molecular events, which affect the outcome of tissue regeneration, occur after GBMs are implanted into the body. The immunomodulatory function of GBMs is considered to be a key factor influencing tissue regeneration. This review introduces the applications of GBMs in bone, neural, skin, and cardiovascular tissue engineering, emphasizing that the immunomodulatory functions of GBMs significantly improve tissue regeneration. This review focuses on summarizing and discussing the mechanisms by which GBMs mediate the sequential regulation of the innate immune cell inflammatory response. During the process of tissue healing, multiple immune responses, such as the inflammatory response, foreign body reaction, tissue fibrosis, and biodegradation of GBMs, are interrelated and influential. We discuss the regulation of these immune responses by GBMs, as well as the immune cells and related immunomodulatory mechanisms involved. Finally, we summarize the limitations in the immunomodulatory strategies of GBMs and ideas for optimizing GBM applications in tissue engineering. This review demonstrates the significance and related mechanism of the immunomodulatory function of GBM application in tissue engineering; more importantly, it contributes insights into the design of GBMs to enhance wound healing and tissue regeneration in tissue engineering.
Collapse
Affiliation(s)
- Lingling Ou
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiner Tan
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shijia Qiao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuan Su
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528399, China
| | - Wenqiang Xie
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Nianqiang Jin
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiankang He
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ruhui Luo
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xuan Lai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
3
|
Wang L, Zhang Y, Li L, Geng X, Dou D, Yu L, Jing H, Fan Y. Graphdiyne oxide elicits a minor foreign-body response and generates quantum dots due to fast degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130512. [PMID: 36463743 DOI: 10.1016/j.jhazmat.2022.130512] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Graphdiyne (GDY) is a novel two-dimensional (2D) carbon allotrope that has attracted much attention in materials, physics, chemistry, and microelectronics for its excellent properties. Much effort has been devoted to exploring the biomedical applications of GDY in 2D carbon nanomaterials, especially for smart drugs and gene delivery. However, few studies have focused on the biocompatibility and potential environmental hazards of GDY and its derivatives. In this study, graphdiyne oxide (GDYO) and graphene oxide (GO) were obtained using different oxidation methods. Their cytotoxicity and hemolysis in vitro and biocompatibility in subcutaneous and peritoneal locations in vivo were compared. GDYO had very low biotoxicity in vitro and was moderately biocompatible in the muscle and abdominal cavity in vivo. Highly oxidized products and graphdiyne quantum dots (GDQDs) were observed in peritoneal cells. GDYO had better biocompatibility and its sheet size was easily diminished through oxidative degradation. Therefore, GDYO is a good candidate for use in 2D carbon nanomaterials in biomedicine.
Collapse
Affiliation(s)
- Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yang Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Linhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xuezheng Geng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Dandan Dou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Lu Yu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Haoyu Jing
- Department of Ultrasound, Chinese PLA General Hospital, Beijing 100039, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
4
|
Kumar R, Sarkar C, Panja S, Khatua C, Gugulothu K, Sil D. Biomimetic Nanocomposites for Biomedical Applications. ACS SYMPOSIUM SERIES 2022:163-196. [DOI: 10.1021/bk-2022-1410.ch007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Chandrani Sarkar
- Department of Chemistry, Mahila College, Kolhan University, Chaibasa, Jharkand 833202, India
| | - Sudipta Panja
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| | - Chandra Khatua
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Kishan Gugulothu
- Department of Chemistry, Osmania University, Hyderabad, Telangana 500007, India
| | - Diptesh Sil
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68105, United States
| |
Collapse
|
5
|
Abstract
Natural biological materials provide a rich source of inspiration for building high-performance materials with extensive applications. By mimicking their chemical compositions and hierarchical architectures, the past decades have witnessed the rapid development of bioinspired materials. As a very promising biosourced raw material, silk is drawing increasing attention due to excellent mechanical properties, favorable versatility, and good biocompatibility. In this review, we provide an overview of the recent progress in silk-based bioinspired structural and functional materials. We first give a brief introduction of silk, covering its sources, features, extraction, and forms. We then summarize the preparation and application of silk-based materials mimicking four typical biological materials including bone, nacre, skin, and polar bear hair. Finally, we discuss the current challenges and future prospects of this field.
Collapse
Affiliation(s)
- Zongpu Xu
- Institute of Applied Bioresources, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Corresponding author
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Corresponding author
| |
Collapse
|
6
|
Dong C, Qiao F, Chen G, Lv Y. Demineralized and decellularized bone extracellular matrix-incorporated electrospun nanofibrous scaffold for bone regeneration. J Mater Chem B 2021; 9:6881-6894. [PMID: 34612335 DOI: 10.1039/d1tb00895a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Extracellular matrix (ECM)-based materials have been employed as scaffolds for bone tissue engineering, providing a suitable microenvironment with biophysical and biochemical cues for cell attachment, proliferation and differentiation. In this study, bone-derived ECM (bECM)-incorporated electrospun poly(ε-caprolactone) (PCL) (bECM/PCL) nanofibrous scaffolds were prepared and their effects on osteogenesis were evaluated in vitro and in vivo. The results showed that the bECM/PCL scaffolds promoted the attachment, spreading, proliferation and osteogenic differentiation of rat mesenchymal stem cells (MSCs), mitigated the foreign-body reaction, and facilitated bone regeneration in a rat calvarial critical size defect model. Thus, this study suggests that bECM can provide a promising option for bone regeneration.
Collapse
Affiliation(s)
- Chanjuan Dong
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P. R. China.
| | | | | | | |
Collapse
|
7
|
Mao Z, Bi X, Ye F, Du P, Shu X, Sun L, Guan J, Li X, Wu S. The relationship between crosslinking structure and silk fibroin scaffold performance for soft tissue engineering. Int J Biol Macromol 2021; 182:1268-1277. [PMID: 33984385 DOI: 10.1016/j.ijbiomac.2021.05.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 01/07/2023]
Abstract
Biologically active scaffolds with tunable mechano- and bio-performance remain desirable for soft tissue engineering. Previously, highly elastic and robust silk fibroin (SF) scaffolds were prepared via cryogelation. In order to get more insight into the role of ethylene glycol diglycidyl ether (EGDE) on the structure and properties of SF scaffolds, we investigated the fate of SF scaffolds with different usages of the crosslinking agent in vitro and in vivo. Although SF scaffolds with varied EGDE contents showed similar micro-morphology, increasing EGDE from 1 mmol/g to 5 mmol/g resulted in firstly increased and later decreased content of β-sheet conformation, and linearly increased tensile modulus and decreased elasticity. The dual-crosslinked SF scaffolds with EGDE up to 5 mmol/g did not show in vitro cytotoxicity for NIH3T3 fibroblasts. In vivo subcutaneous implantation of SF scaffolds with <3 mmol/g EGDE displayed excellent degradation behavior and tissue ingrowth after 28 days of implantation. However, with ≥3 mmol/g EGDE, SF scaffolds exhibited obvious post-implantation foreign body reactions, probably associated with slow degradation due to excess chemical crosslinks and less mechanical compatibility. These results suggest that an appropriate dosage of crosslinking agent was critical to achieve balanced mechanical properties, degradability in vivo and immuno-properties of the SF scaffold platform for soft tissue engineering.
Collapse
Affiliation(s)
- Zhinan Mao
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| | - Xuewei Bi
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beijing 100083, China
| | - Fan Ye
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| | - Puyu Du
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| | - Xiong Shu
- Beijing Research Institute of Traumatology & Orthopaedics, Beijing 100035, China
| | - Lei Sun
- Beijing Research Institute of Traumatology & Orthopaedics, Beijing 100035, China
| | - Juan Guan
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beijing 100083, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beijing 100083, China
| | - Sujun Wu
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science & Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
8
|
Du S, Liu B, Li Z, Tan H, Qi W, Liu T, Qiang S, Zhang T, Song F, Chen X, Chen J, Qiu H, Wu W. A Nanoporous Graphene/Nitrocellulose Membrane Beneficial to Wound Healing. ACS APPLIED BIO MATERIALS 2021; 4:4522-4531. [PMID: 35006788 DOI: 10.1021/acsabm.1c00261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adequate treatment of skin wounds is vital to health. Nitrocellulose bandage as a traditional wound dressing is widely used for wound healing, but its limited air permeability and poor sterilization need to be improved for enhancing the actual efficacy. Here, nanoporous graphene (NPG) is used to mix into nitrocellulose for preparing a composite membrane, which exhibits a moderate transmission rate of water vapor, excellent toughness performance, and good biocompatibility. Moreover, the membrane shows an excellent broad-spectrum antibacterial property (>98%, Escherichia coli; >90%, Staphylococcus aureus) and can reduce the risk of microbial infection for the body after trauma. Importantly, after using the nanoporous graphene/nitrocellulose membrane, the wound closure percentage reaches 93.03 ± 1.08% at 7 days after the trauma, and the degree of skin tissue recovery is also improved significantly. Therefore, this study develops a highly efficient wound healing dressing, which is expected to be used directly in clinics.
Collapse
Affiliation(s)
- Shaobo Du
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.,CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Bin Liu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.,School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Zhan Li
- Frontier Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| | - Hongxin Tan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Qi
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Tianqi Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shirong Qiang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Taofeng Zhang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.,School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Fuxiang Song
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.,School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Xiujuan Chen
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wangsuo Wu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|