1
|
Neves FR, Martins AL, Oliveira RC, Martins R. Characterization of the Pancreatic Neuroendocrine Neoplasm Immune Microenvironment. Cancer Med 2025; 14:e70798. [PMID: 40145271 PMCID: PMC11947738 DOI: 10.1002/cam4.70798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
INTRODUCTION A tumor is composed of more than tumoral cells. In recent years, there has been an increase in interest and knowledge of the tumor microenvironment (TME). METHODS The TME is an integral part of the tumor, composed of several cells: immune, stromal, and endothelial, among others, thus offering a wide range of tumor interactions and multiple possibilities for targeted therapies and environment modulation. While the TME in pancreatic ductal adenocarcinoma is widely studied, it is not very true for the TME of pancreatic neuroendocrine neoplasms (PNENs). DISCUSSION AND CONCLUSION The incidence of PNENs is increasing and, therefore, it is important to comprehend their biology for the evolution of efficient therapies since many of the PNENs develop metastasis, including the G1 PNENs. This paper focuses on a review of the role of the TME in PNENs.
Collapse
Affiliation(s)
| | | | | | - Rui Martins
- Instituto Português de Oncologia de CoimbraCoimbraPortugal
- Faculdade de Medicina da Universidade de CoimbraCoimbraPortugal
| |
Collapse
|
2
|
Bammigatti A, Ghosh SK, Bandyopadhyay S, Saha B. Messages in CD40L are encrypted for residue-specific functions. Cytokine 2025; 185:156824. [PMID: 39615244 DOI: 10.1016/j.cyto.2024.156824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
CD40-CD40-ligand (CD40L) interaction plays crucial immunoregulatory roles, as CD40 signals through different signaling intermediates to convert the messages from CD40L to effector functions. Being a TNFα receptor family member, CD40 binds TNFα receptor-associated factors, assembles signalosome complexes and decrypts the messages from CD40L through different signaling modules to result in residue-specific effector functions. The evidence for such a residue-specific message encryption first came from the CD40L mutations resulting in X-linked hyper-IgM syndrome, as the extent of effects varied with the residue mutated. The structural studies on the CD40-CD40L interaction implied differential involvement of the interacting residues on CD40L in influencing the effector functions. Three lines of evidence indicate the previously implied residue-specific message encryption in CD40L: screening of a dodecameric peptide library for CD40 binders identified two peptides with different sequences resulting in counteractive effector functions in macrophages; a series of CD40L mutants identified that the mutations in these residues selectively affected CD40 signaling and macrophage effector functions; and, a panel of 40-mer peptides, representing the CD40-interacting domain of mouse CD40L, with single substitutions resulted in altered CD40 signaling through various signaling intermediates and effector functions in mouse macrophages. We therefore construct the first-ever message encryption-decryption in a biological receptor-ligand system wherein the CD40L residues that interact with CD40 residues have encrypted messages, which are decoded by CD40 signaling to result in residue-specific effector functions. This review presents a novel perspective of receptor-ligand interaction as a system of message transmission, message decoding by signaling, and its transcription to various read-outs. [250 words].
Collapse
Affiliation(s)
| | | | | | - Bhaskar Saha
- JSPS Government Homeopathic Medical College, Hyderabad 500013, India.
| |
Collapse
|
3
|
Choi HK, Travaglino S, Münchhalfen M, Görg R, Zhong Z, Lyu J, Reyes-Aguilar DM, Wienands J, Singh A, Zhu C. Mechanotransduction governs CD40 function and underlies X-linked hyper-IgM syndrome. SCIENCE ADVANCES 2024; 10:eadl5815. [PMID: 39546606 PMCID: PMC11566996 DOI: 10.1126/sciadv.adl5815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
B cell maturation depends on cognate interactions between the T and B cells. Upon interaction with CD40 ligand (CD40L) on T cells, CD40 delivers costimulatory signals alongside B cell antigen receptor (BCR) signaling to regulate affinity maturation and antibody class switch. Mutations affecting CD40-CD40L interactions cause abnormal antibody responses in immunodeficiencies known as X-linked hyper-IgM syndrome (X-HIgM). Here, we study the CD40-mediated mechanotransduction in B cells, which likely occurs during their physical contacts with T cells. We found that CD40 forms catch bond with CD40L that lasts longer at larger forces, both B and T cells exert tension on CD40-CD40L bonds, and force enhances CD40 signaling and antibody class switch. X-HIgM CD40L mutations impair catch bond formation, suppress endogenous tension, and reduce force-enhanced CD40 signaling, leading to deficiencies in antibody class switch. Our findings highlight the role of mechanotransduction in CD40 function and provide insights into the mechanisms underlying X-HIgM syndrome.
Collapse
Affiliation(s)
- Hyun-Kyu Choi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Stefano Travaglino
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Matthias Münchhalfen
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, 13 Göttingen, Germany
| | - Richard Görg
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, 13 Göttingen, Germany
| | - Zhe Zhong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jintian Lyu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - David M. Reyes-Aguilar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jürgen Wienands
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, 13 Göttingen, Germany
| | - Ankur Singh
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
4
|
Xu Z, Wang Q, Zhang Y, Li X, Wang M, Zhang Y, Pei Y, Li K, Yang M, Luo L, Wu C, Wang W. Exploiting tertiary lymphoid structures gene signature to evaluate tumor microenvironment infiltration and immunotherapy response in colorectal cancer. Front Oncol 2024; 14:1383096. [PMID: 38846981 PMCID: PMC11153738 DOI: 10.3389/fonc.2024.1383096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Background Tertiary lymphoid structures (TLS) is a particular component of tumor microenvironment (TME). However, its biological mechanisms in colorectal cancer (CRC) have not yet been understood. We desired to reveal the TLS gene signature in CRC and evaluate its role in prognosis and immunotherapy response. Methods The data was sourced from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Based on TLS-related genes (TRGs), the TLS related subclusters were identified through unsupervised clustering. The TME between subclusters were evaluated by CIBERSORT and xCell. Subsequently, developing a risk model and conducting external validation. Integrating risk score and clinical characteristics to create a comprehensive nomogram. Further analyses were conducted to screen TLS-related hub genes and explore the relationship between hub genes, TME, and biological processes, using random forest analysis, enrichment and variation analysis, and competing endogenous RNA (ceRNA) network analysis. Multiple immunofluorescence (mIF) and immunohistochemistry (IHC) were employed to characterize the existence of TLS and the expression of hub gene. Results Two subclusters that enriched or depleted in TLS were identified. The two subclusters had distinct prognoses, clinical characteristics, and tumor immune infiltration. We established a TLS-related prognostic risk model including 14 genes and validated its predictive power in two external datasets. The model's AUC values for 1-, 3-, and 5-year overall survival (OS) were 0.704, 0.737, and 0.746. The low-risk group had a superior survival rate, more abundant infiltration of immune cells, lower tumor immune dysfunction and exclusion (TIDE) score, and exhibited better immunotherapy efficacy. In addition, we selected the top important features within the model: VSIG4, SELL and PRRX1. Enrichment analysis showed that the hub genes significantly affected signaling pathways related to TLS and tumor progression. The ceRNA network: PRRX1-miRNA (hsa-miR-20a-5p, hsa-miR-485-5p) -lncRNA has been discovered. Finally, IHC and mIF results confirmed that the expression level of PRRX1 was markedly elevated in the TLS- CRC group. Conclusion We conducted a study to thoroughly describe TLS gene signature in CRC. The TLS-related risk model was applicable for prognostic prediction and assessment of immunotherapy efficacy. The TLS-hub gene PRRX1, which had the potential to function as an immunomodulatory factor of TLS, could be a therapeutic target for CRC.
Collapse
Affiliation(s)
- Zhu Xu
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Wang
- Department of Pathology, QuXian People’s Hospital, Dazhou, China
| | - Yiyao Zhang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolan Li
- Department of Pathology, QuXian People’s Hospital, Dazhou, China
| | - Mei Wang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuhong Zhang
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yaxin Pei
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kezhen Li
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Man Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liping Luo
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Wu
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weidong Wang
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Li H, Xu M, Chen D, Wen W, Luo J. Pirfenidone ameliorates alcohol-induced promotion of breast cancer in mice. Front Oncol 2024; 14:1351839. [PMID: 38590657 PMCID: PMC10999600 DOI: 10.3389/fonc.2024.1351839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Purpose Alcohol consumption increases the risk of breast cancer and promotes cancer progression. Alcohol exposure could affect both processes of the mammary carcinogenesis, namely, the cell transformation and onset of tumorigenesis as well as cancer aggressiveness including metastasis and drug resistance/recurrence. However, the cellular and molecular mechanisms underlying alcohol tumor promotion remain unclear. There are four members of the mammalian p38 mitogen-activated protein kinase (MAPK) family, namely, p38α, p38β, p38γ and p38δ. We have previously demonstrated alcohol exposure selectively activated p38γ MAPK in breast cancer cells in vitro and in vivo. Pirfenidone (PFD), an antifibrotic compound approved for the treatment of idiopathic pulmonary fibrosis, is also a pharmacological inhibitor of p38γ MAPK. This study aimed to determine whether PFD is useful to inhibit alcohol-induced promotion of breast cancer. Methods Female adolescent (5 weeks) MMTV-Wnt1 mice were exposed to alcohol with a liquid diet containing 6.7% ethanol. Some mice received intraperitoneal (IP) injection of PFD (100 mg/kg) every other day. After that, the effects of alcohol and PFD on mammary tumorigenesis and metastasis were examined. Results Alcohol promoted the progression of mammary tumors in adolescent MMTV-Wnt1 mice. Treatment of PFD blocked tumor growth and alcohol-promoted metastasis. It also significantly inhibited alcohol-induced tumorsphere formation and cancer stem cell (CSC) population. Conclusion PFD inhibited mammary tumor growth and alcohol-promoted metastasis. Since PFD is an FDA-approved drug, the current findings may be helpful to re-purpose its application in treating aggressive breast cancer and alcohol-promoted mammary tumor progression.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Danlei Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, IA, United States
| |
Collapse
|
6
|
Moreau M, Keno LS, China D, Mao S, Acter S, Sy G, Hooshangnejad H, Chow KF, Sajo E, Walker J, Oh P, Broyles E, Ding K, Viswanathan A, Ngwa W. Investigating the Use of a Liquid Immunogenic Fiducial Eluter Biomaterial in Cervical Cancer Treatment. Cancers (Basel) 2024; 16:1212. [PMID: 38539546 PMCID: PMC10969426 DOI: 10.3390/cancers16061212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 11/01/2024] Open
Abstract
Globally, cervical cancer is the fourth leading cancer among women and is dominant in resource-poor settings in its occurrence and mortality. This study focuses on developing liquid immunogenic fiducial eluter (LIFE) Biomaterial with components that include biodegradable polymers, nanoparticles, and an immunoadjuvant. LIFE Biomaterial is designed to provide image guidance during radiotherapy similar to clinically used liquid fiducials while enhancing therapeutic efficacy for advanced cervical cancer. C57BL6 mice were used to grow subcutaneous tumors on bilateral flanks. The tumor on one flank was then treated using LIFE Biomaterial prepared with the immunoadjuvant anti-CD40, with/without radiotherapy at 6 Gy. Computed tomography (CT) and magnetic resonance (MR) imaging visibility were also evaluated in human cadavers. A pharmacodynamics study was also conducted to assess the safety of LIFE Biomaterial in healthy C57BL6 female mice. Results showed that LIFE Biomaterial could provide both CT and MR imaging contrast over time. Inhibition in tumor growth and prolonged significant survival (* p < 0.05) were consistently observed for groups treated with the combination of radiotherapy and LIFE Biomaterial, highlighting the potential for this strategy. Minimal toxicity was observed for healthy mice treated with LIFE Biomaterial with/without anti-CD40 in comparison to non-treated cohorts. The results demonstrate promise for the further development and clinical translation of this approach to enhance the survival and quality of life of patients with advanced cervical cancer.
Collapse
Affiliation(s)
- Michele Moreau
- Department of Radiation Oncology and Molecular Radiation Sciences, Department of Biomedical Engineering, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (L.S.K.); (D.C.); (S.M.); (S.A.); (G.S.); (H.H.); (K.D.); (A.V.)
- Department of Chemistry and Department of Physics (Medical Physics), University of Massachusetts Lowell, Lowell, MA 01854, USA; (K.F.C.); (E.S.)
| | - Lensa S. Keno
- Department of Radiation Oncology and Molecular Radiation Sciences, Department of Biomedical Engineering, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (L.S.K.); (D.C.); (S.M.); (S.A.); (G.S.); (H.H.); (K.D.); (A.V.)
- Department of Health Administration and Human Resources, The University of Scranton, 800 Linden Street, Scranton, PA 18510, USA
| | - Debarghya China
- Department of Radiation Oncology and Molecular Radiation Sciences, Department of Biomedical Engineering, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (L.S.K.); (D.C.); (S.M.); (S.A.); (G.S.); (H.H.); (K.D.); (A.V.)
| | - Serena Mao
- Department of Radiation Oncology and Molecular Radiation Sciences, Department of Biomedical Engineering, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (L.S.K.); (D.C.); (S.M.); (S.A.); (G.S.); (H.H.); (K.D.); (A.V.)
| | - Shahinur Acter
- Department of Radiation Oncology and Molecular Radiation Sciences, Department of Biomedical Engineering, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (L.S.K.); (D.C.); (S.M.); (S.A.); (G.S.); (H.H.); (K.D.); (A.V.)
| | - Gnagna Sy
- Department of Radiation Oncology and Molecular Radiation Sciences, Department of Biomedical Engineering, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (L.S.K.); (D.C.); (S.M.); (S.A.); (G.S.); (H.H.); (K.D.); (A.V.)
| | - Hamed Hooshangnejad
- Department of Radiation Oncology and Molecular Radiation Sciences, Department of Biomedical Engineering, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (L.S.K.); (D.C.); (S.M.); (S.A.); (G.S.); (H.H.); (K.D.); (A.V.)
| | - Kwok Fan Chow
- Department of Chemistry and Department of Physics (Medical Physics), University of Massachusetts Lowell, Lowell, MA 01854, USA; (K.F.C.); (E.S.)
| | - Erno Sajo
- Department of Chemistry and Department of Physics (Medical Physics), University of Massachusetts Lowell, Lowell, MA 01854, USA; (K.F.C.); (E.S.)
| | - Jacques Walker
- Nanocan Therapeutics Corporation, Princeton, NJ 08540, USA; (J.W.); (E.B.)
| | - Philmo Oh
- Nanocan Therapeutics Corporation, Princeton, NJ 08540, USA; (J.W.); (E.B.)
| | - Eric Broyles
- Nanocan Therapeutics Corporation, Princeton, NJ 08540, USA; (J.W.); (E.B.)
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Department of Biomedical Engineering, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (L.S.K.); (D.C.); (S.M.); (S.A.); (G.S.); (H.H.); (K.D.); (A.V.)
| | - Akila Viswanathan
- Department of Radiation Oncology and Molecular Radiation Sciences, Department of Biomedical Engineering, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (L.S.K.); (D.C.); (S.M.); (S.A.); (G.S.); (H.H.); (K.D.); (A.V.)
| | - Wilfred Ngwa
- Department of Radiation Oncology and Molecular Radiation Sciences, Department of Biomedical Engineering, Johns Hopkins Hospital, Baltimore, MD 21287, USA; (L.S.K.); (D.C.); (S.M.); (S.A.); (G.S.); (H.H.); (K.D.); (A.V.)
- Department of Chemistry and Department of Physics (Medical Physics), University of Massachusetts Lowell, Lowell, MA 01854, USA; (K.F.C.); (E.S.)
| |
Collapse
|
7
|
Awasthi D, Sarode A. Neutrophils at the Crossroads: Unraveling the Multifaceted Role in the Tumor Microenvironment. Int J Mol Sci 2024; 25:2929. [PMID: 38474175 DOI: 10.3390/ijms25052929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Over the past decade, research has prominently established neutrophils as key contributors to the intricate landscape of tumor immune biology. As polymorphonuclear granulocytes within the innate immune system, neutrophils play a pivotal and abundant role, constituting approximately ∼70% of all peripheral leukocytes in humans and ∼10-20% in mice. This substantial presence positions them as the frontline defense against potential threats. Equipped with a diverse array of mechanisms, including reactive oxygen species (ROS) generation, degranulation, phagocytosis, and the formation of neutrophil extracellular traps (NETs), neutrophils undeniably serve as indispensable components of the innate immune system. While these innate functions enable neutrophils to interact with adaptive immune cells such as T, B, and NK cells, influencing their functions, they also engage in dynamic interactions with rapidly dividing tumor cells. Consequently, neutrophils are emerging as crucial regulators in both pro- and anti-tumor immunity. This comprehensive review delves into recent research to illuminate the multifaceted roles of neutrophils. It explores their diverse functions within the tumor microenvironment, shedding light on their heterogeneity and their impact on tumor recruitment, progression, and modulation. Additionally, the review underscores their potential anti-tumoral capabilities. Finally, it provides valuable insights into clinical therapies targeting neutrophils, presenting a promising approach to leveraging innate immunity for enhanced cancer treatment.
Collapse
Affiliation(s)
- Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Aditya Sarode
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
8
|
Fonseca A, Szysz M, Ly HT, Cordeiro C, Sepúlveda N. IgG Antibody Responses to Epstein-Barr Virus in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Their Effective Potential for Disease Diagnosis and Pathological Antigenic Mimicry. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:161. [PMID: 38256421 PMCID: PMC10820613 DOI: 10.3390/medicina60010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Background and Objectives: The diagnosis and pathology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) remain under debate. However, there is a growing body of evidence for an autoimmune component in ME/CFS caused by the Epstein-Barr virus (EBV) and other viral infections. Materials and Methods: In this work, we analyzed a large public dataset on the IgG antibodies to 3054 EBV peptides to understand whether these immune responses could help diagnose patients and trigger pathological autoimmunity; we used healthy controls (HCs) as a comparator cohort. Subsequently, we aimed at predicting the disease status of the study participants using a super learner algorithm targeting an accuracy of 85% when splitting data into train and test datasets. Results: When we compared the data of all ME/CFS patients or the data of a subgroup of those patients with non-infectious or unknown disease triggers to the data of the HC, we could not find an antibody-based classifier that would meet the desired accuracy in the test dataset. However, we could identify a 26-antibody classifier that could distinguish ME/CFS patients with an infectious disease trigger from the HCs with 100% and 90% accuracies in the train and test sets, respectively. We finally performed a bioinformatic analysis of the EBV peptides associated with these 26 antibodies. We found no correlation between the importance metric of the selected antibodies in the classifier and the maximal sequence homology between human proteins and each EBV peptide recognized by these antibodies. Conclusions: In conclusion, these 26 antibodies against EBV have an effective potential for disease diagnosis in a subset of patients. However, the peptides associated with these antibodies are less likely to induce autoimmune B-cell responses that could explain the pathogenesis of ME/CFS.
Collapse
Affiliation(s)
- André Fonseca
- Faculty of Sciences and Technology, University of Algarve, 8005-139 Faro, Portugal; (A.F.); (C.C.)
- CEAUL—Centre of Statistics and its Applications, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Mateusz Szysz
- Faculty of Mathematics & Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland; (M.S.); (H.T.L.)
| | - Hoang Thien Ly
- Faculty of Mathematics & Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland; (M.S.); (H.T.L.)
| | - Clara Cordeiro
- Faculty of Sciences and Technology, University of Algarve, 8005-139 Faro, Portugal; (A.F.); (C.C.)
- CEAUL—Centre of Statistics and its Applications, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Nuno Sepúlveda
- CEAUL—Centre of Statistics and its Applications, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Faculty of Mathematics & Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland; (M.S.); (H.T.L.)
| |
Collapse
|
9
|
Bandyopadhyay S, Gurjar D, Saha B, Bodhale N. Decoding the contextual duality of CD40 functions. Hum Immunol 2023; 84:590-599. [PMID: 37596136 DOI: 10.1016/j.humimm.2023.08.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
Previously, we established that as a function of its mode of interaction with its ligand or cellular conditions such as membrane lipids, preexisting signaling intermediates activation status, a transmembrane receptor, as represented here with CD40, can induce counteractive cellular responses. Using CD40-binding peptides, recombinant mutated CD40-ligands, and an agonistic antibody, we have established the functional duality of CD40. CD40 builds up two constitutionally different signalosomes on lipid raft and non-raft membrane domains initiating two different signaling pathways. Although this initial signaling may be modified by the pre-existing signaling conditions downstream and may be subjected to feed-forward or negative signaling effects, the initial CD40-CD40L interaction plays a crucial role in the functional outcome of CD40. Herein, we have reviewed the influence of interaction between the CD40-CD40L evoking the functional duality of CD40 contingent upon different physiological states of the cells.
Collapse
Affiliation(s)
| | - Dhiraj Gurjar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| |
Collapse
|
10
|
Xu C, Ha X, Yang S, Tian X, Jiang H. Advances in understanding and treating diabetic kidney disease: focus on tubulointerstitial inflammation mechanisms. Front Endocrinol (Lausanne) 2023; 14:1232790. [PMID: 37859992 PMCID: PMC10583558 DOI: 10.3389/fendo.2023.1232790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes that can lead to end-stage kidney disease. Despite its significant impact, most research has concentrated on the glomerulus, with little attention paid to the tubulointerstitial region, which accounts for the majority of the kidney volume. DKD's tubulointerstitial lesions are characterized by inflammation, fibrosis, and loss of kidney function, and recent studies indicate that these lesions may occur earlier than glomerular lesions. Evidence has shown that inflammatory mechanisms in the tubulointerstitium play a critical role in the development and progression of these lesions. Apart from the renin-angiotensin-aldosterone blockade, Sodium-Glucose Linked Transporter-2(SGLT-2) inhibitors and new types of mineralocorticoid receptor antagonists have emerged as effective ways to treat DKD. Moreover, researchers have proposed potential targeted therapies, such as inhibiting pro-inflammatory cytokines and modulating T cells and macrophages, among others. These therapies have demonstrated promising results in preclinical studies and clinical trials, suggesting their potential to treat DKD-induced tubulointerstitial lesions effectively. Understanding the immune-inflammatory mechanisms underlying DKD-induced tubulointerstitial lesions and developing targeted therapies could significantly improve the treatment and management of DKD. This review summarizes the latest advances in this field, highlighting the importance of focusing on tubulointerstitial inflammation mechanisms to improve DKD outcomes.
Collapse
Affiliation(s)
- Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaowen Ha
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
11
|
Choi HK, Travaglino S, Münchhalfen M, Görg R, Zhong Z, Lyu J, Reyes-Aguilar DM, Wienands J, Singh A, Zhu C. Mechanotransduction governs CD40 function and underlies X-linked Hyper IgM syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.23.550231. [PMID: 37546834 PMCID: PMC10401940 DOI: 10.1101/2023.07.23.550231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
B cell maturation in germinal centers (GCs) depends on cognate interactions between the T and B cells. Upon interaction with CD40 ligand (CD40L) on T cells, CD40 delivers co-stimulatory signals alongside B cell antigen receptor (BCR) signaling to regulate affinity maturation and antibody class-switch during GC reaction. Mutations in CD40L disrupt interactions with CD40, which lead to abnormal antibody responses in immune deficiencies known as X-linked Hyper IgM syndrome (X-HIgM). Assuming that physical interactions between highly mobile T and B cells generate mechanical forces on CD40-CD40L bonds, we set out to study the B cell mechanobiology mediated by CD40-CD40L interaction. Using a suite of biophysical assays we find that CD40 forms catch bond with CD40L where the bond lasts longer at larger forces, B cells exert tension on CD40-CD40L bonds, and force enhances CD40 signaling and antibody class-switch. Significantly, X-HIgM CD40L mutations impair catch bond formation, suppress endogenous tension, and reduce force-enhanced CD40 signaling, leading to deficiencies in antibody class switch. Our findings highlight the critical role of mechanotransduction in CD40 function and provide insights into the molecular mechanisms underlying X-HIgM syndrome.
Collapse
|
12
|
Ramachandran R, Krishnan Y, Singh P, Kumar A, Mohanty A. X-linked hyper-immunoglobulin M syndrome harboring a novel CD40-ligand gene mutation: a case report. Immunogenetics 2023; 75:191-194. [PMID: 36478253 DOI: 10.1007/s00251-022-01289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022]
Abstract
The X-linked hyper-IgM syndrome (X-HIGM1) is a rare primary immunodeficiency disorder (PID) caused by mutations in the gene encoding the CD154 protein, also known as CD40 ligand (CD40LG). X-HIGM1 is characterized by normal or elevated serum levels of IgM in association with decreased levels of IgG, IgA, and IgE. The CD40LG protein expressed on activated T cells interacts with its receptor protein, CD40, on B lymphocytes and dendritic cells. Mutations in the CD40LG gene lead to the production of an abnormal CD40L protein that fails to attach to its receptor, CD40 on B cells resulting in failure to produce IgG, IgA, and IgE antibodies. In the present study, we investigated the molecular defects underlying such a PID in a patient presenting with clinical history of pneumonia and acute respiratory distress syndrome (ARDS) at 7 months of age and diagnosed as transient hypogammaglobulinemia with decreased levels of IgG and increased levels of IgM. We have identified a novel and yet to be reported frame shift deletion of a single base pair (c.229delA) in exon 2 (p.Arg77AspfsTer6) of the CD40L gene ensuing the premature truncation of the protein by 6 amino acids by targeted gene sequencing. This frame shift mutation identified as a CD40L variant was found to be pathogenic which was also validated by Sanger sequencing. The in-silico analysis of c.229 del A mutation also predicted the change to be pathological affecting the structure and function of the CD40L (CD40L, CD154) protein and its protein-protein interaction properties.
Collapse
Affiliation(s)
| | - Yamini Krishnan
- MVR Cancer Centre and Research Institute, Kozhikode, Kerala, India
| | - Parminder Singh
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh, India
| | - Ashok Kumar
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh, India
| | - Abhishek Mohanty
- MVR Cancer Centre and Research Institute, Kozhikode, Kerala, India.
- Health Care Global (HCG) Cancer Centre, HCG Towers, #8, P. Kalinga Rao Road, Sampangi Ram Nagar, Bangalore, 560027, India.
| |
Collapse
|
13
|
Pokhrel RH, Kang B, Timilshina M, Chang JH. AMPK Amplifies IL2-STAT5 Signaling to Maintain Stability of Regulatory T Cells in Aged Mice. Int J Mol Sci 2022; 23:ijms232012384. [PMID: 36293240 PMCID: PMC9604214 DOI: 10.3390/ijms232012384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
AMP-activated protein kinase (AMPK), an important regulator of the aging process, is expressed in various immune cells. However, its role in regulatory T cell (Treg) stability during aging is poorly understood. Here, we addressed the role of AMPK in Treg function and stability during aging by generating Treg-specific AMPKα1 knockout mice. In this study, we found that AMPKα1-deficient Tregs failed to control inflammation as effectively as normal Tregs did during aging. AMPK knockout from Tregs reduces STAT5 phosphorylation in response to interleukin (IL)-2 stimulation, thereby destabilizing Tregs by decreasing CD25 expression. Thus, our study addressed the role of AMPK in Tregs in sensing IL-2 signaling to amplify STAT5 phosphorylation, which, in turn, supports Treg stability by maintaining CD25 expression and controlling inflamm-aging.
Collapse
Affiliation(s)
- Ram Hari Pokhrel
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea
| | - Ben Kang
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | | | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence:
| |
Collapse
|
14
|
Wang X, Liu XQ, Jiang L, Huang YB, Zeng HX, Zhu QJ, Qi XM, Wu YG. Paeoniflorin directly binds to TNFR1 to regulate podocyte necroptosis in diabetic kidney disease. Front Pharmacol 2022; 13:966645. [PMID: 36147345 PMCID: PMC9486100 DOI: 10.3389/fphar.2022.966645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Necroptosis was elevated in both tubulointerstitial and glomerular renal tissue in patients with diabetic kidney disease (DKD), and was most pronounced on glomerulus in the stage with macroalbuminuria. This study further explored whether paeoniflorin (PF) could affect podocyte necroptosis to protect kidney injure in vivo and in vitro. Our study firstly verified that there are obvious necroptosis-related changes in the glomeruli of DKD through bioinformatics analysis combined with clinicopathological data. STZ-induced mouse diabetes model and high-glucose induced podocyte injury model were used to evaluate the renoprotection, podocyte injury protection and necroptosis regulation of PF in DKD. Subsequently, the target protein-TNFR1 that PF acted on podocytes was found by computer target prediction, and then molecular docking and Surface plasmon resonance (SPR) experiments were performed to verify that PF had the ability to directly bind to TNFR1 protein. Finally, knockdown of TNFR1 on podocytes in vitro verified that PF mainly regulated the programmed necrosis of podocytes induced by high glucose through TNFR1. In conclusion, PF can directly bind and promote the degradation of TNFR1 in podocytes and then regulate the RIPK1/RIPK3 signaling pathway to affect necroptosis, thus preventing podocyte injury in DKD. Thus, TNFR1 may be used as a new potential target to treat DKD.
Collapse
Affiliation(s)
- Xian Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xue-qi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue-bo Huang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Han-xu Zeng
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qi-jin Zhu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiang-ming Qi
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Xiang-ming Qi, ; Yong-gui Wu,
| | - Yong-gui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Center for Scientific Research of Anhui Medical University, Hefei, China
- *Correspondence: Xiang-ming Qi, ; Yong-gui Wu,
| |
Collapse
|