1
|
Wang X, Liu Y, Chen Z, Wang K, Liu G, Chen T, Zhang B. Genomic Functional Analysis of Novel Radiation-Resistant Species of Knollia sp. nov. S7-12 T from the North Slope of Mount Everest. Microorganisms 2024; 12:1748. [PMID: 39338423 PMCID: PMC11433714 DOI: 10.3390/microorganisms12091748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Radiation protection is an important field of study, as it relates to human health and environmental safety. Radiation-resistance mechanisms in extremophiles are a research hotspot, as this knowledge has great application value in bioremediation and development of anti-radiation drugs. Mount Everest, an extreme environment of high radiation exposure, harbors many bacterial strains resistant to radiation. However, owing to the difficulties in studying them because of the extreme terrain, many remain unexplored. In this study, a novel species (herein, S7-12T) was isolated from the moraine of Mount Everest, and its morphology and functional and genomic characteristics were analyzed. The strain S7-12T is white in color, smooth and rounded, non-spore-forming, and non-motile and can survive at a UV intensity of 1000 J/m2, showing that it is twice as resistant to radiation as Deinococcus radiodurans. Radiation-resistance genes, including IbpA and those from the rec and CspA gene families, were identified. The polyphasic taxonomic approach revealed that the strain S7-12T (=KCTC 59114T =GDMCC 1.3458T) is a new species of the genus Knoellia and is thus proposed to be named glaciei. The in-depth study of the genome of strain S7-12T will enable us to gain further insights into its potential use in radiation resistance. Understanding how microorganisms resist radiation damage could reveal potential biomarkers and therapeutic targets, leading to the discovery of potent anti-radiation compounds, thereby improving human resistance to the threat of radiation.
Collapse
Affiliation(s)
- Xinyue Wang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yang Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiyuan Chen
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Kexin Wang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guangxiu Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
| | - Tuo Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou 730000, China
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
2
|
Błażejczyk K, Havenith G, Szymczak RK. Simulations of the human heat balance during Mount Everest summit attempts in spring and winter. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:351-366. [PMID: 38114844 PMCID: PMC10794380 DOI: 10.1007/s00484-023-02594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/15/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
The majority of research dealing with the impacts of the Himalayan climate on human physiology focuses on low air temperature, high wind speed, and low air pressure and oxygen content, potentially leading to hypothermia and hypoxia. Only a few studies describe the influence of the weather conditions in the Himalayas on the body's ability to maintain thermal balance. The aim of the present research is to trace the heat exchange between humans and their surroundings during a typical, 6-day summit attempt of Mount Everest in the spring and winter seasons. Additionally, an emergency night outdoors without tent protection is considered. Daily variation of the heat balance components were calculated by the MENEX_HA model using meteorological data collected at automatic weather stations installed during a National Geographic expedition in 2019-2020. The data represent the hourly values of the measured meteorological parameters. The research shows that in spite of extreme environmental conditions in the sub-summit zone of Mount Everest during the spring weather window, it is possible to keep heat equilibrium of the climbers' body. This can be achieved by the use of appropriate clothing and by regulating activity level. In winter, extreme environmental conditions in the sub-summit zone make it impossible to maintain heat equilibrium and lead to hypothermia. The emergency night in the sub-peak zone leads to gradual cooling of the body which in winter can cause severe hypothermia of the climber's body. At altitudes < 7000 m, climbers should consider using clothing that allows variation of insulation and active regulation of their fit around the body.
Collapse
Affiliation(s)
- Krzysztof Błażejczyk
- Institute of Geography and Spatial Organization, Polish Academy of Sciences, Twarda 51/55, 02-818, Warszawa, Poland.
| | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough School of Design & Creative Arts, Loughborough University, Loughborough, UK
| | - Robert K Szymczak
- Department of Emergency Medicine, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
3
|
Szymczak RK, Błażejczyk K. Heat Balance When Climbing Mount Everest. Front Physiol 2021; 12:765631. [PMID: 34899390 PMCID: PMC8656231 DOI: 10.3389/fphys.2021.765631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/27/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Mountaineers must control and regulate their thermal comfort and heat balance to survive the rigors of high altitude environment. High altitudes feature low air pressure and temperatures, strong winds and intense solar radiation, key factors affecting an expedition’s success. All these climatic elements stress human heat balance and survival. We assess components of human heat balance while climbing Mt. Everest. Materials and Methods: We calculated climbers’ heat balance using the Man-ENvironment heat EXchange model (MENEX-2005) and derived meteorological data from the National Geographic Expedition’s in situ dataset. Three weather stations sited between 3810 and 7945 m a.s.l. provided data with hourly resolution. We used data for summer (1 May–15 August 2019) and winter (16 October 2019–6 January 2020) seasons to analyze heat balance elements of convection, evaporation, respiration and radiation (solar and thermal). Results: Meteorological and other factors affecting physiology—such as clothing insulation of 3.5–5.5 clo and activity levels of 3–5 MET—regulate human heat balance. Elevation above sea level is the main element affecting heat balance. In summer two to three times more solar radiation can be absorbed at the summit of the mountain than at the foot. Low air pressure reduces air density, which reduces convective heat loss at high altitude by up to half of the loss at lower locations with the same wind speed and air temperature. Conclusion: 1. Alpinists face little risk of overheating or overcooling while actively climbing Mt. Everest, despite the potential risk of overcooling at extreme altitudes on Mt. Everest in winter. 2. Convection and evaporation are responsible for most of the heat lost at altitude. 3. Levels of physical activity and clothing insulation play the greatest role in counteracting heat loss at high altitude.
Collapse
Affiliation(s)
- Robert K Szymczak
- Department of Emergency Medicine, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Błażejczyk
- Climate Impacts Laboratory, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Observations of Winter Ablation on Glaciers in the Mount Everest Region in 2020–2021. REMOTE SENSING 2021. [DOI: 10.3390/rs13142692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent observations of rising snow lines and reduced snow-covered areas on glaciers during the October 2020–January 2021 period in the Nepal–China region of Mount Everest in Landsat and Sentinel imagery highlight observations that significant ablation has occurred in recent years on many Himalayan glaciers in the post-monsoon and early winter periods. For the first time, we now have weather stations providing real-time data in the Mount Everest region that may sufficiently transect the post-monsoon snow line elevation region. These sensors have been placed by the Rolex National Geographic Perpetual Planet expedition. Combining in situ weather records and remote sensing data provides a unique opportunity to examine the impact of the warm and dry conditions during the 2020 post-monsoon period through to the 2020/2021 winter on glaciers in the Mount Everest region. The ablation season extended through January 2021. Winter (DJF) ERA5 reanalysis temperature reconstructions for Everest Base Camp (5315 m) for the 1950–February 2021 period indicate that six days in the January 10–15 period in 2021 fell in the top 1% of all winter days since 1950, with January 13, January 14, and January 12, being the first, second, and third warmest winter days in the 72-year period. This has also led to the highest freezing levels in winter for the 1950–2021 period, with the January 12–14 period being the only period in winter with a freezing level above 6000 m.
Collapse
|
5
|
Szymczak RK, Marosz M, Grzywacz T, Sawicka M, Naczyk M. Death Zone Weather Extremes Mountaineers Have Experienced in Successful Ascents. Front Physiol 2021; 12:696335. [PMID: 34290622 PMCID: PMC8287323 DOI: 10.3389/fphys.2021.696335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 01/15/2023] Open
Abstract
Background Few data are available on mountaineers’ survival prospects in extreme weather above 8000 m (the Death Zone). We aimed to assess Death Zone weather extremes experienced in climbing-season ascents of Everest and K2, all winter ascents of 8000 m peaks (8K) in the Himalayas and Karakoram, environmental records of human survival, and weather extremes experienced with and without oxygen support. Materials and Methods We analyzed 528 ascents of 8K peaks: 423 non-winter ascents without supplemental oxygen (Everest–210, K2–213), 76 ascents in winter without oxygen, and 29 in winter with oxygen. We assessed environmental conditions using the ERA5 dataset (1978–2021): barometric pressure (BP), temperature (Temp), wind speed (Wind), wind chill equivalent temperature (WCT), and facial frostbite time (FFT). Results The most extreme conditions that climbers have experienced with and without supplemental oxygen were: BP 320 hPa (winter Everest) vs. 329 hPa (non-winter Everest); Temp –41°C (winter Everest) vs. –45°C (winter Nanga Parbat); Wind 46 m⋅s–1 (winter Everest) vs. 48 m⋅s–1 (winter Kangchenjunga). The most extreme combined conditions of BP ≤ 333 hPa, Temp ≤ −30°C, Wind ≥ 25 m⋅s–1, WCT ≤ −54°C and FFT ≤ 3 min were encountered in 14 ascents of Everest, two without oxygen (late autumn and winter) and 12 oxygen-supported in winter. The average extreme conditions experienced in ascents with and without oxygen were: BP 326 ± 3 hPa (winter Everest) vs. 335 ± 2 hPa (non-winter Everest); Temp −40 ± 0°C (winter K2) vs. −38 ± 5°C (winter low Karakoram 8K peaks); Wind 36 ± 7 m⋅s–1 (winter Everest) vs. 41 ± 9 m⋅s–1 (winter high Himalayan 8K peaks). Conclusions
Collapse
Affiliation(s)
- Robert K Szymczak
- Department of Emergency Medicine, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Marosz
- Institute of Meteorology and Water Management - National Research Institute, Warsaw, Poland
| | - Tomasz Grzywacz
- Institute of Physical Culture, Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
| | - Magdalena Sawicka
- Department of Neurology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Marta Naczyk
- Department of Nutritional Biochemistry, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
6
|
Szymczak RK, Pyka MK, Grzywacz T, Marosz M, Naczyk M, Sawicka M. Comparison of Environmental Conditions on Summits of Mount Everest and K2 in Climbing and Midwinter Seasons. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18063040. [PMID: 33809531 PMCID: PMC8000062 DOI: 10.3390/ijerph18063040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 12/02/2022]
Abstract
(1) Background: Today’s elite alpinists target K2 and Everest in midwinter. This study aimed to asses and compare weather at the summits of both peaks in the climbing season (Everest, May; K2, July) and the midwinter season (January and February). (2) Methods: We assessed environmental conditions using the ERA5 dataset (1979–2019). Analyses examined barometric pressure (BP), temperature (Temp), wind speed (Wind), perceived altitude (Alt), maximal oxygen uptake (VO2max), vertical climbing speed (Speed), wind chill equivalent temperature (WCT), and facial frostbite time (FFT). (3) Results: Most climbing-season parameters were found to be more severe (p < 0.05) on Everest than on K2: BP (333 ± 1 vs. 347 ± 1 hPa), Alt (8925 ± 20 vs. 8640 ± 20 m), VO2max (16.2 ± 0.1 vs. 17.8 ± 0.1 ml·kg−1·min−1), Speed (190 ± 2 vs. 223 ± 2 m·h−1), Temp (−26 ± 1 vs. −21 ± 1°C), WCT (−45 ± 2 vs. −37 ± 2 °C), and FFT (6 ± 1 vs. 11 ± 2 min). Wind was found to be similar (16 ± 3 vs. 15 ± 3 m·s−1). Most midwinter parameters were found to be worse (p < 0.05) on Everest vs. K2: BP (324 ± 2 vs. 326 ± 2 hPa), Alt (9134 ± 40 vs. 9095 ± 48 m), VO2max (15.1 ± 0.2 vs. 15.3 ± 0.3 ml·kg−1·min−1), Speed (165 ± 5 vs. 170 ± 6 m·h−1), Wind (41 ± 6 vs. 27 ± 4 m·s−1), and FFT (<1 min vs. 1 min). Everest’s Temp of −36 ± 2 °C and WCT −66 ± 3 °C were found to be less extreme than K2’s Temp of −45 ± 1 °C and WCT −76 ± 2 °C. (4) Conclusions: Everest presents more extreme conditions in the climbing and midwinter seasons than K2. K2’s 8° higher latitude makes its midwinter BP similar and Temp lower than Everest’s. K2’s midwinter conditions are more severe than Everest’s in the climbing season.
Collapse
Affiliation(s)
- Robert K. Szymczak
- Department of Emergency Medicine, Faculty of Health Sciences, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
- Polish Mountaineering Association, Polish National K2 Winter Expedition 2018 Support Team, Mokotowska 24, 00-561 Warszawa, Poland;
- Correspondence: ; Tel.: +48-667-674141
| | - Michał K. Pyka
- Polish Mountaineering Association, Polish National K2 Winter Expedition 2018 Support Team, Mokotowska 24, 00-561 Warszawa, Poland;
| | - Tomasz Grzywacz
- Institute of Physical Culture, Kazimierz Wielki University in Bydgoszcz, Chodkiewicza 30, 85-064 Bydgoszcz, Poland;
| | - Michał Marosz
- Institute of Meteorology and Water Management—National Research Institute, Waszyngtona 42, 81-342 Gdynia, Poland;
| | - Marta Naczyk
- Polish Mountaineering Association, Polish National K2 Winter Expedition 2018 Support Team, Mokotowska 24, 00-561 Warszawa, Poland;
- Department of Nutritional Biochemistry, Faculty of Health Sciences, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Magdalena Sawicka
- Department of Neurology, Faculty of Medicine, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland;
| |
Collapse
|