1
|
Singh K, Verma P, Srivastava R, Rustagi Y, Kumar M, Verma SS, Mohanty S, Beheshti A, Warren L, Sen CK. Mission SpaceX CRS-19 RRRM-1 space flight induced skin genomic plasticity via an epigenetic trigger. iScience 2024; 27:111382. [PMID: 39687026 PMCID: PMC11647166 DOI: 10.1016/j.isci.2024.111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/11/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Genomic plasticity helps adapt to extreme environmental conditions. We tested the hypothesis that exposure to space environment (ESE) impacts the epigenome inducing genomic plasticity. Murine skin samples from the Rodent Research Reference Mission-1 were procured from the International Space Station (ISS) National Laboratory. Targeted RNA sequencing to test differential gene expression between the skin of ESE versus ground controls revealed upregulation of VEGF-mediated angiogenesis pathways secondary to promoter hypomethylation in responders. Methylome sequencing identified ESE-sensitive hypomethylated genes including developmental angiogenic genes Araf, Vegfb, and Vegfr1. Based on differentially expressed genes, the angiogenesis biofunction was enriched in responders. The induction of genomic plasticity in response to ESE, as reported herein, may be viewed as a mark of biological resilience that is evident in a minority of organisms, responders but not in non-responders, exposed to the same stressor. Inducible genomic plasticity may be implicated in natural resilience to ESE.
Collapse
Affiliation(s)
- Kanhaiya Singh
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Priyanka Verma
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rajneesh Srivastava
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yashika Rustagi
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Manishekhar Kumar
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sumit S. Verma
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujit Mohanty
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Afshin Beheshti
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Liz Warren
- Center for the Advancement of Science in Space, Houston, TX, USA
| | - Chandan K. Sen
- Center for Space Biomedicine at McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
2
|
Sanders LM, Scott RT, Yang JH, Qutub AA, Garcia Martin H, Berrios DC, Hastings JJA, Rask J, Mackintosh G, Hoarfrost AL, Chalk S, Kalantari J, Khezeli K, Antonsen EL, Babdor J, Barker R, Baranzini SE, Beheshti A, Delgado-Aparicio GM, Glicksberg BS, Greene CS, Haendel M, Hamid AA, Heller P, Jamieson D, Jarvis KJ, Komarova SV, Komorowski M, Kothiyal P, Mahabal A, Manor U, Mason CE, Matar M, Mias GI, Miller J, Myers JG, Nelson C, Oribello J, Park SM, Parsons-Wingerter P, Prabhu RK, Reynolds RJ, Saravia-Butler A, Saria S, Sawyer A, Singh NK, Snyder M, Soboczenski F, Soman K, Theriot CA, Van Valen D, Venkateswaran K, Warren L, Worthey L, Zitnik M, Costes SV. Biological research and self-driving labs in deep space supported by artificial intelligence. NAT MACH INTELL 2023. [DOI: 10.1038/s42256-023-00618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
3
|
Barker R, Kruse CPS, Johnson C, Saravia-Butler A, Fogle H, Chang HS, Trane RM, Kinscherf N, Villacampa A, Manzano A, Herranz R, Davin LB, Lewis NG, Perera I, Wolverton C, Gupta P, Jaiswal P, Reinsch SS, Wyatt S, Gilroy S. Meta-analysis of the space flight and microgravity response of the Arabidopsis plant transcriptome. NPJ Microgravity 2023; 9:21. [PMID: 36941263 PMCID: PMC10027818 DOI: 10.1038/s41526-023-00247-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/10/2023] [Indexed: 03/23/2023] Open
Abstract
Spaceflight presents a multifaceted environment for plants, combining the effects on growth of many stressors and factors including altered gravity, the influence of experiment hardware, and increased radiation exposure. To help understand the plant response to this complex suite of factors this study compared transcriptomic analysis of 15 Arabidopsis thaliana spaceflight experiments deposited in the National Aeronautics and Space Administration's GeneLab data repository. These data were reanalyzed for genes showing significant differential expression in spaceflight versus ground controls using a single common computational pipeline for either the microarray or the RNA-seq datasets. Such a standardized approach to analysis should greatly increase the robustness of comparisons made between datasets. This analysis was coupled with extensive cross-referencing to a curated matrix of metadata associated with these experiments. Our study reveals that factors such as analysis type (i.e., microarray versus RNA-seq) or environmental and hardware conditions have important confounding effects on comparisons seeking to define plant reactions to spaceflight. The metadata matrix allows selection of studies with high similarity scores, i.e., that share multiple elements of experimental design, such as plant age or flight hardware. Comparisons between these studies then helps reduce the complexity in drawing conclusions arising from comparisons made between experiments with very different designs.
Collapse
Affiliation(s)
- Richard Barker
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - Colin P S Kruse
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM, 87545, USA
| | | | - Amanda Saravia-Butler
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Logyx, LLC, Mountain View, CA, 94043, USA
| | - Homer Fogle
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
- Bionetics, Yorktown, VA, 23693, USA
| | - Hyun-Seok Chang
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - Ralph Møller Trane
- Department of Statistics, University of Wisconsin, Madison, WI, 53706, USA
| | - Noah Kinscherf
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA
| | - Alicia Villacampa
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040, Madrid, Spain
| | - Aránzazu Manzano
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040, Madrid, Spain
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040, Madrid, Spain
| | - Laurence B Davin
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-741, USA
| | - Norman G Lewis
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-741, USA
| | - Imara Perera
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Chris Wolverton
- Department of Botany and Microbiology, Ohio Wesleyan University, Delaware, OH, 43015, USA
| | - Parul Gupta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sigrid S Reinsch
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Sarah Wyatt
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, 45701, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
4
|
Overbey EG, Das S, Cope H, Madrigal P, Andrusivova Z, Frapard S, Klotz R, Bezdan D, Gupta A, Scott RT, Park J, Chirko D, Galazka JM, Costes SV, Mason CE, Herranz R, Szewczyk NJ, Borg J, Giacomello S. Challenges and considerations for single-cell and spatially resolved transcriptomics sample collection during spaceflight. CELL REPORTS METHODS 2022; 2:100325. [PMID: 36452864 PMCID: PMC9701605 DOI: 10.1016/j.crmeth.2022.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) have experienced rapid development in recent years. The findings of spaceflight-based scRNA-seq and SRT investigations are likely to improve our understanding of life in space and our comprehension of gene expression in various cell systems and tissue dynamics. However, compared to their Earth-based counterparts, gene expression experiments conducted in spaceflight have not experienced the same pace of development. Out of the hundreds of spaceflight gene expression datasets available, only a few used scRNA-seq and SRT. In this perspective piece, we explore the growing importance of scRNA-seq and SRT in space biology and discuss the challenges and considerations relevant to robust experimental design to enable growth of these methods in the field.
Collapse
Affiliation(s)
- Eliah G. Overbey
- Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, New York, NY, USA
| | - Saswati Das
- Department of Biochemistry, Atal Bihari Vajpayee Institute of Medical Sciences & Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Henry Cope
- School of Medicine, University of Nottingham, Derby DE22 3DT, UK
| | - Pedro Madrigal
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Hinxton, UK
| | - Zaneta Andrusivova
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Solène Frapard
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rebecca Klotz
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Daniela Bezdan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
- NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, German
- yuri GmbH, Meckenbeuren, Germany
| | | | - Ryan T. Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | | | - Jonathan M. Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Sylvain V. Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Christopher E. Mason
- Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, New York, NY, USA
| | - Raul Herranz
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid 28040, Spain
| | - Nathaniel J. Szewczyk
- School of Medicine, University of Nottingham, Derby DE22 3DT, UK
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Joseph Borg
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Stefania Giacomello
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
5
|
Acute stress induces severe neural inflammation and overactivation of glucocorticoid signaling in interleukin-18-deficient mice. Transl Psychiatry 2022; 12:404. [PMID: 36151082 PMCID: PMC9508168 DOI: 10.1038/s41398-022-02175-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
Interleukin-18 (IL18) is an inflammatory cytokine that is related to psychiatric disorders such as depression and cognitive impairment. We previously found that IL18 deficiency may cause hippocampal impairment, resulting in depression-like behavioral changes. However, the potential role of IL18 in stressful conditions remains uncertain. In the present study, we examined the effect of IL18 on neural inflammation and stress tolerance during acute stress. Littermate Il18+/+ and Il18-/- mice were exposed to a single restraint stress for 6 h, and all assessments were performed 18 h after the mice were released from the restraint. In Il18-/- mice exposed to acute stress, the immobility times in both the forced swim test and tail suspension test were decreased, although no difference was observed in Il18+/+ mice. Il1β, Il6, and Tnfα expression levels in the hippocampus of stressed Il18-/- mice were significantly higher than those in the other groups. Moreover, the numbers of astrocytes and microglia, including those in the active form, were also increased compared with those in other groups. Regarding the molecular mechanism, the HSF5 and TTR genes were specifically expressed in stressed Il18-/- mice. As a potential treatment, intracerebral administration of IL18 to Il18-/- mice resulted in partial recovery of changes in behavioral assessments. Our results revealed that IL18-deficient mice were more sensitive and had a longer response to acute stress than that in normal mice. In addition, neural inflammation and augmentation of glucocorticoid signals caused by stress were more intense and remained longer in Il18-/- mice, resulting in behavioral changes. In conclusion, IL18 might be an indispensable factor that modulates the stress response and maintains balance between neural inflammation and glucocorticoid signaling.
Collapse
|
6
|
Mhatre SD, Iyer J, Petereit J, Dolling-Boreham RM, Tyryshkina A, Paul AM, Gilbert R, Jensen M, Woolsey RJ, Anand S, Sowa MB, Quilici DR, Costes SV, Girirajan S, Bhattacharya S. Artificial gravity partially protects space-induced neurological deficits in Drosophila melanogaster. Cell Rep 2022; 40:111279. [PMID: 36070701 PMCID: PMC10503492 DOI: 10.1016/j.celrep.2022.111279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/16/2022] [Accepted: 08/05/2022] [Indexed: 02/03/2023] Open
Abstract
Spaceflight poses risks to the central nervous system (CNS), and understanding neurological responses is important for future missions. We report CNS changes in Drosophila aboard the International Space Station in response to spaceflight microgravity (SFμg) and artificially simulated Earth gravity (SF1g) via inflight centrifugation as a countermeasure. While inflight behavioral analyses of SFμg exhibit increased activity, postflight analysis displays significant climbing defects, highlighting the sensitivity of behavior to altered gravity. Multi-omics analysis shows alterations in metabolic, oxidative stress and synaptic transmission pathways in both SFμg and SF1g; however, neurological changes immediately postflight, including neuronal loss, glial cell count alterations, oxidative damage, and apoptosis, are seen only in SFμg. Additionally, progressive neuronal loss and a glial phenotype in SF1g and SFμg brains, with pronounced phenotypes in SFμg, are seen upon acclimation to Earth conditions. Overall, our results indicate that artificial gravity partially protects the CNS from the adverse effects of spaceflight.
Collapse
Affiliation(s)
- Siddhita D Mhatre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA; COSMIAC Research Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Janani Iyer
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA; Universities Space Research Association, Mountain View, CA 94043, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA
| | - Roberta M Dolling-Boreham
- Department of Electrical and Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada; Blue Marble Space Institute of Science, Seattle, WA 94035, USA
| | - Anastasia Tyryshkina
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Universities Space Research Association, Mountain View, CA 94043, USA; Blue Marble Space Institute of Science, Seattle, WA 94035, USA; NASA Postdoctoral Program, Universities Space Research Association, NASA Ames Research Center, Moffett Field, CA 94035, USA; Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL 32114, USA
| | - Rachel Gilbert
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; NASA Postdoctoral Program, Universities Space Research Association, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Matthew Jensen
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Sulekha Anand
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Marianne B Sowa
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - David R Quilici
- Nevada Proteomics Center, University of Nevada, Reno, NV 89557, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Santhosh Girirajan
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; Biological and Physical Sciences Division, NASA Headquarters, Washington DC 20024, USA.
| |
Collapse
|
7
|
Rad-Bio-App: a discovery environment for biologists to explore spaceflight-related radiation exposures. NPJ Microgravity 2021; 7:15. [PMID: 33976230 PMCID: PMC8113475 DOI: 10.1038/s41526-021-00143-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
In addition to microgravity, spaceflight simultaneously exposes biology to a suite of other stimuli. For example, in space, organisms experience ionizing radiation environments that significantly differ in both quality and quantity from those normally experienced on Earth. However, data on radiation exposure during space missions is often complex to access and to understand, limiting progress towards defining how radiation affects organisms against the unique background of spaceflight. To help address this challenge, we have developed the Rad-Bio-App. This web-accessible database imports radiation metadata from experiments archived in NASA’s GeneLab data repository, and then allows the user to explore these experiments both in the context of their radiation exposure and through their other metadata and results. Rad-Bio-App provides an easy-to-use, graphically-driven environment to enable both radiation biologists and non-specialist researchers to visualize, and understand the impact of ionizing radiation on various biological systems in the context of spaceflight.
Collapse
|
8
|
Overbey EG, Saravia-Butler AM, Zhang Z, Rathi KS, Fogle H, da Silveira WA, Barker RJ, Bass JJ, Beheshti A, Berrios DC, Blaber EA, Cekanaviciute E, Costa HA, Davin LB, Fisch KM, Gebre SG, Geniza M, Gilbert R, Gilroy S, Hardiman G, Herranz R, Kidane YH, Kruse CP, Lee MD, Liefeld T, Lewis NG, McDonald JT, Meller R, Mishra T, Perera IY, Ray S, Reinsch SS, Rosenthal SB, Strong M, Szewczyk NJ, Tahimic CG, Taylor DM, Vandenbrink JP, Villacampa A, Weging S, Wolverton C, Wyatt SE, Zea L, Costes SV, Galazka JM. NASA GeneLab RNA-seq consensus pipeline: standardized processing of short-read RNA-seq data. iScience 2021; 24:102361. [PMID: 33870146 PMCID: PMC8044432 DOI: 10.1016/j.isci.2021.102361] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/30/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
With the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes. This data analysis pipeline and the results of its execution using data submitted to GeneLab are now all publicly available through the GeneLab database. We present here the full details and rationale for the construction of this pipeline in order to promote transparency, reproducibility, and reusability of pipeline data; to provide a template for data processing of future spaceflight-relevant datasets; and to encourage cross-analysis of data from other databases with the data available in GeneLab.
Collapse
Affiliation(s)
- Eliah G. Overbey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Amanda M. Saravia-Butler
- Logyx, LLC, Mountain View, CA 94043, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Komal S. Rathi
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Homer Fogle
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- The Bionetics Corporation, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Willian A. da Silveira
- Institute for Global Food Security (IGFS) & School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Richard J. Barker
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Joseph J. Bass
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham & National Institute for Health Research Nottingham Biomedical Research Centre, Derby DE22 3DT, UK
| | - Afshin Beheshti
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel C. Berrios
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Elizabeth A. Blaber
- Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Helio A. Costa
- Departments of Pathology, and of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laurence B. Davin
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Kathleen M. Fisch
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samrawit G. Gebre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | - Rachel Gilbert
- NASA Postdoctoral Program, Universities Space Research Association, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Gary Hardiman
- Institute for Global Food Security (IGFS) & School of Biological Sciences, Queen's University Belfast, Belfast, UK
- Medical University of South Carolina, Charleston, SC, USA
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Yared H. Kidane
- Center for Pediatric Bone Biology and Translational Research, Texas Scottish Rite Hospital for Children, 2222 Welborn St., Dallas, TX 75219, USA
| | - Colin P.S. Kruse
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545, USA
| | - Michael D. Lee
- Exobiology Branch, NASA Ames Research Center, Mountain View, CA 94035, USA
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Ted Liefeld
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Norman G. Lewis
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - J. Tyson McDonald
- Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Robert Meller
- Department of Neurobiology and Pharmacology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Tejaswini Mishra
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Imara Y. Perera
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Shayoni Ray
- NGM Biopharmaceuticals, South San Francisco, CA 94080, USA
| | - Sigrid S. Reinsch
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael Strong
- National Jewish Health, Center for Genes, Environment, and Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Nathaniel J. Szewczyk
- Ohio Musculoskeletal and Neurological Institute and Department of Biomedical Sciences, Ohio University, Athens, OH 43147, USA
| | | | - Deanne M. Taylor
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia and the Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Alicia Villacampa
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Silvio Weging
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, Halle 06120, Germany
| | - Chris Wolverton
- Department of Botany and Microbiology, Ohio Wesleyan University, Delaware, OH, USA
| | - Sarah E. Wyatt
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| | - Luis Zea
- BioServe Space Technologies, Aerospace Engineering Sciences Department, University of Colorado Boulder, Boulder 80303 USA
| | - Sylvain V. Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Jonathan M. Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| |
Collapse
|