1
|
Wang C, Liu Y, Chang J, He Y, Yang P, Fu J, Du W, Ma C, Liu G, Guo Y, Liu C. Genetically engineered BMSCs promote dopamine secretion and ameliorate motor dysfunction in a Parkinson's disease rat model. Sci Rep 2025; 15:12514. [PMID: 40217082 PMCID: PMC11992172 DOI: 10.1038/s41598-025-97557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 04/06/2025] [Indexed: 04/14/2025] Open
Abstract
Regenerative therapy based on mesenchymal stem cells (MSCs) is regarded as a promising strategy for treating Parkinson's disease (PD). Previous studies have shown that mesenchymal stem cell transplantation has the potential to treat Parkinson's disease, but its specific mechanism of action is still unclear. In the present study, we generate genetically engineered bone marrow mesenchymal stem cells (BMSCs) encoding three critical genes (TH, DDC, and GCH1) for dopamine synthesis (DA-BMSCs). The DA-BMSCs maintain their MSCs characteristics and stable ability to secrete dopamine after passage. Moreover, the DA-BMSCs survived and functioned in a rat model of PD treated with 6-OHDA 8 weeks after transplantation. Histological studies showed that DA-BMSCs could differentiate into various functional neurons and astrocytes, and DA-BMSCs derived mature dopaminergic neurons extended dense neurites into the host striatum. Importantly, DA-BMSCs promoted the reconstruction of midbrain dopamine pathways by upregulating striatal dopamine and 5-HT levels and downregulating the levels of inflammatory factors including IL-6, TNF-α, and IL-10. These findings suggest that engineered mesenchymal stem cell transplantation for dopamine synthesis may be an attractive donor material for treating Parkinson's disease.
Collapse
Affiliation(s)
- Chunjing Wang
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Yang Liu
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Junyan Chang
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Yiqin He
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Pan Yang
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Jingjing Fu
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Wanying Du
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Caiyun Ma
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Gaofeng Liu
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Yu Guo
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China.
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, 233000, Anhui, China.
| | - Changqing Liu
- Anhui Engineering Research Center for Neural Regeneration Technology and Medical New Materials, Bengbu Medical University, Bengbu, 233000, China.
- School of Life Sciences, Bengbu Medical University, Bengbu, 233000, Anhui, China.
| |
Collapse
|
2
|
Deng S, Xie H, Xie B. Cell-based regenerative and rejuvenation strategies for treating neurodegenerative diseases. Stem Cell Res Ther 2025; 16:167. [PMID: 40189500 PMCID: PMC11974143 DOI: 10.1186/s13287-025-04285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/19/2025] [Indexed: 04/09/2025] Open
Abstract
Neurodegenerative diseases including Alzheimer's and Parkinson's disease are age-related disorders which severely impact quality of life and impose significant societal burdens. Cellular senescence is a critical factor in these disorders, contributing to their onset and progression by promoting permanent cell cycle arrest and reducing cellular function, affecting various types of cells in brain. Recent advancements in regenerative medicine have highlighted "R3" strategies-rejuvenation, regeneration, and replacement-as promising therapeutic approaches for neurodegeneration. This review aims to critically analyze the role of cellular senescence in neurodegenerative diseases and organizes therapeutic approaches within the R3 regenerative medicine paradigm. Specifically, we examine stem cell therapy, direct lineage reprogramming, and partial reprogramming in the context of R3, emphasizing how these interventions mitigate cellular senescence and counteracting aging-related neurodegeneration. Ultimately, this review seeks to provide insights into the complex interplay between cellular senescence and neurodegeneration while highlighting the promise of cell-based regenerative strategies to address these debilitating conditions.
Collapse
Affiliation(s)
- Sixiu Deng
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China
- Department of Gastroenterology, The Shapingba Hospital, Chongqing University( People's Hospital of Shapingba District), Chongqing, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China.
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Frawley L, Taylor NT, Sivills O, McPhillamy E, To TD, Wu Y, Chin BY, Wong CY. Stem Cell Therapy for the Treatment of Amyotrophic Lateral Sclerosis: Comparison of the Efficacy of Mesenchymal Stem Cells, Neural Stem Cells, and Induced Pluripotent Stem Cells. Biomedicines 2024; 13:35. [PMID: 39857620 PMCID: PMC11763168 DOI: 10.3390/biomedicines13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, is a debilitating, incurable neurodegenerative disorder characterised by motor neuron death in the spinal cord, brainstem, and motor cortex. With an incidence rate of about 4.42 cases per 100,000 people annually, ALS severely impacts motor function and quality of life, causing progressive muscle atrophy, spasticity, paralysis, and eventually death. The cause of ALS is largely unknown, with 90% of cases being sporadic and 10% familial. Current research targets molecular mechanisms of inflammation, excitotoxicity, aggregation-prone proteins, and proteinopathy. METHODS This review evaluates the efficacy of three stem cell types in ALS treatment: mesenchymal stem cells (MSCs), neural stem cells (NSCs), and induced pluripotent stem cells (iPSCs). RESULTS MSCs, derived from various tissues, show neuroprotective and regenerative qualities, with clinical trials suggesting potential benefits but limited by small sample sizes and non-randomised designs. NSCs, isolated from the fetal spinal cord or brain, demonstrate promise in animal models but face functional integration and ethical challenges. iPSCs, created by reprogramming patient-specific somatic cells, offer a novel approach by potentially replacing or supporting neurons. iPSC therapy addresses ethical issues related to embryonic stem cells but encounters challenges regarding genotoxicity and epigenetic irregularities, somatic cell sources, privacy concerns, the need for extensive clinical trials, and high reprogramming costs. CONCLUSIONS This research is significant for advancing ALS treatment beyond symptomatic relief and modest survival extensions to actively modifying disease progression and improving patient outcomes. Successful stem cell therapies could lead to new ALS treatments, slowing motor function loss and reducing symptom severity.
Collapse
Affiliation(s)
- Lauren Frawley
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong 2500, Australia; (L.F.); (O.S.); (E.M.)
| | - Noam Tomer Taylor
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia; (N.T.T.); (T.D.T.); (Y.W.)
| | - Olivia Sivills
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong 2500, Australia; (L.F.); (O.S.); (E.M.)
| | - Ella McPhillamy
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong 2500, Australia; (L.F.); (O.S.); (E.M.)
| | - Timothy Duy To
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia; (N.T.T.); (T.D.T.); (Y.W.)
| | - Yibo Wu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia; (N.T.T.); (T.D.T.); (Y.W.)
| | - Beek Yoke Chin
- School of Health Sciences, IMU University, Kuala Lumpur 57000, Malaysia
- Center for Cancer & Stem Cell Research, Institute for Research, Development and Innovation (IRDI), IMU University, Kuala Lumpur 57000, Malaysia
| | - Chiew Yen Wong
- School of Health Sciences, IMU University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
4
|
Wei Y, Zhong S, Yang H, Wang X, Lv B, Bian Y, Pei Y, Xu C, Zhao Q, Wu Y, Luo D, Wang F, Sun H, Chen Y. Current therapy in amyotrophic lateral sclerosis (ALS): A review on past and future therapeutic strategies. Eur J Med Chem 2024; 272:116496. [PMID: 38759454 DOI: 10.1016/j.ejmech.2024.116496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the first and second motoneurons (MNs), associated with muscle weakness, paralysis and finally death. The exact etiology of the disease still remains unclear. Currently, efforts to develop novel ALS treatments which target specific pathomechanisms are being studied. The mechanisms of ALS pathogenesis involve multiple factors, such as protein aggregation, glutamate excitotoxicity, oxidative stress, mitochondrial dysfunction, apoptosis, inflammation etc. Unfortunately, to date, there are only two FDA-approved drugs for ALS, riluzole and edavarone, without curative treatment for ALS. Herein, we give an overview of the many pathways and review the recent discovery and preclinical characterization of neuroprotective compounds. Meanwhile, drug combination and other therapeutic approaches are also reviewed. In the last part, we analyze the reasons of clinical failure and propose perspective on the treatment of ALS in the future.
Collapse
Affiliation(s)
- Yuqing Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sheng Zhong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Huajing Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xueqing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bingbing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunlei Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qun Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yulan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Daying Luo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
5
|
Ohkura T, Burns AJ, Hotta R. Updates and Challenges in ENS Cell Therapy for the Treatment of Neurointestinal Diseases. Biomolecules 2024; 14:229. [PMID: 38397466 PMCID: PMC10887039 DOI: 10.3390/biom14020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Neurointestinal diseases represent a significant challenge in clinical management with current palliative approaches failing to overcome disease and treatment-related morbidity. The recent progress with cell therapy to restore missing or defective components of the gut neuromusculature offers new hope for potential cures. This review discusses the progress that has been made in the sourcing of putative stem cells and the studies into their biology and therapeutic potential. We also explore some of the practical challenges that must be overcome before cell-based therapies can be applied in the clinical setting. Although a number of obstacles remain, the rapid advances made in the enteric neural stem cell field suggest that such therapies are on the near horizon.
Collapse
Affiliation(s)
- Takahiro Ohkura
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
| | - Alan J. Burns
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
| |
Collapse
|
6
|
Watanabe M, Miyamoto H, Okamoto K, Nakano K, Matsunari H, Kazuki K, Hasegawa K, Uchikura A, Takayanagi S, Umeyama K, Hiramuki Y, Kemter E, Klymuik N, Kurome M, Kessler B, Wolf E, Kazuki Y, Nagashima H. Phenotypic features of dystrophin gene knockout pigs harboring a human artificial chromosome containing the entire dystrophin gene. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:444-453. [PMID: 37588685 PMCID: PMC10425850 DOI: 10.1016/j.omtn.2023.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
Mammalian artificial chromosomes have enabled the introduction of extremely large amounts of genetic information into animal cells in an autonomously replicating, nonintegrating format. However, the evaluation of human artificial chromosomes (HACs) as novel tools for curing intractable hereditary disorders has been hindered by the limited efficacy of the delivery system. We generated dystrophin gene knockout (DMD-KO) pigs harboring the HAC bearing the entire human DMD via a somatic cell cloning procedure (DYS-HAC-cloned pig). Restored human dystrophin expression was confirmed by immunofluorescence staining in the skeletal muscle of the DYS-HAC-cloned pigs. Viability at the first month postpartum of the DYS-HAC-cloned pigs, including motor function in the hind leg and serum creatinine kinase level, was improved significantly when compared with that in the original DMD-KO pigs. However, decrease in systemic retention of the DYS-HAC vector and limited production of the DMD protein might have caused severe respiratory impairment with general prostration by 3 months postpartum. The results demonstrate that the use of transchromosomic cloned pigs permitted a straightforward estimation of the efficacy of the DYS-HAC carried in affected tissues/organs in a large-animal disease model, providing novel insights into the therapeutic application of exogenous mammalian artificial chromosomes.
Collapse
Affiliation(s)
- Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hitomaru Miyamoto
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Kazutoshi Okamoto
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Koki Hasegawa
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ayuko Uchikura
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Shuko Takayanagi
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Yosuke Hiramuki
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Nikolai Klymuik
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Mayuko Kurome
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Eckhard Wolf
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Yasuhiro Kazuki
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
7
|
Cecerska-Heryć E, Pękała M, Serwin N, Gliźniewicz M, Grygorcewicz B, Michalczyk A, Heryć R, Budkowska M, Dołęgowska B. The Use of Stem Cells as a Potential Treatment Method for Selected Neurodegenerative Diseases: Review. Cell Mol Neurobiol 2023:10.1007/s10571-023-01344-6. [PMID: 37027074 DOI: 10.1007/s10571-023-01344-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Stem cells have been the subject of research for years due to their enormous therapeutic potential. Most neurological diseases such as multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) are incurable or very difficult to treat. Therefore new therapies are sought in which autologous stem cells are used. They are often the patient's only hope for recovery or slowing down the progress of the disease symptoms. The most important conclusions arise after analyzing the literature on the use of stem cells in neurodegenerative diseases. The effectiveness of MSC cell therapy has been confirmed in ALS and HD therapy. MSC cells slow down ALS progression and show early promising signs of efficacy. In HD, they reduced huntingtin (Htt) aggregation and stimulation of endogenous neurogenesis. MS therapy with hematopoietic stem cells (HSCs) inducted significant recalibration of pro-inflammatory and immunoregulatory components of the immune system. iPSC cells allow for accurate PD modeling. They are patient-specific and therefore minimize the risk of immune rejection and, in long-term observation, did not form any tumors in the brain. Extracellular vesicles derived from bone marrow mesenchymal stromal cells (BM-MSC-EVs) and Human adipose-derived stromal/stem cells (hASCs) cells are widely used to treat AD. Due to the reduction of Aβ42 deposits and increasing the survival of neurons, they improve memory and learning abilities. Despite many animal models and clinical trial studies, cell therapy still needs to be refined to increase its effectiveness in the human body.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland.
| | - Maja Pękała
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Marta Gliźniewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, Broniewskiego 26, 71-460, Szczecin, Poland
| | - Rafał Heryć
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
8
|
Sironi F, De Marchi F, Mazzini L, Bendotti C. Cell therapy in ALS: An update on preclinical and clinical studies. Brain Res Bull 2023; 194:64-81. [PMID: 36690163 DOI: 10.1016/j.brainresbull.2023.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of motor neurons and neuromuscular impairment leading to complete paralysis, respiratory failure and premature death. The pathogenesis of the disease is multifactorial and noncell-autonomous involving the central and peripheral compartments of the neuromuscular axis and the skeletal muscle. Advanced clinical trials on specific ALS-related pathways have failed to significantly slow the disease. Therapy with stem cells from different sources has provided a promising strategy to protect the motor units exerting their effect through multiple mechanisms including neurotrophic support and excitotoxicity and neuroinflammation modulation, as evidenced from preclinical studies. Several phase I and II clinical trial of ALS patients have been developed showing positive effects in terms of safety and tolerability. However, the modest results on functional improvement in ALS patients suggest that only a coordinated effort between basic and clinical researchers could solve many problems, such as selecting the ideal stem cell source, identifying their mechanism of action and expected clinical outcomes. A promising approach may be stem cells selected or engineered to deliver optimal growth factor support at multiple sites along the neuromuscular pathway. This review covers recent advances in stem cell therapies in animal models of ALS, as well as detailing the human clinical trials that have been done and are currently undergoing development.
Collapse
Affiliation(s)
- Francesca Sironi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara 28100, Italy
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara 28100, Italy.
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy.
| |
Collapse
|
9
|
Jiang Z, Wang Z, Wei X, Yu XF. Inflammatory checkpoints in amyotrophic lateral sclerosis: From biomarkers to therapeutic targets. Front Immunol 2022; 13:1059994. [PMID: 36618399 PMCID: PMC9815501 DOI: 10.3389/fimmu.2022.1059994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron damage. Due to the complexity of the ALS, so far the etiology and underlying pathogenesis of sporadic ALS are not completely understood. Recently, many studies have emphasized the role of inflammatory networks, which are comprised of various inflammatory molecules and proteins in the pathogenesis of ALS. Inflammatory molecules and proteins may be used as independent predictors of patient survival and might be used in patient stratification and in evaluating the therapeutic response in clinical trials. This review article describes the latest advances in various inflammatory markers in ALS and its animal models. In particular, this review discusses the role of inflammatory molecule markers in the pathogenesis of the disease and their relationship with clinical parameters. We also highlight the advantages and disadvantages of applying inflammatory markers in clinical manifestations, animal studies, and drug clinical trials. Further, we summarize the potential application of some inflammatory biomarkers as new therapeutic targets and therapeutic strategies, which would perhaps expand the therapeutic interventions for ALS.
Collapse
|
10
|
Monsour M, Garbuzova-Davis S, Borlongan CV. Patching Up the Permeability: The Role of Stem Cells in Lessening Neurovascular Damage in Amyotrophic Lateral Sclerosis. Stem Cells Transl Med 2022; 11:1196-1209. [PMID: 36181767 PMCID: PMC9801306 DOI: 10.1093/stcltm/szac072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 01/19/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating disease with poor prognosis. The pathophysiology of ALS is commonly debated, with theories involving inflammation, glutamate excitotoxity, oxidative stress, mitochondria malfunction, neurofilament accumulation, inadequate nutrients or growth factors, and changes in glial support predominating. These underlying pathological mechanisms, however, act together to weaken the blood brain barrier and blood spinal cord barrier, collectively considered as the blood central nervous system barrier (BCNSB). Altering the impermeability of the BCNSB impairs the neurovascular unit, or interdependent relationship between the brain and advances the concept that ALS is has a significant neurovascular component contributing to its degenerative presentation. This unique categorization of ALS opens a variety of treatment options targeting the reestablishment of BCNSB integrity. This review will critically assess the evidence implicating the significant neurovascular components of ALS pathophysiology, while also offering an in-depth discussion regarding the use of stem cells to repair these pathological changes within the neurovascular unit.
Collapse
Affiliation(s)
- Molly Monsour
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Svitlana Garbuzova-Davis
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cesario V Borlongan
- Corresponding author: Cesar V. Borlongan, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Boulevard, Tampa, FL 33612, USA.
| |
Collapse
|
11
|
Kobashi S, Terashima T, Katagi M, Urushitani M, Kojima H. Bone marrow-derived inducible microglia-like cells ameliorate motor function and survival in a mouse model of amyotrophic lateral sclerosis. Cytotherapy 2022; 24:789-801. [PMID: 35393241 DOI: 10.1016/j.jcyt.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND AIMS Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease. Neuroinflammation in the spinal cord plays a pivotal role in the pathogenesis of ALS, and microglia are involved in neuroinflammation. Microglia mainly have two opposite phenotypes involving cytotoxic and neuroprotective properties, and neuroprotective microglia are expected to be a novel application for the treatment of ALS. Therefore, to establish a clinically applicable therapeutic method using neuroprotective microglia, the authors investigated the effect of inducing neuroprotective microglia-like cells from bone marrow for transplantation into ALS model mice. METHODS Bone marrow-derived mononuclear cells were isolated from green fluorescent protein mice and cultured using different protocols of cytokine treatment with granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4. Cells with a high potency of proliferation and differentiation into microglia were evaluated by gene analysis, flow cytometry and direct neuroprotective effects in vitro. These cells were named bone marrow-derived inducible microglia-like (BM-iMG) cells and transplanted into the spinal cords of ALS model mice, and behavioral tests, immunohistochemistry and gene expression profiling were performed. RESULTS Three-day GM-CSF and 4-day GM-CSF + IL-4 stimulations were most effective in inducing BM-iMG cells from the bone marrow. Transplantation of BM-iMG cells improved motor function, prolonged survival and suppressed neuronal cell death, astrogliosis and microgliosis in the spinal cords of ALS mice. Moreover, neuroprotective genes such as Arg1 and Mrc1 were upregulated, whereas pro-inflammatory genes such as Nos2 and Il6 were downregulated. CONCLUSIONS Intraspinal transplantation of BM-iMG cells demonstrated therapeutic effects in a mouse model of ALS. Further studies and clinical applications in patients with ALS are expected in the future.
Collapse
Affiliation(s)
- Shuhei Kobashi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan; Department of Neurology, Shiga University of Medical Science, Otsu, Japan
| | - Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan.
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Otsu, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
12
|
Lin TJ, Cheng KC, Wu LY, Lai WY, Ling TY, Kuo YC, Huang YH. Potential of Cellular Therapy for ALS: Current Strategies and Future Prospects. Front Cell Dev Biol 2022; 10:851613. [PMID: 35372346 PMCID: PMC8966507 DOI: 10.3389/fcell.2022.851613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive upper and lower motor neuron (MN) degeneration with unclear pathology. The worldwide prevalence of ALS is approximately 4.42 per 100,000 populations, and death occurs within 3-5 years after diagnosis. However, no effective therapeutic modality for ALS is currently available. In recent years, cellular therapy has shown considerable therapeutic potential because it exerts immunomodulatory effects and protects the MN circuit. However, the safety and efficacy of cellular therapy in ALS are still under debate. In this review, we summarize the current progress in cellular therapy for ALS. The underlying mechanism, current clinical trials, and the pros and cons of cellular therapy using different types of cell are discussed. In addition, clinical studies of mesenchymal stem cells (MSCs) in ALS are highlighted. The summarized findings of this review can facilitate the future clinical application of precision medicine using cellular therapy in ALS.
Collapse
Affiliation(s)
- Ting-Jung Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuang-Chao Cheng
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Luo-Yun Wu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Yu Lai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Che Kuo
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Ohashi N, Terashima T, Katagi M, Nakae Y, Okano J, Suzuki Y, Kojima H. GLT1 gene delivery based on bone marrow-derived cells ameliorates motor function and survival in a mouse model of ALS. Sci Rep 2021; 11:12803. [PMID: 34140581 PMCID: PMC8211665 DOI: 10.1038/s41598-021-92285-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an intractable neurodegenerative disease. CD68-positive bone marrow (BM)-derived cells (BMDCs) accumulate in the pathological lesion in the SOD1(G93A) ALS mouse model after BM transplantation (BMT). Therefore, we investigated whether BMDCs can be applied as gene carriers for cell-based gene therapy by employing the accumulation of BMDCs. In ALS mice, YFP reporter signals were observed in 12-14% of white blood cells (WBCs) and in the spinal cord via transplantation of BM after lentiviral vector (LV) infection. After confirmation of gene transduction by LV with the CD68 promoter in 4-7% of WBCs and in the spinal cord of ALS mice, BM cells were infected with LVs expressing glutamate transporter (GLT) 1 that protects neurons from glutamate toxicity, driven by the CD68 promoter, which were transplanted into ALS mice. The treated mice showed improvement of motor behaviors and prolonged survival. Additionally, interleukin (IL)-1β was significantly suppressed, and IL-4, arginase 1, and FIZZ were significantly increased in the mice. These results suggested that GLT1 expression by BMDCs improved the spinal cord environment. Therefore, our gene therapy strategy may be applied to treat neurodegenerative diseases such as ALS in which BMDCs accumulate in the pathological lesion by BMT.
Collapse
Affiliation(s)
- Natsuko Ohashi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Tomoya Terashima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.
| | - Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Yuki Nakae
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Junko Okano
- Department of Plastic and Reconstructive Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Yoshihisa Suzuki
- Department of Plastic and Reconstructive Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
14
|
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of upper and lower motor neurons with high burden on society. Despite tremendous efforts over the last several decades, there is still no definite cure for ALS. Up to now, only two disease-modifying agents, riluzole and edaravone, are approved by U.S. Food and Drug Administration (FDA) for ALS treatment, which only modestly improves survival and disease progression. Major challenging issues to find an effective therapy are heterogeneity in the pathogenesis and genetic variability of ALS. As such, stem cell therapy has been recently a focus of both preclinical and clinical investigations of ALS. This is because stem cells have multifaceted features that can potentially target multiple pathogenic mechanisms in ALS even though its underlying mechanisms are not completely elucidated. Methods & Results: Here, we will have an overview of stem cell therapy in ALS, including their therapeutic mechanisms, the results of recent clinical trials as well as ongoing clinical trials. In addition, we will further discuss complications and limitations of stem cell therapy in ALS. Conclusion: The determination of whether stem cells offer a viable treatment strategy for ALS rests on well-designed and appropriately powered future clinical trials. Randomized, double-blinded, and sham-controlled studies would be valuable.
Collapse
Affiliation(s)
- Goun Je
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA USA
| | - Kiandokht Keyhanian
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA USA
| |
Collapse
|