1
|
Zhang H, Cui W, Jin X, Yang Y, Zhang X. Chemo- and stereoselective synthesis of Z-alkenes via electrochemical Pd-catalyzed alkyne reduction. Org Biomol Chem 2025; 23:2386-2390. [PMID: 39925020 DOI: 10.1039/d4ob01958j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
In this study, we introduce an electrocatalytic reaction for hydrogenating alkynes to Z-alkenes, which demonstrates exceptional efficiency with high chemo- and stereoselectivity. Control experiments reveal that hydrogen primarily originates from the solvent, supporting a mechanism where palladium catalyzes continuous hydrogen adsorption and transfer under cathodic conditions. The synthetic value of the Z-alkene products, the mild, green nature of the method, and successful gram-scale experiments underscore the potential of this approach for practical and industrial applications, offering a more sustainable and scalable alternative to traditional catalytic processes for selective alkene synthesis.
Collapse
Affiliation(s)
- Haoxiang Zhang
- Shenzhen Environmental Technology Group Co. Ltd, Shenzhen, 518049, China
| | - Wentao Cui
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Xiaoyan Jin
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Yuhuan Yang
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Xiao Zhang
- School of Chemistry, Chemical Engineer and Materials, Jining University, Qufu, Shandong, 273155, P. R. China.
| |
Collapse
|
2
|
Zhou ZL, Zhang Y, Cui PZ, Li JH. Photo-/Electrocatalytic Difunctionalization of Alkenes Enabled by C-H Radical Functionalization. Chemistry 2024; 30:e202402458. [PMID: 39126402 DOI: 10.1002/chem.202402458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/12/2024]
Abstract
The difunctionalization of alkenes represents a powerful tool to incorporate two functional groups into the alkene bones for increasing molecular complexity and has been widely utilizations in chemical synthesis. Upon the catalysis of the green, sustainable, mild photo-/electrochemistry technologies, much attentions have been attracted to the development of new tactics for the transformations of the important alkene and alkane feedstocks driven by C-H radical functionalization. Herein, we summarize recent advances in the photo-/electrocatalytic difunctionalization of alkenes enabled by C-H radical functionalization. We detailedly discuss the substrate scope and the mechanisms of the photo-/electrocatalytic alkene difunctionalization reactions by selecting impressive synthetic examples, which are divided into four sections based on the final terminated step, including oxidative radical-polar crossover coupling, reductive radical-polar crossover coupling, radical-radical coupling, and transition-metal-catalyzed coupling.
Collapse
Affiliation(s)
- Zi-Long Zhou
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yin Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Pei-Zhe Cui
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
3
|
Li W, Zhang R, Zhou N, Lu J, Fu N. Dual transition metal electrocatalysis enables selective C(sp 3)-C(sp 3) bond cleavage and arylation of cyclic alcohols. Chem Commun (Camb) 2024; 60:11714-11717. [PMID: 39318170 DOI: 10.1039/d4cc04036h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
We report a dual transition metal electrocatalytic approach for C(sp3)-C(sp3) bond cleavage and arylation of cyclic alcohols, providing an efficient and sustainable method for site-specific arylation of ketones. The reaction involves electrophotochemical cerium-catalysed generation of alkoxyl radicals from readily accessible alcohols. Subsequently, homolytic cleavage of the β-C-C bond leads to the generation of carbon-centered radicals that could be effectively utilized by nickel catalysis powered by cathode reduction to deliver the remote arylated ketone products.
Collapse
Affiliation(s)
- Weixiang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ruipu Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Naifu Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqing Lu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Luo J, Davenport MT, Ess DH, Liu TL. Nickel-Catalyzed Electrochemical Cross-Electrophile C(sp 2)-C(sp 3) Coupling via a Ni II Aryl Amido Intermediate. Angew Chem Int Ed Engl 2024; 63:e202407118. [PMID: 38849318 PMCID: PMC11585393 DOI: 10.1002/anie.202407118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
Cross-electrophile coupling (XEC) between aryl halides and alkyl halides is a streamlined approach for C(sp2)-C(sp3) bond construction, which is highly valuable in medicinal chemistry. Based on a key NiII aryl amido intermediate, we developed a highly selective and scalable Ni-catalyzed electrochemical XEC reaction between (hetero)aryl halides and primary and secondary alkyl halides. Experimental and computational mechanistic studies indicate that an amine secondary ligand slows down the oxidative addition process of the Ni-polypyridine catalyst to the aryl bromide and a NiII aryl amido intermediate is formed in situ during the reaction process. The relatively slow oxidative addition is beneficial for enhancing the selectivity of the XEC reaction. The NiII aryl amido intermediate stabilizes the NiII-aryl species to prevent the aryl-aryl homo-coupling side reactions and acts as a catalyst to activate the alkyl bromide substrates. This electrosynthesis system provides a facile, practical, and scalable platform for the formation of (hetero)aryl-alkyl bonds using standard Ni catalysts under mild conditions. The mechanistic insights from this work could serve as a great foundation for future studies on Ni-catalyzed cross-couplings.
Collapse
Affiliation(s)
- Jian Luo
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah, 84322, United States
| | - Michael T Davenport
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84604, United States
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84604, United States
| | - T Leo Liu
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah, 84322, United States
| |
Collapse
|
5
|
Xie F, Han F, Yan Y, Li H, Hao J, Jing L, Han P. Difluoromethylation-Carboxylation and -Deuteration of Alkenes Triggered by Electroreduction of Difluoromethyltriphenylphosphonium Bromide. J Org Chem 2023. [PMID: 38056421 DOI: 10.1021/acs.joc.3c02001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
It is significant to develop novel difluoromethylation methods because of the important roles of difluoromethyl groups in the medicinal chemistry and material industries. Here, we developed a novel difluoromethylation-carboxylation and difluoromethylation-deuteration method triggered by a difluoromethyl radical generated by electroreduction of stable and easily available difluoromethyltriphenylphosphonium bromide. Various molecules containing difluoromethyl and carboxyl or deuterium groups can be synthesized through this method. The establishment of this method will provide an alternative to radical difluoromethylation reactions.
Collapse
Affiliation(s)
- Fenfen Xie
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Fen Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Yunying Yan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Haiqiong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Jianjun Hao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| |
Collapse
|
6
|
Lu J, Yao Y, Li L, Fu N. Dual Transition Metal Electrocatalysis: Direct Decarboxylative Alkenylation of Aliphatic Carboxylic Acids. J Am Chem Soc 2023. [PMID: 38029443 DOI: 10.1021/jacs.3c08839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Direct decarboxylative alkenylation of widely available aliphatic carboxylic acids with vinyl halides for the synthesis of alkenes with all substitution patterns has been accomplished by means of Ce/Ni dual transition metal electrocatalysis. The reactions employ alkyl acids as the limiting reagents and exhibit a broad scope with respect to both coupling partners. Notably, simple primary alkyl carboxylic acids could be readily engaged as carbon-centered radical precursors in the reaction. This new alkenylation protocol has been successfully demonstrated in direct modification of naturally occurring complex acids and is amenable to the enantioselective decarboxylative alkenylation of arylacetic acid. Mechanistic studies, including a series of controlled experiments and cyclic voltammetry data, allow us to probe the key intermediates and the pathway of the reaction.
Collapse
Affiliation(s)
- Jiaqing Lu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liubo Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Ren T, Qu R, Song L. Electrochemical Fe-catalysed radical cyclization for the synthesis of oxindoles. Org Biomol Chem 2023; 21:8089-8093. [PMID: 37779504 DOI: 10.1039/d3ob01370g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
We report an efficient and sustainable electrocatalytic approach for the synthesis of 3,3-disubstituted 2-oxindoles bearing ester groups from readily accessible N-arylacrylamides and carbazates. The reaction proceeds through an electrochemical iron-catalyzed radical addition/cyclization sequence with a commercially available iron catalyst and carbazates as alkoxycarbonyl radical precursors. This mild and operationally simple method transforms a wide range of structurally diverse N-arylacrylamides into oxindole derivatives in good yields and can be smoothly scaled up for the preparation of synthetically valuable oxindoles that are key intermediates for the synthesis of natural products.
Collapse
Affiliation(s)
- Tianxiang Ren
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China.
| | - Ruina Qu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China.
| | - Lu Song
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China.
| |
Collapse
|
8
|
Luo J, Davenport MT, Callister C, Minteer SD, Ess DH, Liu TL. Understanding Formation and Roles of Ni II Aryl Amido and Ni III Aryl Amido Intermediates in Ni-Catalyzed Electrochemical Aryl Amination Reactions. J Am Chem Soc 2023; 145:16130-16141. [PMID: 37433081 PMCID: PMC10635587 DOI: 10.1021/jacs.3c04610] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Ni-catalyzed electrochemical aryl amination (e-amination) is an attractive, emerging approach to building C-N bonds. Here, we report in-depth experimental and computational studies that examined the mechanism of Ni-catalyzed e-amination reactions. Key NiII-amine dibromide and NiII aryl amido intermediates were chemically synthesized and characterized. The combination of experiments and DFT calculations suggest (1) there is coordination of an amine to the NiII catalyst before the cathodic reduction and oxidative addition steps, (2) a stable NiII aryl amido intermediate is produced from the cathodic half-reaction, a critical step in controlling the selectivity between cross-coupling and undesired homo-coupling reaction pathways, (3) the diazabicycloundecene additive shifts the aryl halide oxidative addition mechanism from a NiI-based pathway to a Ni0-based pathway, and (4) redox-active bromide in the supporting electrolyte functions as a redox mediator to promote the oxidation of the stable NiII aryl amido intermediate to a NiIII aryl amido intermediate. Subsequently, the NiIII aryl amido intermediate undergoes facile reductive elimination to provide a C-N cross-coupling product at room temperature. Overall, our results provide new fundamental understandings about this e-amination reaction and guidance for further development of other Ni-catalyzed electrosynthetic reactions such as C-C and C-O cross-couplings.
Collapse
Affiliation(s)
- Jian Luo
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Michael T Davenport
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - Chad Callister
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - T Leo Liu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
9
|
Braxton E, Fox DJ, Breeze BG, Tully JJ, Levey KJ, Newton ME, Macpherson JV. Electron Paramagnetic Resonance for the Detection of Electrochemically Generated Hydroxyl Radicals: Issues Associated with Electrochemical Oxidation of the Spin Trap. ACS MEASUREMENT SCIENCE AU 2023; 3:21-31. [PMID: 36817006 PMCID: PMC9936800 DOI: 10.1021/acsmeasuresciau.2c00049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 06/18/2023]
Abstract
For the detection of electrochemically produced hydroxyl radicals (HO·) from the oxidation of water on a boron-doped diamond (BDD) electrode, electron paramagnetic resonance spectroscopy (EPR) in combination with spin trap labels is a popular technique. Here, we show that quantification of the concentration of HO· from water oxidation via spin trap electrochemical (EC)-EPR is problematic. This is primarily due to the spin trap oxidizing at potentials less positive than water, resulting in the same spin trap-OH· adduct as formed from the solution reaction of OH· with the spin trap. We illustrate this through consideration of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap for OH·. DMPO oxidation on a BDD electrode in an acidic aqueous solution occurs at a peak current potential of +1.90 V vs SCE; the current for water oxidation starts to rise rapidly at ca. +2.3 V vs SCE. EC-EPR spectra show signatures due to the spin trap adduct (DMPO-OH·) at potentials lower than that predicted thermodynamically (for water/HO·) and in the region for DMPO oxidation. Increasing the potential into the water oxidation region, surprisingly, shows a lower DMPO-OH· concentration than when the potential is in the DMPO oxidation region. This behavior is attributed to further oxidation of DMPO-OH·, production of fouling products on the electrode surface, and bubble formation. Radical scavengers (ethanol) and other spin traps, here N-tert-butyl-α-phenylnitrone, α-(4-pyridyl N-oxide)-N-tert-butylnitrone, and 2-methyl-2-nitrosopropane dimer, also show electrochemical oxidation signals less positive than that of water on a BDD electrode. Such behavior also complicates their use for the intended application.
Collapse
Affiliation(s)
- Emily Braxton
- Department
of Chemistry, University of Warwick, CoventryCV4 7AL, U.K.
- Molecular
Analytical Science Centre for Doctoral Training, University of Warwick, CoventryCV4 7AL, U.K.
| | - David J. Fox
- Department
of Chemistry, University of Warwick, CoventryCV4 7AL, U.K.
| | - Ben G. Breeze
- Department
of Physics, University of Warwick, CoventryCV4 7AL, U.K.
| | - Joshua J. Tully
- Department
of Chemistry, University of Warwick, CoventryCV4 7AL, U.K.
| | - Katherine J. Levey
- Department
of Chemistry, University of Warwick, CoventryCV4 7AL, U.K.
- Centre
for Doctoral Training in Diamond Science and Technology, University of Warwick, CoventryCV4 7AL, U.K.
| | - Mark E. Newton
- Department
of Physics, University of Warwick, CoventryCV4 7AL, U.K.
| | | |
Collapse
|
10
|
Kerackian T, Bouyssi D, Pilet G, Médebielle M, Monteiro N, Vantourout JC, Amgoune A. Nickel-Catalyzed Electro-Reductive Cross-Coupling of Aliphatic N-Acyl Imides with Alkyl Halides as a Strategy for Dialkyl Ketone Synthesis: Scope and Mechanistic Investigations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Taline Kerackian
- Université Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), 1 rue Victor Grignard, 69100 Villeurbanne, France
| | - Didier Bouyssi
- Université Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), 1 rue Victor Grignard, 69100 Villeurbanne, France
| | - Guillaume Pilet
- Université Lyon, Université Lyon 1, Laboratoire des Multimatériaux et Interfaces (LMI, UMR 5615 du CNRS), 6 rue Victor Grignard, 69100 Villeurbanne, France
| | - Maurice Médebielle
- Université Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), 1 rue Victor Grignard, 69100 Villeurbanne, France
| | - Nuno Monteiro
- Université Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), 1 rue Victor Grignard, 69100 Villeurbanne, France
| | - Julien C. Vantourout
- Université Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), 1 rue Victor Grignard, 69100 Villeurbanne, France
| | - Abderrahmane Amgoune
- Université Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), 1 rue Victor Grignard, 69100 Villeurbanne, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
11
|
Ding W, Li M, Fan J, Cheng X. Palladium-catalyzed asymmetric allylic 4-pyridinylation via electroreductive substitution reaction. Nat Commun 2022; 13:5642. [PMID: 36163325 PMCID: PMC9512896 DOI: 10.1038/s41467-022-33452-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The enantioselective pyridinylation is important for providing chiral compounds bearing heterocycles of pharmaceutical interests. 4-CN-pyrinde is extensively applied in the radical pyridinylation reaction, however, its' enantioselective application is highly challenging. To achieve this goal, we propose an electrochemical catalytic activation of 4-CN-pyridine with a chiral transition metal complex instead of direct cathodic reduction. The chiral catalyst acts as the electron mediator and the transition metal catalysis in turn. The radical species from 4-CN-pyridine is captured via radical rebound by chiral catalyst, and undergoes enantioselective pyridinylation reaction. Here, we show the first method for catalytic asymmetric allylic 4-pyridinylation reactions using 4-CN-pyridine under electrochemical conditions.
Collapse
Affiliation(s)
- Weijie Ding
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Mengfan Li
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jinkun Fan
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
12
|
Affiliation(s)
- Kun Liu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Max Schwenzer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
13
|
Wang Y, Li L, Fu N. Electrophotochemical Decarboxylative Azidation of Aliphatic Carboxylic Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yukang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liubo Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Bertuzzi G, Ombrosi G, Bandini M. Regio- and Stereoselective Electrochemical Alkylation of Morita-Baylis-Hillman Adducts. Org Lett 2022; 24:4354-4359. [PMID: 35700274 PMCID: PMC9237826 DOI: 10.1021/acs.orglett.2c01529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/03/2022]
Abstract
Electrosynthesis is effectively employed in a general regio- and stereoselective alkylation of Morita-Baylis-Hillman compounds. The exposition of N-acyloxyphthalimides (redox-active esters) to galvanostatic electroreductive conditions, following the sacrificial-anode strategy, is proved an efficient and practical method to access densely functionalized cinnamate and oxindole derivatives. High yields (up to 80%) and wide functional group tolerance characterized the methodology. A tentative mechanistic sketch is proposed based on dedicated control experiments.
Collapse
Affiliation(s)
- Giulio Bertuzzi
- Dipartimento
di Chimica “Giamician Ciamician”, Alma Mater Studiotum − Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
- Center
for Chemical Catalysis -C3-, Alma Mater
Studiotum − Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giada Ombrosi
- Dipartimento
di Chimica “Giamician Ciamician”, Alma Mater Studiotum − Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Bandini
- Dipartimento
di Chimica “Giamician Ciamician”, Alma Mater Studiotum − Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
- Center
for Chemical Catalysis -C3-, Alma Mater
Studiotum − Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
15
|
Bian KJ, Nemoto D, Kao SC, He Y, Li Y, Wang XS, West JG. Modular Difunctionalization of Unactivated Alkenes through Bio-Inspired Radical Ligand Transfer Catalysis. J Am Chem Soc 2022; 144:11810-11821. [PMID: 35729791 DOI: 10.1021/jacs.2c04188] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Development of visible light-mediated atom transfer radical addition of haloalkanes onto unsaturated hydrocarbons has seen rapid growth in recent years. However, due to its radical chain propagation mechanism, diverse functionality other than the pre-existing (pseudo-)halide on the alkyl halide source cannot be incorporated into target molecules in a one-step, economic fashion. Inspired by the prominent reactivities shown by cytochrome P450 hydroxylase and non-heme iron-dependent oxygenases, we herein report the first modular, dual catalytic difunctionalization of unactivated alkenes via manganese-catalyzed radical ligand transfer (RLT). This RLT elementary step involves a coordinated nucleophile rebounding to a carbon-centered radical to form a new C-X bond in analogy to the radical rebound step in metalloenzymes. The protocol leverages the synergetic cooperation of both a photocatalyst and earth-abundant manganese complex to deliver two radical species in succession to minimally functionalized alkenes, enabling modular diversification of the radical intermediate by a high-valent manganese species capable of delivering various external nucleophiles. A broad scope (97 examples, including drugs/natural product motifs), mild conditions, and excellent chemoselectivity were shown for a variety of substrates and fluoroalkyl fragments. Mechanistic and kinetics studies provide insights into the radical nature of the dual catalytic transformation and support radical ligand transfer (RLT) as a new strategy to deliver diverse functionality selectively to carbon-centered radicals.
Collapse
Affiliation(s)
- Kang-Jie Bian
- Department of Chemistry, Rice University, 6500 Main St, Houston, Texas 77030, United States
| | - David Nemoto
- Department of Chemistry, Rice University, 6500 Main St, Houston, Texas 77030, United States
| | - Shih-Chieh Kao
- Department of Chemistry, Rice University, 6500 Main St, Houston, Texas 77030, United States
| | - Yan He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yan Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Julian G West
- Department of Chemistry, Rice University, 6500 Main St, Houston, Texas 77030, United States
| |
Collapse
|
16
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
17
|
Cantillo D. Synthesis of active pharmaceutical ingredients using electrochemical methods: keys to improve sustainability. Chem Commun (Camb) 2022; 58:619-628. [PMID: 34951414 DOI: 10.1039/d1cc06296d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Organic electrochemistry is receiving renewed attention as a green and cost-efficient synthetic technology. Electrochemical methods promote redox transformations by electron exchange between electrodes and species in solution, thus avoiding the use of stoichiometric amounts of oxidizing or reducing agents. The rapid development of electroorganic synthesis over the past decades has enabled the preparation of molecules of increasing complexity. Redox steps that involve hazardous or waste-generating reagents during the synthesis of active pharmaceutical ingredients or their intermediates can be substituted by electrochemical procedures. In addition to enhance sustainability, increased selectivity toward the target compound has been achieved in some cases. Electroorganic synthesis can be safely and readily scaled up to production quantities. For this pupose, utilization of flow electrolysis cells is fundamental. Despite these advantages, the application of electrochemical methods does not guarantee superior sustainability when compared with conventional protocols. The utilization of large amounts of supporting electrolytes, enviromentally unfriendly solvents or sacrificial electrodes may turn electrochemistry unfavorable in some cases. It is therefore crucial to carefully select and optimize the electrolysis conditions and carry out green metrics analysis of the process to ensure that turning a process electrochemical is advantageous.
Collapse
Affiliation(s)
- David Cantillo
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010, Graz, Austria
| |
Collapse
|
18
|
Affiliation(s)
- Victor M. Chernyshev
- Platov South-Russian State Polytechnic University (NPI), Novocherkassk, 346428, Russia
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University (NPI), Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
19
|
Zou Z, Li H, Huang M, Zhang W, Zhi S, Wang Y, Pan Y. Electrochemical-Promoted Nickel-Catalyzed Oxidative Fluoroalkylation of Aryl Iodides. Org Lett 2021; 23:8252-8256. [PMID: 34645266 DOI: 10.1021/acs.orglett.1c02997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This work describes a general strategy for metal-catalyzed cross-coupling of fluoroalkyl radicals with aryl halides under electrochemical conditions. The contradiction between anodic oxidation of fluoroalkyl sulfinates and cathodic reduction of low-valent nickel catalysts can be well addressed by paired electrolysis, allowing for direct introduction of fluorinated functionalities into aromatic systems.
Collapse
Affiliation(s)
- Zhenlei Zou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Heyin Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengjun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Yuxiu Postdoctoral School, Nanjing University, Nanjing 210023, China
| | - Sanjun Zhi
- Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Ma C, Fang P, Liu D, Jiao KJ, Gao PS, Qiu H, Mei TS. Transition metal-catalyzed organic reactions in undivided electrochemical cells. Chem Sci 2021; 12:12866-12873. [PMID: 34745519 PMCID: PMC8514006 DOI: 10.1039/d1sc04011a] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
Transition metal-catalyzed organic electrochemistry is a rapidly growing research area owing in part to the ability of metal catalysts to alter the selectivity of a given transformation. This conversion mainly focuses on transition metal-catalyzed anodic oxidation and cathodic reduction and great progress has been achieved in both areas. Typically, only one of the half-cell reactions is involved in the organic reaction while a sacrificial reaction occurs at the counter electrode, which is inherently wasteful since one electrode is not being used productively. Recently, transition metal-catalyzed paired electrolysis that makes use of both anodic oxidation and cathodic reduction has attracted much attention. This perspective highlights the recent progress of each type of electrochemical reaction and relatively focuses on the transition metal-catalyzed paired electrolysis, showcasing that electrochemical reactions involving transition metal catalysis have advantages over conventional reactions in terms of controlling the reaction activity and selectivity and figuring out that transition metal-catalyzed paired electrolysis is an important direction of organic electrochemistry in the future and offers numerous opportunities for new and improved organic reaction methods.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Dong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ke-Jin Jiao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pei-Sen Gao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Hui Qiu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
21
|
Till NA, Oh S, MacMillan DWC, Bird MJ. The Application of Pulse Radiolysis to the Study of Ni(I) Intermediates in Ni-Catalyzed Cross-Coupling Reactions. J Am Chem Soc 2021; 143:9332-9337. [PMID: 34128676 DOI: 10.1021/jacs.1c04652] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here we report the use of pulse radiolysis and spectroelectrochemistry to generate low-valent nickel intermediates relevant to synthetically important Ni-catalyzed cross-coupling reactions and interrogate their reactivities toward comproportionation and oxidative addition processes. Pulse radiolysis provided a direct means to generate singly reduced [(dtbbpy)NiBr], enabling the identification of a rapid Ni(0)/Ni(II) comproportionation process taking place under synthetically relevant electrolysis conditions. This approach also permitted the direct measurement of Ni(I) oxidative addition rates with electronically differentiated aryl iodide electrophiles (kOA = 1.3 × 104-2.4 × 105 M-1 s-1), an elementary organometallic step often proposed in nickel-catalyzed cross-coupling reactions. Together, these results hold implications for a number of Ni-catalyzed cross-coupling processes.
Collapse
Affiliation(s)
- Nicholas A Till
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Seokjoon Oh
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Matthew J Bird
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
22
|
Zhang W, Hong N, Song L, Fu N. Reaching the Full Potential of Electroorganic Synthesis by Paired Electrolysis. CHEM REC 2021; 21:2574-2584. [PMID: 33835697 DOI: 10.1002/tcr.202100025] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Electroorganic synthesis has recently become a rapidly blossoming research area within the organic synthesis community. It should be noted that electrochemical reaction is always a balanced reaction system with two half-cell reactions-oxidation and reduction. Most electrochemical strategies, however, typically focus on one of the two sides for the desired transformations. Paired electrolysis has two desirable half reactions running simultaneously, thus maximizing the overall margin of atom and energy economy. Meanwhile, the spatial separation between oxidation and reduction is the essential feature of electrochemistry, offering unique opportunities for the development of redox-neutral reactions that would otherwise be challenging to accomplish in a conventional reaction flask setting. This review discusses the most recent illustrative examples of paired electrolysis with special emphasis on sequential and convergent processes.
Collapse
Affiliation(s)
- Wenzhao Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nianmin Hong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Song
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
23
|
Chen N, Ye Z, Zhang F. Recent progress on electrochemical synthesis involving carboxylic acids. Org Biomol Chem 2021; 19:5501-5520. [PMID: 34079974 DOI: 10.1039/d1ob00420d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carboxylic acids are not only essential sections of medicinal molecules, natural products and agrochemicals but also basic building blocks for organic synthesis. However, high temperature, expensive catalysts and excess oxidants are normally required for carboxylic acid group transformations. Therefore, more eco-friendly and efficient methods are urgently needed. Organic electrochemistry, as an environmentally friendly and sustainable synthetic method, can potentially avoid the above problems and is favored by more and more organic chemists. This review summarized the recent progress on the electrochemical synthesis of carboxylic acids to construct more complex compounds, emphasizing the development of electrosynthesis methodologies and mechanisms in order to attract more chemists to recognize the importance and applications of electrochemical synthesis.
Collapse
Affiliation(s)
- Na Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| | - Zenghui Ye
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|