1
|
Stefanelli C, Colaianni D, Mazzotta GM, Sales G, Bertolucci C, Meyer B, Biscontin A, De Pittà C. Functional characterization of the second feedback loop in the circadian clock of the Antarctic krill Euphausia superba. BMC Biol 2024; 22:298. [PMID: 39716211 DOI: 10.1186/s12915-024-02099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND The Antarctic krill Euphausia superba is a keystone species in the Southern Ocean ecosystem. This crustacean has an ancestral clock whose main components have been identified and characterized in the past few years. However, the second feedback loop, modulating clock gene expression through two transcription factors, VRI and PDP1, has yet to be described. The presence of this second regulatory mechanism is suggested by the identification of its negative component, vrille, at the transcriptional level. RESULTS Here, we describe the second feedback loop of krill by identifying the positive component, pdp1, and functionally characterizing both pdp1 and vrille. Starting from the online transcriptome database KrillDB2, we identified and cloned three putative pdp1 sequences which were subsequently analyzed for tissue expression and functional activity using luciferase assays, individually and in combination with two vrille isoforms. Among the pdp1 isoforms, Espdp1_3 displayed higher expression levels in relevant circadian districts than the other two. Furthermore, EsPDP1_3 and EsVRI_2 exhibited the expected positive and negative regulation of the V/P-box in our in vitro system. Finally, Espdp1_3 and Esvrille also showed rhythmic expression in light-dark cycles, supporting their involvement in the regulation of the main circadian clock of the Antarctic krill. CONCLUSIONS This study expands our knowledge about the molecular architecture of the Antarctic krill circadian clock by defining the components that take part in the modulation of clock expression, establishing a second feedback loop.
Collapse
Affiliation(s)
| | - Davide Colaianni
- Department of Biology, University of Padova, Padova, 35121, Italy
| | | | - Gabriele Sales
- Department of Biology, University of Padova, Padova, 35121, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, 44121, Italy
| | - Bettina Meyer
- Institute for Chemistry and Biology of the Marine Environment, Carl Von Ossietzky University Oldenburg, Oldenburg, 26129, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Carl Von Ossietzky University Oldenburg, Oldenburg, 26129, Germany
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany
| | - Alberto Biscontin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, 33100, Italy.
| | | |
Collapse
|
2
|
Akpoghiran O, Afonso DJS, Zhang Y, Koh K. TARANIS Interacts with VRILLE and PDP1 to Modulate the Circadian Transcriptional Feedback Mechanism in Drosophila. J Neurosci 2024; 44:e0922232023. [PMID: 38296648 PMCID: PMC10860567 DOI: 10.1523/jneurosci.0922-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 02/02/2024] Open
Abstract
The molecular clock that generates daily rhythms of behavior and physiology consists of interlocked transcription-translation feedback loops. In Drosophila, the primary feedback loop involving the CLOCK-CYCLE transcriptional activators and the PERIOD-TIMELESS transcriptional repressors is interlocked with a secondary loop involving VRILLE (VRI) and PAR DOMAIN PROTEIN 1 (PDP1), a repressor and activator of Clock transcription, respectively. Whereas extensive studies have found numerous transcriptional, translational, and posttranslational modulators of the primary loop, relatively little is known about the secondary loop. In this study, using male and female flies as well as cultured cells, we demonstrate that TARANIS (TARA), a Drosophila homolog of the TRIP-Br/SERTAD family of transcriptional coregulators, functions with VRI and PDP1 to modulate the circadian period and rhythm strength. Knocking down tara reduces rhythm amplitude and can shorten the period length, while overexpressing TARA lengthens the circadian period. Additionally, tara mutants exhibit reduced rhythmicity and lower expression of the PDF neuropeptide. We find that TARA can form a physical complex with VRI and PDP1, enhancing their repressor and activator functions, respectively. The conserved SERTA domain of TARA is required to regulate the transcriptional activity of VRI and PDP1, and its deletion leads to reduced locomotor rhythmicity. Consistent with TARA's role in enhancing VRI and PDP1 activity, overexpressing tara has a similar effect on the circadian period and rhythm strength as simultaneously overexpressing vri and Pdp1 Together, our results suggest that TARA modulates circadian behavior by enhancing the transcriptional activity of VRI and PDP1.
Collapse
Affiliation(s)
- Oghenerukevwe Akpoghiran
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia 19107, Pennsylvania
| | - Dinis J S Afonso
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia 19107, Pennsylvania
| | - Yanan Zhang
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia 19107, Pennsylvania
| | - Kyunghee Koh
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia 19107, Pennsylvania
| |
Collapse
|
3
|
Akpoghiran O, Afonso DJ, Zhang Y, Koh K. TARANIS interacts with VRILLE and PDP1 to modulate the circadian transcriptional feedback mechanism in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541420. [PMID: 38076905 PMCID: PMC10705542 DOI: 10.1101/2023.05.19.541420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The molecular clock that generates daily rhythms of behavior and physiology consists of interlocked transcription-translation feedback loops. In Drosophila, the primary feedback loop involving the CLOCK-CYCLE transcriptional activators and the PERIOD-TIMELESS transcriptional repressors is interlocked with a secondary loop involving VRILLE (VRI) and PAR DOMAIN PROTEIN 1 (PDP1), a repressor and activator of Clock transcription, respectively. Whereas extensive studies have found numerous transcriptional, translational, and post-translational modulators of the primary loop, relatively little is known about the secondary loop. In this study, using male and female flies as well as cultured cells, we demonstrate that TARANIS (TARA), a Drosophila homolog of the TRIP-Br/SERTAD family of transcriptional coregulators, functions with VRI and PDP1 to modulate the circadian period and rhythm strength. Knocking down tara reduces rhythm amplitude and can shorten the period length, while overexpressing TARA lengthens the circadian period. Additionally, tara mutants exhibit reduced rhythmicity and lower expression of the PDF neuropeptide. We find that TARA can form a physical complex with VRI and PDP1, enhancing their repressor and activator functions, respectively. The conserved SERTA domain of TARA is required to regulate the transcriptional activity of VRI and PDP1, and its deletion leads to reduced locomotor rhythmicity. Consistent with TARA's role in enhancing VRI and PDP1 activity, overexpressing tara has a similar effect on the circadian period and rhythm strength as simultaneously overexpressing vri and Pdp1. Together, our results suggest that TARA modulates circadian behavior by enhancing the transcriptional activity of VRI and PDP1.
Collapse
Affiliation(s)
- Oghenerukevwe Akpoghiran
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, USA. 19107
| | - Dinis J.S. Afonso
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, USA. 19107
| | - Yanan Zhang
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, USA. 19107
| | - Kyunghee Koh
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, USA. 19107
| |
Collapse
|
4
|
Richhariya S, Shin D, Le JQ, Rosbash M. Dissecting neuron-specific functions of circadian genes using modified cell-specific CRISPR approaches. Proc Natl Acad Sci U S A 2023; 120:e2303779120. [PMID: 37428902 PMCID: PMC10629539 DOI: 10.1073/pnas.2303779120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023] Open
Abstract
Circadian behavioral rhythms in Drosophila melanogaster are regulated by about 75 pairs of brain neurons. They all express the core clock genes but have distinct functions and gene expression profiles. To understand the importance of these distinct molecular programs, neuron-specific gene manipulations are essential. Although RNAi based methods are standard to manipulate gene expression in a cell-specific manner, they are often ineffective, especially in assays involving smaller numbers of neurons or weaker Gal4 drivers. We and others recently exploited a neuron-specific CRISPR-based method to mutagenize genes within circadian neurons. Here, we further explore this approach to mutagenize three well-studied clock genes: the transcription factor gene vrille, the photoreceptor gene Cryptochrome (cry), and the neuropeptide gene Pdf (pigment dispersing factor). The CRISPR-based strategy not only reproduced their known phenotypes but also assigned cry function for different light-mediated phenotypes to discrete, different subsets of clock neurons. We further tested two recently published methods for temporal regulation in adult neurons, inducible Cas9 and the auxin-inducible gene expression system. The results were not identical, but both approaches successfully showed that the adult-specific knockout of the neuropeptide Pdf reproduces the canonical loss-of-function mutant phenotypes. In summary, a CRISPR-based strategy is a highly effective, reliable, and general method to temporally manipulate gene function in specific adult neurons.
Collapse
|
5
|
Patop IL, Anduaga AM, Bussi IL, Ceriani MF, Kadener S. Organismal landscape of clock cells and circadian gene expression in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.542009. [PMID: 37292867 PMCID: PMC10245886 DOI: 10.1101/2023.05.23.542009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Circadian rhythms time physiological and behavioral processes to 24-hour cycles. It is generally assumed that most cells contain self-sustained circadian clocks that drive circadian rhythms in gene expression that ultimately generating circadian rhythms in physiology. While those clocks supposedly act cell autonomously, current work suggests that in Drosophila some of them can be adjusted by the brain circadian pacemaker through neuropeptides, like the Pigment Dispersing Factor (PDF). Despite these findings and the ample knowledge of the molecular clockwork, it is still unknown how circadian gene expression in Drosophila is achieved across the body. Results Here, we used single-cell and bulk RNAseq data to identify cells within the fly that express core-clock components. Surprisingly, we found that less than a third of the cell types in the fly express core-clock genes. Moreover, we identified Lamina wild field (Lawf) and Ponx-neuro positive (Poxn) neurons as putative new circadian neurons. In addition, we found several cell types that do not express core clock components but are highly enriched for cyclically expressed mRNAs. Strikingly, these cell types express the PDF receptor (Pdfr), suggesting that PDF drives rhythmic gene expression in many cell types in flies. Other cell types express both core circadian clock components and Pdfr, suggesting that in these cells, PDF regulates the phase of rhythmic gene expression. Conclusions Together, our data suggest three different mechanisms generate cyclic daily gene expression in cells and tissues: canonical endogenous canonical molecular clock, PDF signaling-driven expression, or a combination of both.
Collapse
Affiliation(s)
- Ines L. Patop
- Biology Department, Brandeis University, Waltham, MA, 02454, USA
| | | | - Ivana L. Bussi
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA CONICET), Buenos Aires, Argentina
| | - M. Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
6
|
Gunawardhana KL, Hong L, Rugira T, Uebbing S, Kucharczak J, Mehta S, Karunamuni DR, Cabera-Mendoza B, Gandotra N, Scharfe C, Polimanti R, Noonan JP, Mani A. A systems biology approach identifies the role of dysregulated PRDM6 in the development of hypertension. J Clin Invest 2023; 133:e160036. [PMID: 36602864 PMCID: PMC9927944 DOI: 10.1172/jci160036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Genetic variants in the third intron of the PRDM6 gene have been associated with BP traits in multiple GWAS. By combining fine mapping, massively parallel reporter assays, and gene editing, we identified super enhancers that drive the expression of PRDM6 and are partly regulated by STAT1 as the causal variants for hypertension. The heterozygous disruption of Prdm6 in mice expressing Cre recombinase under the control of mouse smooth muscle cell protein 22-α promoter (Prdm6fl/+ SM22-Cre) exhibited a markedly higher number of renin-producing cells in the kidneys at E18.5 compared with WT littermates and developed salt-induced systemic hypertension that was completely responsive to the renin inhibitor aliskiren. Strikingly, RNA-Seq analysis of the mouse aortas identified a network of PRDM6-regulated genes that are located in GWAS-associated loci for blood pressure, most notably Sox6, which modulates renin expression in the kidney. Accordingly, the smooth muscle cell-specific disruption of Sox6 in Prdm6fl/+ SM22-Cre mice resulted in a dramatic reduction of renin. Fate mapping and histological studies also showed increased numbers of neural crest-derived cells accompanied by increased collagen deposition in the kidneys of Prdm6fl/+ Wnt1Cre-ZsGreen1Cre mice compared with WT mice. These findings establish the role of PRDM6 as a regulator of renin-producing cell differentiation into smooth muscle cells and as an attractive target for the development of antihypertensive drugs.
Collapse
Affiliation(s)
| | - Lingjuan Hong
- Cardiovascular Research Center, Department of Internal Medicine, and
| | - Trojan Rugira
- Cardiovascular Research Center, Department of Internal Medicine, and
| | - Severin Uebbing
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joanna Kucharczak
- Trinity Hall College, University of Cambridge, Cambridge, United Kingdom
| | - Sameet Mehta
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dineth R. Karunamuni
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brenda Cabera-Mendoza
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Neeru Gandotra
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Curt Scharfe
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James P. Noonan
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, and
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Mather LM, Cholak ME, Morfoot CM, Curro KC, Love J, Cavanaugh DJ. Inducible Reporter Lines for Tissue-specific Monitoring of Drosophila Circadian Clock Transcriptional Activity. J Biol Rhythms 2023; 38:44-63. [PMID: 36495136 DOI: 10.1177/07487304221138946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organisms track time of day through the function of cell-autonomous molecular clocks. In addition to a central clock located in the brain, molecular clocks are present in most peripheral tissues. Circadian clocks are coordinated within and across tissues, but the manner through which this coordination is achieved is not well understood. We reasoned that the ability to track in vivo molecular clock activity in specific tissues of the fruit fly, Drosophila melanogaster, would facilitate an investigation into the relationship between different clock-containing tissues. Previous efforts to monitor clock gene expression in single flies in vivo have used regulatory elements of several different clock genes to dictate expression of a luciferase reporter enzyme, the activity of which can be monitored using a luminometer. Although these reporter lines have been instrumental in our understanding of the circadian system, they generally lack cell specificity, making it difficult to compare molecular clock oscillations between different tissues. Here, we report the generation of several novel lines of flies that allow for inducible expression of a luciferase reporter construct for clock gene transcriptional activity. We find that these lines faithfully report circadian transcription, as they exhibit rhythmic luciferase activity that is dependent on a functional molecular clock. Furthermore, we take advantage of our reporter lines' tissue specificity to demonstrate that peripheral molecular clocks are able to retain rhythmicity for multiple days under constant environmental conditions.
Collapse
Affiliation(s)
- Lilyan M Mather
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | - Meghan E Cholak
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | - Connor M Morfoot
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | | | - Jacob Love
- Department of Biology, Loyola University Chicago, Chicago, Illinois
| | | |
Collapse
|
8
|
Yin JCP, Cui E, Hardin PE, Zhou H. Circadian disruption of memory consolidation in Drosophila. Front Syst Neurosci 2023; 17:1129152. [PMID: 37034015 PMCID: PMC10073699 DOI: 10.3389/fnsys.2023.1129152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
The role of the circadian system in memory formation is an important question in neurobiology. Despite this hypothesis being intuitively appealing, the existing data is confusing. Recent work in Drosophila has helped to clarify certain aspects of the problem, but the emerging sense is that the likely mechanisms are more complex than originally conceptualized. In this report, we identify a post-training window of time (during consolidation) when the circadian clock and its components are involved in memory formation. In the broader context, our data suggest that circadian biology might have multiple roles during memory formation. Testing for its roles at multiple timepoints, and in different cells, will be necessary to resolve some of the conflicting data.
Collapse
Affiliation(s)
- Jerry C. P. Yin
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- Neurology Department, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
- *Correspondence: Jerry C. P. Yin
| | - Ethan Cui
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| | - Paul E. Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, College Station, TX, United States
| | - Hong Zhou
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
9
|
Stanton D, Justin HS, Reitzel AM. Step in Time: Conservation of Circadian Clock Genes in Animal Evolution. Integr Comp Biol 2022; 62:1503-1518. [PMID: 36073444 DOI: 10.1093/icb/icac140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023] Open
Abstract
Over the past few decades, the molecular mechanisms responsible for circadian phenotypes of animals have been studied in increasing detail in mammals, some insects, and other invertebrates. Particular circadian proteins and their interactions are shared across evolutionary distant animals, resulting in a hypothesis for the canonical circadian clock of animals. As the number of species for which the circadian clockwork has been described increases, the circadian clock in animals driving cyclical phenotypes becomes less similar. Our focus in this review is to develop and synthesize the current literature to better understand the antiquity and evolution of the animal circadian clockwork. Here, we provide an updated understanding of circadian clock evolution in animals, largely through the lens of conserved genes characterized in the circadian clock identified in bilaterian species. These comparisons reveal extensive variation within the likely composition of the core clock mechanism, including losses of many genes, and that the ancestral clock of animals does not equate to the bilaterian clock. Despite the loss of these core genes, these species retain circadian behaviors and physiology, suggesting novel clocks have evolved repeatedly. Additionally, we highlight highly conserved cellular processes (e.g., cell division, nutrition) that intersect with the circadian clock of some animals. The conservation of these processes throughout the animal tree remains essentially unknown, but understanding their role in the evolution and maintenance of the circadian clock will provide important areas for future study.
Collapse
Affiliation(s)
- Daniel Stanton
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - Hannah S Justin
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte NC 28223, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte NC 28223, USA
| |
Collapse
|
10
|
Marchiano F, Haering M, Habermann BH. OUP accepted manuscript. Nucleic Acids Res 2022; 50:W490-W499. [PMID: 35524562 PMCID: PMC9252804 DOI: 10.1093/nar/gkac306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are subcellular organelles present in almost all eukaryotic cells, which play a central role in cellular metabolism. Different tissues, health and age conditions are characterized by a difference in mitochondrial structure and composition. The visual data mining platform mitoXplorer 1.0 was developed to explore the expression dynamics of genes associated with mitochondrial functions that could help explain these differences. It, however, lacked functions aimed at integrating mitochondria in the cellular context and thus identifying regulators that help mitochondria adapt to cellular needs. To fill this gap, we upgraded the mitoXplorer platform to version 2.0 (mitoXplorer 2.0). In this upgrade, we implemented two novel integrative functions, network analysis and transcription factor enrichment, to specifically help identify signalling or transcriptional regulators of mitochondrial processes. In addition, we implemented several other novel functions to allow the platform to go beyond simple data visualization, such as an enrichment function for mitochondrial processes, a function to explore time-series data, the possibility to compare datasets across species and an IDconverter to help facilitate data upload. We demonstrate the usefulness of these functions in three specific use cases. mitoXplorer 2.0 is freely available without login at http://mitoxplorer2.ibdm.univ-mrs.fr.
Collapse
Affiliation(s)
- Fabio Marchiano
- Aix-Marseille University, CNRS, IBDM UMR 7288, 13009 Marseille, France
| | - Margaux Haering
- Aix-Marseille University, CNRS, IBDM UMR 7288, 13009 Marseille, France
| | | |
Collapse
|
11
|
Wang P, Mao Y, Su Y, Wang J. Comparative analysis of transcriptomic data shows the effects of multiple evolutionary selection processes on codon usage in Marsupenaeus japonicus and Marsupenaeus pulchricaudatus. BMC Genomics 2021; 22:781. [PMID: 34717552 PMCID: PMC8557549 DOI: 10.1186/s12864-021-08106-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kuruma shrimp, a major commercial shrimp species in the world, has two cryptic or sibling species, Marsupenaeus japonicus and Marsupenaeus pulchricaudatus. Codon usage analysis would contribute to our understanding of the genetic and evolutionary characteristics of the two Marsupenaeus species. In this study, we analyzed codon usage and related indices using coding sequences (CDSs) from RNA-seq data. RESULTS Using CodonW 1.4.2 software, we performed the codon bias analysis of transcriptomes obtained from hepatopancreas tissues, which indicated weak codon bias. Almost all parameters had similar correlations for both species. The gene expression level (FPKM) was negatively correlated with A/T3s. We determined 12 and 14 optimal codons for M. japonicus and M. pulchricaudatus, respectively, and all optimal codons have a C/G-ending. The two Marsupenaeus species had different usage frequencies of codon pairs, which contributed to further analysis of transcriptional differences between them. Orthologous genes that underwent positive selection (ω > 1) had a higher correlation coefficient than that of experienced purifying selection (ω < 1). Parity Rule 2 (PR2) and effective number of codons (ENc) plot analysis showed that the codon usage patterns of both species were influenced by both mutations and selection. Moreover, the average observed ENc value was lower than the expected value for both species, suggesting that factors other than GC may play roles in these phenomena. The results of multispecies clustering based on codon preference were consistent with traditional classification. CONCLUSIONS This study provides a relatively comprehensive understanding of the correlations among codon usage bias, gene expression, and selection pressures of CDSs for M. japonicus and M. pulchricaudatus. The genetic evolution was driven by mutations and selection pressure. Moreover, the results point out new insights into the specificities and evolutionary characteristics of the two Marsupenaeus species.
Collapse
Affiliation(s)
- Panpan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/ Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, China.
| | - Yongquan Su
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| |
Collapse
|
12
|
Rego NDFC, Chahad-Ehlers S, Campanini EB, Torres FR, de Brito RA. VRILLE shows high divergence among Higher Diptera flies but may retain role as transcriptional repressor of clock. JOURNAL OF INSECT PHYSIOLOGY 2021; 133:104284. [PMID: 34256034 DOI: 10.1016/j.jinsphys.2021.104284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
In the circadian system, the clock gene vrille (vri) is an essential component of the second feedback loop, being responsible in Drosophila for the rhythmicity of the Clock (Clk) gene transcription by its repression. Here we studied vri in a fruit fly pest, the Tephritidae Anastrepha fraterculus, aimingtoinvestigate its molecular evolution and expression patterns from whole-head extracts. We used a combination of transcriptomic, genomic and gene walking strategies to sequence and characterize Afravri in male and female head transcriptomes of A. fraterculus and detected two putative isoforms that may correspond to A and D vri isoforms of Drosophila. Both isoforms produced a full-length sequence that translates to 842 amino acids. While the protein sequence showed significant divergence to orthologous sequences from other organisms, the bZIP domain was highly conserved. Molecular evolutionary analyses showed that vri in higher Diptera flies has been evolving under positive selection. A more detailed analysis showed positive selection also in Tephritidae with 29 sites evolving under positive selection in comparison with Drosophilidae. Real time expression analysis in LD and DD conditions showed cyclic expression of Afravri mRNA with oscillation opposite to AfraClk, suggesting that VRI may also behave in Anastrepha as a transcriptional repressor of Clk, providing another indication that higher Diptera might share common interlocked transcript-translation feedback loops (TTFLs) mechanisms that differ from other insects in target genes.
Collapse
Affiliation(s)
| | - Samira Chahad-Ehlers
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil.
| | - Emeline Boni Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Felipe Rafael Torres
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil.
| | - Reinaldo Alves de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil.
| |
Collapse
|