1
|
Michel C, Argudín MDLA, Wautier M, Echahidi F, Prevost B, Vandenberg O, Martiny D, Hallin M. Multiple interspecies recombination events documented by whole-genome sequencing in multidrug-resistant Haemophilus influenzae clinical isolates. Access Microbiol 2024; 6:000649.v3. [PMID: 38482359 PMCID: PMC10928409 DOI: 10.1099/acmi.0.000649.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/22/2023] [Indexed: 04/12/2024] Open
Abstract
Introduction Haemophilus influenzae (Hi) was long known as an easy-to-treat bacterium, but increasing resistance against beta-lactams and other critically important antibiotics is now a growing concern. We describe here the whole-genome sequencing (WGS) analysis of three non-typeable Hi isolates received in 2018-2019 by the Belgian National Reference Centre (NRC) for Haemophilus influenzae, as they presented an unusual multi-resistant profile. Methods All three isolates were sequenced by WGS and mapped to the reference isolate Hi Rd KW20. Shorten uptake signal sequences (USSs) known to be associated with homologous recombination were sought in ftsI, murE and murF genes, and inner partial sequences were compared against the blast nucleotide database to look for similarity with other Haemophilus species. Their antimicrobial resistance (AMR) genotype was studied. Core-genome multilocus sequence typing (MLST) was performed on the NTHi database pubMLST to place our isolates in the actual worldwide epidemiology. Results The isolates also harboured interspecies recombination patterns in the murF-murE-ftsI region involved in cell wall synthesis. The three isolates were multidrug resistant and two of them were also resistant to amoxicillin-clavulanic acid and showed a reduced susceptibility to meropenem. All three isolates belonged to the MLST clonal complex (CC) 422, and WGS revealed that the three were very similar. They harboured mobile genetic elements (carrying blaTEM-1B, mefA and msrD genes associated with resistance), mutations in gyrA and parC linked to fluoroquinolone resistance as well as remodelling events in ompP2 that might be related to lower carbapenem susceptibility. Conclusion The Hi evolution towards antimicrobial multiresistance (AMR) is a complex and poorly understood phenomenon, although probably linked to a large degree to the presence of USSs and exchange within the family Pasteurellaceae. To better understand the respective roles of clonal expansion, horizontal gene transfers, spontaneous mutations and interspecies genetic rearrangements in shaping Hi AMR, both analysis of Hi communities over time within individuals and worldwide monitoring of non-typeable Hi causing infections should be conducted.
Collapse
Affiliation(s)
- Charlotte Michel
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Belgian National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
| | - Maria De Los Angeles Argudín
- Department of Molecular Biology, Cliniques Universitaires Saint Luc (CUSL), Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Magali Wautier
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Belgian National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
| | - Fedoua Echahidi
- Department of Microbiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Pleinlaan 2, 1050 Brussels, Belgium
| | - Benoit Prevost
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Belgian National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
| | - Olivier Vandenberg
- Innovation and Business Development Unit, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Avenue Roosevelt 50, 1050 Brussels, Belgium
- Division of Infection and Immunity, Faculty of Medical Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Delphine Martiny
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Belgian National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Faculty of Medicine and Pharmacy, Mons University, Chemin du Champ de Mars 37, 7000 Mons, Belgium
| | - Marie Hallin
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Belgian National Reference Centre for Haemophilus influenzae, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Rue Haute 322, 1000 Brussels, Belgium
- Division of Infection and Immunity, Faculty of Medical Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
2
|
Chen X, Zhang H, Feng J, Zhang L, Zheng M, Luo H, Zhuo H, Xu N, Zhang X, Chen C, Qu P, Li Y. Comparative Genomic Analysis Reveals Genetic Diversity and Pathogenic Potential of Haemophilus seminalis and Emended Description of Haemophilus seminalis. Microbiol Spectr 2023; 11:e0477222. [PMID: 37382545 PMCID: PMC10434262 DOI: 10.1128/spectrum.04772-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/10/2023] [Indexed: 06/30/2023] Open
Abstract
Haemophilus seminalis is a newly proposed species that is phylogenetically related to Haemophilus haemolyticus. The distribution of H. seminalis in the human population, its genomic diversity, and its pathogenic potential are still unclear. This study reports the finding of our comparative genomic analyses of four newly isolated Haemophilus strains (SZY H8, SZY H35, SZY H36, and SZY H68) from human sputum specimens (Guangzhou, China) along with the publicly available genomes of other phylogenetically related Haemophilus species. Based on pairwise comparisons of the 16S rRNA gene sequences, the four isolates showed <98.65% sequence identity to the type strains of all known Haemophilus species but were identified as belonging to H. seminalis, based on comparable phenotypic and genotypic features. Additionally, the four isolates showed high genome-genome relatedness indices (>95% ANI values) with 17 strains that were previously identified as either "Haemophilus intermedius" or hemin (X-factor)-independent H. haemolyticus and therefore required a more detailed classification study. Phylogenetically, these isolates, along with the two previously described H. seminalis isolates (a total of 23 isolates), shared a highly homologous lineage that is distinct from the clades of the main H. haemolyticus and Haemophilus influenzae strains. These isolates present an open pangenome with multiple virulence genes. Notably, all 23 isolates have a functional heme biosynthesis pathway that is similar to that of Haemophilus parainfluenzae. The phenotype of hemin (X-factor) independence and the analysis of the ispD, pepG, and moeA genes can be used to distinguish these isolates from H. haemolyticus and H. influenzae. Based on the above findings, we propose a reclassification for all "H. intermedius" and two H. haemolyticus isolates belonging to H. seminalis with an emended description of H. seminalis. This study provides a more accurate identification of Haemophilus isolates for use in the clinical laboratory and a better understanding of the clinical significance and genetic diversity in human environments. IMPORTANCE As a versatile opportunistic pathogen, the accurate identification of Haemophilus species is a challenge in clinical practice. In this study, we characterized the phenotypic and genotypic features of four H. seminalis strains that were isolated from human sputum specimens and propose the "H. intermedius" and hemin (X-factor)-independent H. haemolyticus isolates as belonging to H. seminalis. The prediction of virulence-related genes indicates that H. seminalis isolates carry several virulence genes that are likely to play an important role in its pathogenicity. In addition, we depict that the genes ispD, pepG, and moeA can be used as biomarkers for distinguishing H. seminalis from H. haemolyticus and H. influenzae. Our findings provide some insights into the identification, epidemiology, genetic diversity, pathogenic potential, and antimicrobial resistance of the newly proposed H. seminalis.
Collapse
Affiliation(s)
- Xiaowei Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanyun Zhang
- Department of Laboratory Medicine, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China
| | - Junhui Feng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Zhang
- Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, China
| | - Minling Zheng
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
| | - Haimin Luo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huiyan Zhuo
- Department of Laboratory Medicine, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China
| | - Ning Xu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xuan Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Cha Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Pinghua Qu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Youqiang Li
- Department of Laboratory Medicine, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Seow VY, Tsygelnytska O, Biais N. Multisite transformation in Neisseria gonorrhoeae: insights on transformations mechanisms and new genetic modification protocols. Front Microbiol 2023; 14:1178128. [PMID: 37408636 PMCID: PMC10319059 DOI: 10.3389/fmicb.2023.1178128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Natural transformation, or the uptake of naked DNA from the external milieu by bacteria, holds a unique place in the history of biology. This is both the beginning of the realization of the correct chemical nature of genes and the first technical step to the molecular biology revolution that sees us today able to modify genomes almost at will. Yet the mechanistic understanding of bacterial transformation still presents many blind spots and many bacterial systems lag behind power horse model systems like Escherichia coli in terms of ease of genetic modification. Using Neisseria gonorrhoeae as a model system and using transformation with multiple DNA molecules, we tackle in this paper both some aspects of the mechanistic nature of bacterial transformation and the presentation of new molecular biology techniques for this organism. We show that similarly to what has been demonstrated in other naturally competent bacteria, Neisseria gonorrhoeae can incorporate, at the same time, different DNA molecules modifying DNA at different loci within its genome. In particular, co-transformation of a DNA molecule bearing an antibiotic selection cassette and another non-selected DNA piece can lead to the integration of both molecules in the genome while selecting only through the selective cassette at percentages above 70%. We also show that successive selections with two selection markers at the same genetic locus can drastically reduce the number of genetic markers needed to do multisite genetic modifications in Neisseria gonorrhoeae. Despite public health interest heightened with the recent rise in antibiotic resistance, the causative agent of gonorrhea still does not possess a plethora of molecular techniques. This paper will extend the techniques available to the Neisseria community while providing some insights into the mechanisms behind bacterial transformation in Neisseria gonorrhoeae. We are providing a suite of new techniques to quickly obtain modifications of genes and genomes in the Neisserial naturally competent bacteria.
Collapse
Affiliation(s)
- Vui Yin Seow
- Brooklyn College of the City University of New York, Brooklyn, NY, United States
- The Graduate Center of the City University of New York, New York, NY, United States
- Laboratoire Jean Perrin, UMR8237, Sorbonne Université, Paris, France
| | - Olga Tsygelnytska
- Brooklyn College of the City University of New York, Brooklyn, NY, United States
| | - Nicolas Biais
- Brooklyn College of the City University of New York, Brooklyn, NY, United States
- The Graduate Center of the City University of New York, New York, NY, United States
- Laboratoire Jean Perrin, UMR8237, Sorbonne Université, Paris, France
| |
Collapse
|
4
|
López-López N, Gil-Campillo C, Díez-Martínez R, Garmendia J. Learning from -omics strategies applied to uncover Haemophilus influenzae host-pathogen interactions: Current status and perspectives. Comput Struct Biotechnol J 2021; 19:3042-3050. [PMID: 34136102 PMCID: PMC8178019 DOI: 10.1016/j.csbj.2021.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/15/2022] Open
Abstract
Haemophilus influenzae has contributed to key bacterial genome sequencing hallmarks, as being not only the first bacterium to be genome-sequenced, but also starring the first genome-wide analysis of chromosomes directly transformed with DNA from a divergent genotype, and pioneering Tn-seq methodologies. Over the years, the phenomenal and constantly evolving development of -omic technologies applied to a whole range of biological questions of clinical relevance in the H. influenzae-host interplay, has greatly moved forward our understanding of this human-adapted pathogen, responsible for multiple acute and chronic infections of the respiratory tract. In this way, essential genes, virulence factors, pathoadaptive traits, and multi-layer gene expression regulatory networks with both genomic and epigenomic complexity levels are being elucidated. Likewise, the unstoppable increasing whole genome sequencing information underpinning H. influenzae great genomic plasticity, mainly when referring to non-capsulated strains, poses major challenges to understand the genomic basis of clinically relevant phenotypes and even more, to clearly highlight potential targets of clinical interest for diagnostic, therapeutic or vaccine development. We review here how genomic, transcriptomic, proteomic and metabolomic-based approaches are great contributors to our current understanding of the interactions between H. influenzae and the human airways, and point possible strategies to maximize their usefulness in the context of biomedical research and clinical needs on this human-adapted bacterial pathogen.
Collapse
Affiliation(s)
- Nahikari López-López
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Celia Gil-Campillo
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | | | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|