1
|
Rong X, Han Y, Dai H, Jiang H, Xue Y. Enhancing the efficient degradation of BPS using the BPNS-CdS composite catalyst under visible light. ENVIRONMENTAL RESEARCH 2024; 251:118690. [PMID: 38485073 DOI: 10.1016/j.envres.2024.118690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Black phosphorus nanosheets (BPNS), a novel two-dimensional nanomaterial, find extensive applications in the field of photocatalysis. With the prohibition of bisphenol A (BPA), the utilization of bisphenol S (BPS), which is more resistant to degradation than BPA, has been steadily increasing. In this study, few-layer BPNS was prepared using an improved liquid-phase exfoliation method, showcasing its commendable specific surface area and notable adsorption capacity. Subsequently, a new type of nanocomposite material, BPNS-Cadmium sulfide (CdS), was hydrothermal synthesized involving BPNS and CdS. We conducted comparative assessments of BPNS, CdS, and their composite materials to identify the most efficient catalysts. Ultimately, we found that the composite material BPNS-CdS exhibited the highest capability for degrading BPS in an alkaline environment, achieving an impressive degradation rate of 86.9%. Notably, the degradation rate remained higher in an acidic environment compared to a neutral one. Through Electron Spin Resoance (ESR) experiments, it is revealed that BPNS-CdS, when exposed to visible light, generates •O2-, •OH, and h+ as confirmed. Additionally, we tested and validated the carrier separation and migration abilities of BPNS-CdS while also calculating the band gap for each material. Building upon these results, a possible photocatalysis mechanism experiment was proposed. Finally, the degradation products were analyzed using High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) and put forth a plausible pathway for the BPS degradation, and it was found that 4-Phenolsulfonic acid, Ethyl protocatechuate and Isophthalic acid are the main intermediates of BPS. This study contributes to a deeper understanding of the synergy between non-metallic catalysts like BPNS and metal catalysts like CdS. It also offers new insights into the degradation mechanisms and pathways for BPS.
Collapse
Affiliation(s)
- Xiaolong Rong
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Ying Han
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China; Jiangsu Engineering Research Center of Petrochemical Safety and Environmental Protection, Changzhou, 213164, China.
| | - Hao Dai
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Haixia Jiang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yingang Xue
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
2
|
Sun CS, Yuan SW, Hou R, Zhang SQ, Huang QY, Lin L, Li HX, Liu S, Cheng YY, Li ZH, Xu XR. First insights into the bioaccumulation, biotransformation and trophic transfer of typical tetrabromobisphenol A (TBBPA) analogues along a simulated aquatic food chain. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133390. [PMID: 38163409 DOI: 10.1016/j.jhazmat.2023.133390] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Tetrabromobisphenol A (TBBPA) analogues have been investigated for their prevalent occurrence in environments and potential hazardous effects to humans and wildlife; however, there is still limited knowledge regarding their toxicokinetics and trophic transfer in aquatic food chains. Using a developed toxicokinetic model framework, we quantified the bioaccumulation, biotransformation and trophic transfer of tetrabromobisphenol S (TBBPS) and tetrabromobisphenol A di(allyl ether) (TBBPA-DAE) during trophic transfer from brine shrimp (Artemia salina) to zebrafish (Danio rerio). The results showed that the two TBBPA analogues could be readily accumulated by brine shrimp, and the estimated bioconcentration factor (BCF) value of TBBPS (5.68 L kg-1 ww) was higher than that of TBBPA-DAE (1.04 L kg-1 ww). The assimilation efficiency (AE) of TBBPA-DAE in zebrafish fed brine shrimp was calculated to be 16.3%, resulting in a low whole-body biomagnification factor (BMF) in fish (0.684 g g-1 ww). Based on the transformation products screened using ultra-high-performance liquid chromatograph-high resolution mass spectrometry (UPLC-HRMS), oxidative debromination and hydrolysis were identified as the major transformation pathways of TBBPS, while the biotransformation of TBBPA-DAE mainly took place through ether bond breaking and phase-II metabolism. Lower accumulation of TBBPA as a metabolite than its parent chemical was observed in both brine shrimp and zebrafish, with metabolite parent concentration factors (MPCFs) < 1. The investigated BCFs for shrimp of the two TBBPA analogues were only 3.77 × 10-10 - 5.59 × 10-3 times of the theoretical Kshrimp-water based on the polyparameter linear free energy relationships (pp-LFERs) model, and the BMF of TBBPA-DAE for fish was 0.299 times of the predicted Kshrimp-fish. Overall, these results indicated the potential of the trophic transfer in bioaccumulation of specific TBBPA analogues in higher trophic-level aquatic organisms and pointed out biotransformation as an important mechanism in regulating their bioaccumulation processes. ENVIRONMENTAL IMPLICATION: The internal concentration of a pollutant in the body determines its toxicity to organisms, while bioaccumulation and trophic transfer play important roles in elucidating its risks to ecosystems. Tetrabromobisphenol A (TBBPA) analogues have been extensively investigated for their adverse effects on humans and wildlife; however, there is still limited knowledge regarding their toxicokinetics and trophic transfer in aquatic food chains. This study investigated the bioaccumulation, biotransformation and trophic transfer of TBBPS and TBBPA-DAE in a simulated di-trophic food chain. This state-of-art study will provide a reference for further research on this kind of emerging pollutant in aquatic environments.
Collapse
Affiliation(s)
| | - Sheng-Wu Yuan
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Si-Qi Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qian-Yi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Yuan-Yue Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai 264209, China.
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
3
|
Wei Y, Zhang L, Liang B, Cui H, Shi K, Liu Z, Zhou A, Yue X. Synergistic Control of Trimethoprim and the Antimicrobial Resistome in Electrogenic Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2847-2858. [PMID: 38299532 DOI: 10.1021/acs.est.3c05870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Synergistic control of the risks posed by emerging antimicrobials and antibiotic resistance genes (ARGs) is crucial for ensuring ecological safety. Although electrogenic respiration can enhance the biodegradation of several antimicrobials and reduce ARGs accumulation, the association mechanisms of antimicrobial biodegradation (trimethoprim, TMP) with the fate of the antimicrobial resistome remain unclear. Here, the biotransformation pathway of TMP, microbial associations, and functional gene profiles (e.g., degradation, antimicrobial resistance, and electron transfer) were analyzed. The results showed that the microbial electrogenic respiration significantly enhanced the biodegradation of TMP, especially with a cosubstrate sodium acetate supply. Electroactive bacteria enriched in the electrode biofilm positively correlated with potential TMP degraders dominated in the planktonic communities. These cross-niche microbial associations may contribute to the accelerated catabolism of TMP and extracellular electron transfer. Importantly, the evolution and dissemination of overall ARGs and mobile genetic elements (MGEs) were significantly weakened due to the enhanced cometabolic biodegradation of TMP. This study provides a promising strategy for the synergistic control of the water ecological risks of antimicrobials and their resistome, while also highlighting new insights into the association of antimicrobial biodegradation with the evolution of the resistome in an electrically integrated biological process.
Collapse
Affiliation(s)
- Yaoli Wei
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhihong Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi Engineer Research Institute of Sludge Disposition and Resources, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
4
|
Li J, Zhang D, Luo C, Li B, Zhang G. In Situ Discrimination and Cultivation of Active Degraders in Soils by Genome-Directed Cultivation Assisted by SIP-Raman-Activated Cell Sorting. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17087-17098. [PMID: 37823365 DOI: 10.1021/acs.est.3c04247] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The identification and in situ cultivation of functional yet uncultivable microorganisms are important to confirm inferences regarding their ecological functions. Here, we developed a new method that couples Raman-activated cell sorting (RACS), stable-isotope probing (SIP), and genome-directed cultivation (GDC)─namely, RACS-SIP-GDC─to identify, sort, and cultivate the active toluene degraders from a complex microbial community in petroleum-contaminated soil. Using SIP, we successfully identified the active toluene degrader Pigmentiphaga, the single cells of which were subsequently sorted and isolated by RACS. We further successfully assembled the genome of Pigmentiphaga based on the metagenomic sequencing of 13C-DNA and genomic sequencing of sorted cells, which was confirmed by gyrB gene comparison and average nucleotide identity determination. Additionally, the genotypes and phenotypes of this degrader were directly linked at the single-cell level, and its complete toluene metabolic pathways in petroleum-contaminated soil were reconstructed. Based on its unique metabolic properties uncovered by genome sequencing, we modified the traditional cultivation medium with antibiotics, amino acids, carbon sources, and growth factors (e.g., vitamins and metals), achieving the successful cultivation of RACS-sorted active degrader Pigmentiphaga sp. Our results implied that RACS-SIP-GDC is a state-of-the-art approach for the precise identification, targeted isolation, and cultivation of functional microbes from complex communities in natural habitats. RACS-SIP-GDC can be used to explore specific and targeted organic-pollution-degrading microorganisms at the single-cell level and provide new insights into their biodegradation mechanisms.
Collapse
Affiliation(s)
- Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, China
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Bei Li
- State Key Lab of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033 Changchun, China
- HOOKE Instruments Ltd., 130033 Changchun, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
5
|
Kim J, Hwangbo M, Shih CH, Chu KH. Advances and perspectives of using stable isotope probing (SIP)-based technologies in contaminant biodegradation. WATER RESEARCH X 2023; 20:100187. [PMID: 37671037 PMCID: PMC10477051 DOI: 10.1016/j.wroa.2023.100187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 09/07/2023]
Abstract
Stable isotope probing (SIP) is a powerful tool to study microbial community structure and function in both nature and engineered environments. Coupling with advanced genomics and other techniques, SIP studies have generated substantial information to allow researchers to draw a clearer picture of what is occurring in complex microbial ecosystems. This review provides an overview of the advances of SIP-based technologies over time, summarizes the status of SIP applications to contaminant biodegradation, provides critical perspectives on ecological interactions within the community, and important factors (controllable and non-controllable) to be considered in SIP experimental designs and data interpretation. Current trend and perspectives of adapting SIP techniques for environmental applications are also discussed.
Collapse
Affiliation(s)
- Jinha Kim
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
- School of Earth, Environmental and Marine Sciences, The University of Texas – Rio Grande Valley, Brownsville, TX, USA
| | - Chih-Hsuan Shih
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| |
Collapse
|
6
|
Chu N, Jiang Y, Liang Q, Liu P, Wang D, Chen X, Li D, Liang P, Zeng RJ, Zhang Y. Electricity-Driven Microbial Metabolism of Carbon and Nitrogen: A Waste-to-Resource Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4379-4395. [PMID: 36877891 DOI: 10.1021/acs.est.2c07588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electricity-driven microbial metabolism relies on the extracellular electron transfer (EET) process between microbes and electrodes and provides promise for resource recovery from wastewater and industrial discharges. Over the past decades, tremendous efforts have been dedicated to designing electrocatalysts and microbes, as well as hybrid systems to push this approach toward industrial adoption. This paper summarizes these advances in order to facilitate a better understanding of electricity-driven microbial metabolism as a sustainable waste-to-resource solution. Quantitative comparisons of microbial electrosynthesis and abiotic electrosynthesis are made, and the strategy of electrocatalyst-assisted microbial electrosynthesis is critically discussed. Nitrogen recovery processes including microbial electrochemical N2 fixation, electrocatalytic N2 reduction, dissimilatory nitrate reduction to ammonium (DNRA), and abiotic electrochemical nitrate reduction to ammonia (Abio-NRA) are systematically reviewed. Furthermore, the synchronous metabolism of carbon and nitrogen using hybrid inorganic-biological systems is discussed, including advanced physicochemical, microbial, and electrochemical characterizations involved in this field. Finally, perspectives for future trends are presented. The paper provides valuable insights on the potential contribution of electricity-driven microbial valorization of waste carbon and nitrogen toward a green and sustainable society.
Collapse
Affiliation(s)
- Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinjun Liang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
7
|
Qin Z, Zhao Z, Xia L, Wang S, Yu G, Miao A. Responses of abundant and rare prokaryotic taxa in a controlled organic contaminated site subjected to vertical pollution-induced disturbances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158625. [PMID: 36089032 DOI: 10.1016/j.scitotenv.2022.158625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/20/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Soil microbiota as the key role mediates the natural attenuation process of organic contaminated sites, and therefore illuminating the mechanisms underlying the responses of abundant and rare species is essential for understanding ecological processes, maintaining ecosystem stability, and regulating natural attenuation well. Here, we explored the distributional characteristics, ecological diversities, and co-occurrence patterns of abundant and rare prokaryotic subcommunities using 16S rRNA high-throughput sequencing in vertical soil profiles of a controlled organic contaminated site. Results showed that abundant prokaryotic taxa were widespread across all soil samples, whereas rare counterparts were unbalancedly distributed. Rare subcommunity had more taxonomic groups and higher α- and β-diversities than abundant subcommunity. Both of these two subcommunities surviving in the organic polluted site possessed the potential of degrading organic contaminants. Abundant subcommunity was little affected by abiotic factors and mainly shaped by soil depth, while rare one was sensitive to environmental disturbances and presented a non-depth-dependent structure. Co-occurrence analysis revealed that rare taxa were more situated at the center of the network and more inclined to cooperate with non-abundant species than abundant taxa, which might play crucial roles in enhancing the resilience and resistance of prokaryotic community and maintaining its structure and stability. Overall, our results suggest that abundant and rare prokaryotic subcommunities present different responses to physicochemical factors and pollution characteristics along vertical soil profiles of organic contaminated sites undergoing natural attenuation.
Collapse
Affiliation(s)
- Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| | - Liling Xia
- Nanjing Vocational University of Industry Technology, Nanjing 210016, China
| | - Shiyu Wang
- Beijing Municipal Ecological and Environmental Monitoring Center, Beijing 100048, China
| | - Guangwen Yu
- China National Chemical Civil Engineering Co., Ltd, Nanjing 210031, China
| | - Aihua Miao
- China National Chemical Civil Engineering Co., Ltd, Nanjing 210031, China
| |
Collapse
|
8
|
Tucci M, Viggi CC, Crognale S, Matturro B, Rossetti S, Capriotti AL, Cavaliere C, Cerrato A, Montone CM, Harnisch F, Aulenta F. Insights into the syntrophic microbial electrochemical oxidation of toluene: a combined chemical, electrochemical, taxonomical, functional gene-based, and metaproteomic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157919. [PMID: 35964739 DOI: 10.1016/j.scitotenv.2022.157919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Biodegradation of aromatic hydrocarbons in anoxic contaminated environments is typically limited by the lack of bioavailable electron acceptors. Microbial electrochemical technologies (METs) are able to provide a virtually inexhaustible electron acceptor in the form of a solid electrode. Recently, we provided first experimental evidence for the syntrophic degradation of toluene in a continuous-flow bioelectrochemical reactor known as the "bioelectric well". Herein, we further analyzed the structure and function of the electroactive toluene-degrading microbiome using a suite of chemical, electrochemical, phylogenetic, proteomic, and functional gene-based analyses. The bioelectric well removed 83 ± 7 % of the toluene from the influent with a coulombic efficiency of 84 %. Cyclic voltammetry allowed to identify the formal potentials of four putative electron transfer sites, which ranged from -0.2 V to +0.1 V vs. SHE, consistent with outer membrane c-type cytochromes and pili of electroactive Geobacter species. The biofilm colonizing the surface of the anode was indeed highly enriched in Geobacter species. On the other hand, the planktonic communities thriving in the bulk of the reactor harbored aromatic hydrocarbons degraders and fermentative propionate-producing microorganisms, as revealed by phylogenetic and proteomic analyses. Most likely, propionate, acetate or other VFAs produced in the bulk liquid from the degradation of toluene were utilized as substrates by the electroactive biofilm. Interestingly, key-functional genes related to the degradation of toluene were found both in the biofilm and in the planktonic communities. Taken as a whole, the herein reported results highlight the importance of applying a comprehensive suite of techniques to unravel the complex cooperative metabolisms occurring in METs.
Collapse
Affiliation(s)
- Matteo Tucci
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, RM, Italy
| | - Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, RM, Italy
| | - Simona Crognale
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, RM, Italy
| | - Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, RM, Italy
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, RM, Italy
| | | | - Chiara Cavaliere
- Department of Chemistry, Sapienza - University of Rome, Rome, Italy
| | - Andrea Cerrato
- Department of Chemistry, Sapienza - University of Rome, Rome, Italy
| | | | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Monterotondo, RM, Italy.
| |
Collapse
|
9
|
Zhang L, Cheng Y, Qian Y, Ding T, Li J. Bisphenol S degradation in soil and the dynamics of microbial community associated with degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157451. [PMID: 35868379 DOI: 10.1016/j.scitotenv.2022.157451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol S (BPS) has been widely applied as a replacement for BPA in industrial application, leading to the frequent detection in the environment. However, its impact on soil microbial communities has not been well reported. Here, effects of BPS exposure on soil microbial communities in the presence of polystyrene (PS) microplastics were revealed. Rapid degradation of BPS occurred with a degradation rate of up to 98.9 ± 0.001 % at 32 d. The presence of BPS reduced the diversity of soil microbial communities, and changed community structures. After BPS treatment, Proteobacteria, and its members Methylobacillus, Rhodobacteraceae and Mesorhizobium became dominant, and were considered as potential biomarkers indicating BPS contamination. Co-occurrence network analysis revealed the increased relationships of certain groups of microbes after BPS treatment. The resultant low stability and resilience towards environment disturbance of microbial community networks implied the biotoxicity of BPS towards soil ecosystems. The degradation and biotoxicity of BPS (p > 0.05) in soil was not affected by the presence of PS. Our findings showed that exposure to BPS could reshape soil microbial communities and impair the robustness of microbial co-occurrence networks.
Collapse
Affiliation(s)
- Lili Zhang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanan Cheng
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiguang Qian
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
10
|
Luo X, Huang L, Cai X, Zhou L, Zhou S, Yuan Y. Structure and core taxa of bacterial communities involved in extracellular electron transfer in paddy soils across China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157196. [PMID: 35810886 DOI: 10.1016/j.scitotenv.2022.157196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Microbial communities with extracellular electron transfer (EET) activity are capable of driving geochemical changes and cycles, but a comprehensive understanding of the key microbiota responsible for EET in complex soil matrices is still lacking. Herein, the EET activities, in terms of maximum current density (jmax) and accumulated charge output (Cout), of 41 paddy soils across China were evaluated from the exoelectrogenic properties with a conventional bioelectrochemical system (BES). The jmax with a range of 8.85 × 10-4 to 0.41 A/m2 and Cout with a range of 0.27 to 172.21C were obtained from these soil-based BESs. The bacterial community analyses revealed that the most abundant phylum, order, and genus were Firmicutes, Clostridiales, and Clostridum-sensus-stricto 10, respectively. Bacterial network analysis displayed the positive correlations between the majority of electroactive bacteria-containing genera and multiple other genera, indicating their underlying cooperation for the EET. Partial least squares regression (PLSR) model showed remarkable performance in describing the EET activity with 75 most abundant genera as input variables, identified that 32 genera were very important for governing the EET activities. Multiple linear regression (MLR) analyses further prioritized that the genera norank-c-Berkelbacteria and Fonticella were the key contributors, while the genus Paenibacillus was the key competitor against bacterial exoelectrogenesis in paddy soils. Moreover, the spearman analysis showed that the abundance of these keystone taxa was mainly influenced by the carbon content and pH. This approach provides a promising avenue to monitor the microbial activities in paddy soils as well as the links between microbial community composition and ecological function.
Collapse
Affiliation(s)
- Xiaoshan Luo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Lingyan Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xixi Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Lihua Zhou
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, School of Resources and Environment, Fujian Agriculture and Forestry, Fuzhou 350000, China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
11
|
Wang Y, Gan L, Liao Z, Hou R, Zhou S, Zhou L, Yuan Y. Self-produced biophotosensitizers enhance the degradation of organic pollutants in photo-bioelectrochemical systems. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128797. [PMID: 35366440 DOI: 10.1016/j.jhazmat.2022.128797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Bioelectrochemical systems (BESs) with integrated photoactive components have been shown to be a promising strategy for enhancing the performance for bioenergy generation and pollutant removal. This study revealed an efficient photo-BES with an enhanced pollutant degradation rate by utilizing self-produced biomolecules as photosensitizers in situ. Results showed that the BES could increase the coulombic efficiency from 60.8% to 73.0% and the degradation rate of bisphenol A (BPA) from 0.030 to 0.189 h-1 when the suspension in the reactor was illuminated with simulated sunlight in the absence of any external photosensitizers. We identified that the regular BES released many organic substances into the reactor during operation. These substances, including dissolved biomolecules and solid cell residues, were photoactive for producing hydroxyl radicals during light illumination. Quenching experiments verified that the •OH generated from the self-produced biophotosensitizers contributed to the enhanced degradation of BPA. Additionally, the phototransformation of biophotosensitizers was also observed in photo-BES. The quantity of tyrosine protein-like components decreased, but that of the humic components remained relatively stable. Our findings imply that BESs with integrated self-produced biophotosensitizers may be promising for constructing advanced electrochemical and biological systems for synchronous bioelectricity production and degradation of organic pollutants in wastewater treatments.
Collapse
Affiliation(s)
- Yi Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Lin Gan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhiyang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Rui Hou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shaofeng Zhou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Lihua Zhou
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
12
|
Zhao M, Bai X, Zhang Y, Yuan Y, Sun J. Enhanced photodegradation of antibiotics based on anoxygenic photosynthetic bacteria and bacterial metabolites: A sustainably green strategy for the removal of high-risk organics from secondary effluent. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128350. [PMID: 35149498 DOI: 10.1016/j.jhazmat.2022.128350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/13/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic residues in effluents discharged from wastewater treatment plants (WWTPs) have been considered high-risk organics due to biorefractory property and potential toxicity. Secondary pollution and unsustainability existed in advanced treatment of secondary effluent are currently in urgent need of improvement. In this study, a sustainably green strategy based on Rhodopseudomonas palustris (R.palustris) by regulating the structure of extracellular polymeric substances (EPS) was proposed for the first time to achieve efficiently removal of sulfadiazine (SDZ). Results showed that 0.2 V was the optimal external potential for R.palustris to efficiently remove SDZ, where the biodegradation rate constant obtained at this potential was 4.87-folds higher than that in open-circuit mode and a complete removal was achieved within 58 h in the presence of EPS extracted at this potential. Three-dimensional excitation-emission matrix (3D-EEM) spectra analysis suggested that tryptophan protein-like, tyrosine protein-like, humic acid-like and fulvic acid-like substances present in EPS were the main effective components which was responsible for the indirect photodegradation of SDZ. The quenching experiments showed that 3EPS* was the dominant reactive species which accounted for 90% of SDZ removal. This study provides new implications for the advanced treatment of secondary effluent organic matters by developing eco-friendly bioaugmentation technology and biomaterials.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyan Bai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaping Zhang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yong Yuan
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Sun
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
13
|
Niu L, Zhang S, Wang S, An L, Manoli K, Sharma VK, Yu X, Feng M. Overlooked environmental risks deriving from aqueous transformation of bisphenol alternatives: Integration of chemical and toxicological insights. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128208. [PMID: 34999398 DOI: 10.1016/j.jhazmat.2021.128208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Owing to the widespread prevalence and ecotoxicity of bisphenol alternatives such as bisphenol S, bisphenol F, and bisphenol AF, the past decade has witnessed the publication of a remarkable number of studies related to their transformation and remediation in natural waters. However, the reactivity, removal efficiency, transformation products (TPs), and mechanisms of such emerging pollutants by different treatment processes have not been well elucidated. Particularly, the transformation-driven environmental risks have been mostly overlooked. Therefore, we present a review to address these issues from chemical and toxicological viewpoints. Four degradation systems can be largely classified as catalytic persulfate (PS) oxidation, non-catalytic oxidation, photolysis and photocatalysis, and biodegradation. It was found that bisphenol alternatives possess distinct reactivities with different oxidizing species, with the highest performance for hydroxyl radicals. All systems exhibit superior elimination efficiency for these compounds. The inadequate mineralization suggests the formation of recalcitrant TPs, from which the overall reaction pathways are proposed. The combined experimental and in silico analysis indicates that many TPs have developmental toxicity, endocrine-disrupting effects, and genotoxicity. Notably, catalytic PS systems and non-catalytic oxidation result in the formation of coupling products as well as halogenated TPs with higher acute and chronic toxicity and lower biodegradability than the parent compounds. In contrast, photolysis and photocatalysis generate hydroxylated and bond-cleavage TPs with less toxicity. Overall, this review highlights the secondary environmental risks from the transformation of bisphenol alternatives by conventional and emerging treatment processes. Finally, future perspectives are recommended to address the knowledge gaps of these contaminants in aquatic ecosystems.
Collapse
Affiliation(s)
- Lijun Niu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Shengqi Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Siqin Wang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Lili An
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Kyriakos Manoli
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus
| | - Virender K Sharma
- Program of the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
14
|
|
15
|
Nazina TN, Abukova LA, Tourova TP, Babich TL, Bidzhieva SK, Filippova DS, Safarova EA. Diversity and Possible Activity of Microorganisms in Underground Gas Storage Aquifers. Microbiology (Reading) 2021. [DOI: 10.1134/s002626172105012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|