1
|
Daems C, Baz ES, D'Hooge R, Callaerts-Végh Z, Callaerts P. Gene expression differences in the olfactory bulb associated with differential social interactions and olfactory deficits in Pax6 heterozygous mice. Biol Open 2025; 14:BIO061647. [PMID: 39902612 PMCID: PMC11832127 DOI: 10.1242/bio.061647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/28/2024] [Indexed: 02/05/2025] Open
Abstract
Mutations in the highly conserved Pax6 transcription factor have been implicated in neurodevelopmental disorders and behavioral abnormalities, yet the mechanistic basis of the latter remain poorly understood. Our study, using behavioral phenotyping, has identified aberrant social interactions, characterized by withdrawal behavior, and olfactory deficits in Pax6 heterozygous mutant mice. The molecular mechanisms underlying the observed phenotypes were characterized by means of RNA-sequencing on isolated olfactory bulbs followed by validation with qRT-PCR. Comparative analysis of olfactory bulb transcriptomes further reveals an imbalance between neuronal excitation and inhibition, synaptic dysfunction, and alterations in epigenetic regulation as possible mechanisms underlying the abnormal social behavior. We observe a considerable overlap with autism-associated genes and suggest that studying Pax6-dependent gene regulatory networks may further our insight into molecular mechanisms implicated in autistic-like behaviors in Pax6 mutations, thereby paving the way for future research in this area.
Collapse
Affiliation(s)
- Carmen Daems
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - El-Sayed Baz
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- Zoology Department, Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
| | - Zsuzsanna Callaerts-Végh
- Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium
- Mouse behavior core facility mINT, KU Leuven, Leuven, Belgium
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Qin Z, He X, Gao Q, Li Y, Zhang Y, Wang H, Qin N, Wang C, Huang B, Shi Y, Liu C, Wang S, Zhang H, Li Y, Shi H, Tian X, Song L. Postweaning sodium citrate exposure induces long-lasting and sex-dependent effects on social behaviours in mice. Pharmacol Biochem Behav 2024; 242:173807. [PMID: 38925482 DOI: 10.1016/j.pbb.2024.173807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Postweaning is a pivotal period for brain development and individual growth. As an important chemical used in medicines, foods and beverages, sodium citrate (SC) is commonly available. Although some effects of SC exposure on individual physiology have been demonstrated, the potential long-lasting effects of postweaning dietary SC exposure on social behaviours are still elusive. METHODS Both postweaning male and female C57BL/6 mice were exposed to SC through drinking water for a total of 3 weeks. A series of behavioural tests, including social dominance test (SDT), social interaction test (SIT), bedding preference test (BPT) and sexual preference test (SPT), were performed in adolescence and adulthood. After these tests, serum oxytocin (OT) levels and gut microbiota were detected. RESULTS The behavioural results revealed that postweaning SC exposure decreased the social dominance of male mice in adulthood and female mice in both adolescence and adulthood. SC exposure also reduced the sexual preference rates of both males and females, while it had no effect on social interaction behaviour. ELISA results indicated that SC exposure decreased the serum OT levels of females but not males. 16S rRNA sequencing analysis revealed a significant difference in β-diversity after SC exposure in both males and females. The correlation coefficient indicated the correlation between social behaviours, OT levels and dominant genera of gut microbiota. CONCLUSION Our findings suggest that postweaning SC exposure may have enduring and sex-dependent effects on social behaviours, which may be correlated with altered serum OT levels and gut microbiota composition.
Collapse
Affiliation(s)
- Zihan Qin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Xinyue He
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Qiang Gao
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Yuxin Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yue Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Huajian Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Na Qin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Chen Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Congcong Liu
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Sheng Wang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China
| | - Huifeng Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Youdong Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China; Early Life Health Research Center, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoyu Tian
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, China.
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology (SZX2020013), Hebei Medical University, 050017, China.
| |
Collapse
|
3
|
Choi TY, Jeon H, Jeong S, Kim EJ, Kim J, Jeong YH, Kang B, Choi M, Koo JW. Distinct prefrontal projection activity and transcriptional state conversely orchestrate social competition and hierarchy. Neuron 2024; 112:611-627.e8. [PMID: 38086372 DOI: 10.1016/j.neuron.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/20/2023] [Accepted: 11/13/2023] [Indexed: 02/24/2024]
Abstract
Social animals compete for limited resources, resulting in a social hierarchy. Although different neuronal subpopulations in the medial prefrontal cortex (mPFC), which has been mechanistically implicated in social dominance behavior, encode distinct social competition behaviors, their identities and associated molecular underpinnings have not yet been identified. In this study, we found that mPFC neurons projecting to the nucleus accumbens (mPFC-NAc) encode social winning behavior, whereas mPFC neurons projecting to the ventral tegmental area (mPFC-VTA) encode social losing behavior. High-throughput single-cell transcriptomic analysis and projection-specific genetic manipulation revealed that the expression level of POU domain, class 3, transcription factor 1 (Pou3f1) in mPFC-VTA neurons controls social hierarchy. Optogenetic activation of mPFC-VTA neurons increases Pou3f1 expression and lowers social rank. Together, these data demonstrate that discrete activity and gene expression in separate mPFC projections oppositely orchestrate social competition and hierarchy.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Hyoungseok Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sejin Jeong
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Eum Ji Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jeongseop Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 41988, Republic of Korea
| | - Yun Ha Jeong
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Byungsoo Kang
- Sysoft R&D Center, Daegu 41065, Republic of Korea; Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea; Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 41988, Republic of Korea.
| |
Collapse
|
4
|
Spiteri Douglas R, Hartley MR, Yang JR, Franklin TB. Differential expression of Hdac2 in male and female mice of differing social status. Physiol Behav 2024; 273:114406. [PMID: 37949308 DOI: 10.1016/j.physbeh.2023.114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/11/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Mice naturally form social hierarchies, and their experiences as subordinate or dominant mice inform future behavioural strategies. To better understand the neural bases of social dominance, we investigated hippocampal gene and protein expression of histone deacetylase 2 (HDAC2), an epigenetic regulator that decreases expression of synaptic plasticity genes and reduces excitatory synaptic function. Hdac2 in hippocampus was associated with social status. The gene for a closely related histone deacetylase (Hdac1), and HDAC2 protein expression, were not associated with social rank in hippocampus. These findings suggest that Hdac2 expression in hippocampus is distinctly linked with social status.
Collapse
Affiliation(s)
- Renée Spiteri Douglas
- The Social Lab, Dalhousie University, Department of Psychology and Neuroscience, Halifax, NS, Canada
| | - Mackenzie R Hartley
- The Social Lab, Dalhousie University, Department of Psychology and Neuroscience, Halifax, NS, Canada
| | - J Renee Yang
- The Social Lab, Dalhousie University, Department of Psychology and Neuroscience, Halifax, NS, Canada
| | - Tamara B Franklin
- The Social Lab, Dalhousie University, Department of Psychology and Neuroscience, Halifax, NS, Canada.
| |
Collapse
|
5
|
Examining litter specific variability in mice and its impact on neurodevelopmental studies. Neuroimage 2023; 269:119888. [PMID: 36681136 DOI: 10.1016/j.neuroimage.2023.119888] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Our current understanding of litter variability in neurodevelopmental studies using mice may limit translation of neuroscientific findings. Higher variance of measures across litters than within, often termed intra-litter likeness, may be attributable to both pre- and postnatal environment. This study aimed to assess the litter-effect within behavioral assessments (2 timepoints) and anatomy using T1-weighted magnetic resonance images across 72 brain region volumes (4 timepoints) (36 C57bl/6J inbred mice; 7 litters: 19F/17M). Between-litter comparisons of brain and behavioral measures and their associations were evaluated using univariate and multivariate techniques. A power analysis using simulation methods was then performed on modeled neurodevelopment and to evaluate trade-offs between number-of-litters, number-of-mice-per-litter, and sample size. Our results show litter-specific developmental effects, from the adolescent period to adulthood for brain structure volumes and behaviors, and for their associations in adulthood. Our power simulation analysis suggests increasing the number-of-litters in experimental designs to achieve the smallest total sample size necessary for detecting different rates of change in specific brain regions. Our results demonstrate how litter-specific effects may influence development and that increasing the litters to the total sample size ratio should be strongly considered when designing neurodevelopmental studies.
Collapse
|
6
|
Social Hierarchy Dictates Intestinal Radiation Injury in a Gut Microbiota-Dependent Manner. Int J Mol Sci 2022; 23:ijms232113189. [PMID: 36361976 PMCID: PMC9659279 DOI: 10.3390/ijms232113189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Social hierarchy governs the physiological and biochemical behaviors of animals. Intestinal radiation injuries are common complications connected with radiotherapy. However, it remains unclear whether social hierarchy impacts the development of radiation-induced intestinal toxicity. Dominant mice exhibited more serious intestinal toxicity following total abdominal irradiation compared with their subordinate counterparts, as judged by higher inflammatory status and lower epithelial integrity. Radiation-elicited changes in gut microbiota varied between dominant and subordinate mice, being more overt in mice of higher status. Deletion of gut microbes by using an antibiotic cocktail or restructuring of the gut microecology of dominant mice by using fecal microbiome from their subordinate companions erased the difference in radiogenic intestinal injuries. Lactobacillus murinus and Akkermansia muciniphila were both found to be potential probiotics for use against radiation toxicity in mouse models without social hierarchy. However, only Akkermansia muciniphila showed stable colonization in the digestive tracts of dominant mice, and significantly mitigated their intestinal radiation injuries. Our findings demonstrate that social hierarchy impacts the development of radiation-induced intestinal injuries, in a manner dependent on gut microbiota. The results also suggest that the gut microhabitats of hosts determine the colonization and efficacy of foreign probiotics. Thus, screening suitable microbial preparations based on the gut microecology of patients might be necessary in clinical application.
Collapse
|
7
|
Huang B, Sun B, Yang R, Liang S, Li X, Guo Y, Meng Q, Fu Y, Li W, Zhao P, Gong M, Shi Y, Song L, Wang S, Yuan F, Shi H. Long-lasting effects of postweaning sleep deprivation on cognitive function and social behaviors in adult mice. Neuropharmacology 2022; 215:109164. [PMID: 35716724 DOI: 10.1016/j.neuropharm.2022.109164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
Sleep deprivation (SD) has adverse effects on physical and mental health. Recently increasing attention has been given to SD in the early-life stage. However, the effects and mechanisms of postweaning SD on cognitive function and social behaviors are still unclear. In this study, SD was conducted in mice from postnatal Day 21 (PND21) to PND42, 6 h a day. Meanwhile, changes in body weight, food and water intake were continuously monitored. Behavioral tests were carried out in adulthood of mice. The levels of serum corticosterone, the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and the anti-inflammatory cytokines interleukin-10 (IL-10), vasopressin (VP) and oxytocin (OT) were measured by ELISA. Golgi staining was used to calculate neural dendritic spine density in the dorsal hippocampus (dHPC) CA1 region and medial prefrontal cortex (mPFC). We found that postweaning SD increased the food intake and the weight of female mice. Behavioral results showed that postweaning SD caused cognitive impairment and lowered social dominance in adult male mice but not in female mice. ELISA results showed that SD increased the levels of serum corticosterone, VP and OT in male mice and serum OT in female mice. Golgi staining analysis showed that SD decreased neural dendritic spine density in the dHPC in male mice. These results suggest that postweaning SD has a long-term effect on social dominance and cognitive function in male mice, which may provide a new insight into the role of SD in regulating cognitive function and social behaviors.
Collapse
Affiliation(s)
- Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Binhuang Sun
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Shihao Liang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Xinrui Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yi Guo
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Qian Meng
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yaling Fu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Wenshuya Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China
| | - Penghui Zhao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yun Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Sheng Wang
- Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Fang Yuan
- Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang, 050017, China.
| |
Collapse
|
8
|
Chou YJ, Ma YK, Lu YH, King JT, Tasi WS, Yang SB, Kuo TH. Potential cross-species correlations in social hierarchy and memory between mice and young children. Commun Biol 2022; 5:230. [PMID: 35288641 PMCID: PMC8921227 DOI: 10.1038/s42003-022-03173-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/15/2022] [Indexed: 11/12/2022] Open
Abstract
Social hierarchy is associated with various phenotypes. Although memory is known to be important for hierarchy formation, the difference in memory abilities between dominant and subordinate individuals remains unclear. In this study, we examined memory performance in mice with different social ranks and found better memory abilities in dominant mice, along with greater long-term potentiation and higher memory-related gene expression in the hippocampus. Daily injection of memory-improving drugs could also enhance dominance. To validate this correlation across species, through inventory, behavioral and event-related potential studies, we identified better memory abilities in preschool children with higher social dominance. Better memory potentially helped children process dominance facial cues and learn social strategies to acquire higher positions. Our study shows a remarkable similarity between humans and mice in the association between memory and social hierarchy and provides valuable insight into social interactions in young animals, with potential implications for preschool education. Memory performance and hippocampal memory-related gene expression are shown to both be increased in more dominant mice, with memory-improving drugs enhancing dominant behaviour. The data also suggests that children with better memory can recognise dominance more easily, demonstrating a potential cross-species correlation in the association between memory and social hierarchy.
Collapse
Affiliation(s)
- Yu-Ju Chou
- Department of Early Childhood Education, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China.
| | - Yu-Kai Ma
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China
| | - Yi-Han Lu
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China
| | - Jung-Tai King
- Institute of Neurosciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, Republic of China
| | - Wen-Sheng Tasi
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan, Republic of China
| | - Shi-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan, Republic of China.
| | - Tsung-Han Kuo
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China. .,Department of Life Science, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China.
| |
Collapse
|
9
|
Wang T, Xu J, Xu Y, Xiao J, Bi N, Gu X, Wang HL. Gut microbiota shapes social dominance through modulating HDAC2 in the medial prefrontal cortex. Cell Rep 2022; 38:110478. [PMID: 35263606 DOI: 10.1016/j.celrep.2022.110478] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 12/17/2022] Open
Abstract
Social dominance is a ubiquitous phenomenon among social animals, including humans. To date, individual attributes leading to dominance (after a contest) remain largely elusive. Here, we report that socially dominant rats can be distinguished from subordinates based on their intestinal microbiota. When dysbiosis is induced, rats are predisposed to a subordinate state, while dysbiotic rats reclaim social dominance following microbiota transplantation. Winning hosts are characterized by core microbes, a majority of which are associated with butyrate production, and the sole colonization of Clostridium butyricum is sufficient to restore dominance. Regarding molecular aspects, a histone deacetylase, HDAC2, is responsive to microbial status and mediates competition outcome; however, this occurs only in a restricted population of cells in the medial prefrontal cortex (mPFC). Furthermore, HDAC2 acts by modulating synaptic activity in mPFC. Together, these findings uncover a link between commensals and host dominance, providing insight into the gut-brain mechanisms underlying dominance determination.
Collapse
Affiliation(s)
- Tian Wang
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Jinchun Xu
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Yi Xu
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China.
| | - Jie Xiao
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Nanxi Bi
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaozhen Gu
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China
| | - Hui-Li Wang
- School of Food and Bioengineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China.
| |
Collapse
|
10
|
Ma YK, Zeng PY, Chu YH, Lee CL, Cheng CC, Chen CH, Su YS, Lin KT, Kuo TH. Lack of social touch alters anxiety-like and social behaviors in male mice. Stress 2022; 25:134-144. [PMID: 35254226 DOI: 10.1080/10253890.2022.2047174] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The importance of social interactions has been reported in a variety of animal species. In human and rodent models, social isolation is known to alter social behaviors and change anxiety or depression levels. During the coronavirus pandemic, although people could communicate with each other through other sensory cues, social touch was mostly prohibited under different levels of physical distancing policies. These social restrictions inspired us to explore the necessity of physical contact, which has rarely been investigated in previous studies on mouse social interactions. We first conducted a long-term observation to show that pair-housed mice in a standard laboratory cage spent nearly half the day in direct physical contact with each other. Furthermore, we designed a split-housing condition to demonstrate that even with free access to visual, auditory, and olfactory social signals, the lack of social touch significantly increased anxiety-like behaviors and changed social behaviors. There were correspondingly higher levels of the pro-inflammatory cytokine interleukin-6 in the hippocampus in mice with no access to physical contact. Our study demonstrated the necessity of social touch for the maintenance of mental health in mice and could have important implications for human social interactions.
Collapse
Affiliation(s)
- Yu-Kai Ma
- Department of Life Science, National Tsing Hua University, Hsinchu, Republic of China
| | - Pei-Yun Zeng
- Department of Medical Science, National Tsing Hua University, Hsinchu, Republic of China
| | - Yu-Hsin Chu
- Department of Life Science, National Tsing Hua University, Hsinchu, Republic of China
| | - Chih-Lin Lee
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Republic of China
| | - Ching-Chuan Cheng
- Department of Life Science, National Tsing Hua University, Hsinchu, Republic of China
| | - Chen-Hung Chen
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Republic of China
| | - Yu-Shan Su
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Republic of China
| | - Kai-Ti Lin
- Department of Medical Science, National Tsing Hua University, Hsinchu, Republic of China
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Republic of China
| | - Tsung-Han Kuo
- Department of Life Science, National Tsing Hua University, Hsinchu, Republic of China
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Republic of China
- Brain Research Center, National Tsing Hua University, Hsinchu, Republic of China
| |
Collapse
|
11
|
Harris E, Myers H, Saxena K, Mitchell-Heggs R, Kind P, Chattarji S, Morris R. Experiential modulation of social dominance in a SYNGAP1 rat model of Autism Spectrum Disorders. Eur J Neurosci 2021; 54:7733-7748. [PMID: 34672048 PMCID: PMC7614819 DOI: 10.1111/ejn.15500] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022]
Abstract
Advances in the understanding of developmental brain disorders such as autism spectrum disorders (ASDs) are being achieved through human neurogenetics such as, for example, identifying de novo mutations in SYNGAP1 as one relatively common cause of ASD. A recently developed rat line lacking the calcium/lipid binding (C2) and GTPase activation protein (GAP) domain may further help uncover the neurobiological basis of deficits in children with ASD. This study focused on social dominance in the tube test using Syngap+/Δ-GAP (rats heterozygous for the C2/GAP domain deletion) as alterations in social behaviour are a key facet of the human phenotype. Male animals of this line living together formed a stable intra-cage hierarchy, but they were submissive when living with wild-type (WT) cage-mates, thereby modelling the social withdrawal seen in ASD. The study includes a detailed analysis of specific behaviours expressed in social interactions by WT and mutant animals, including the observation that when the Syngap+/Δ-GAP mutants that had been living together had separate dominance encounters with WT animals from other cages, the two higher ranking Syngap+/Δ-GAP rats remained dominant whereas the two lower ranking mutants were still submissive. Although only observed in a small subset of animals, these findings support earlier observations with a rat model of Fragile X, indicating that their experience of winning or losing dominance encounters has a lasting influence on subsequent encounters with others. Our results highlight and model that even with single-gene mutations, dominance phenotypes reflect an interaction between genotypic and environmental factors.
Collapse
Affiliation(s)
- E. Harris
- Edinburgh Neuroscience, Centre for Discovery Brain Sciences, 1 George Square, The University of Edinburgh, Edinburgh, EH8 9JZ, U.K
| | - H. Myers
- Edinburgh Neuroscience, Centre for Discovery Brain Sciences, 1 George Square, The University of Edinburgh, Edinburgh, EH8 9JZ, U.K
| | - K. Saxena
- Edinburgh Neuroscience, Centre for Discovery Brain Sciences, 1 George Square, The University of Edinburgh, Edinburgh, EH8 9JZ, U.K
- Simons Initiative for the Developing Brain, The University of Edinburgh, Edinburgh, EH8 9XD, U.K
| | - R. Mitchell-Heggs
- Edinburgh Neuroscience, Centre for Discovery Brain Sciences, 1 George Square, The University of Edinburgh, Edinburgh, EH8 9JZ, U.K
| | - P. Kind
- Edinburgh Neuroscience, Centre for Discovery Brain Sciences, 1 George Square, The University of Edinburgh, Edinburgh, EH8 9JZ, U.K
- Simons Initiative for the Developing Brain, The University of Edinburgh, Edinburgh, EH8 9XD, U.K
| | - S Chattarji
- Simons Initiative for the Developing Brain, The University of Edinburgh, Edinburgh, EH8 9XD, U.K
- Centre for Brain Development and Repair, National Centre for Biological Sciences and Institute for Stem Cell Science & Regenerative Medicine, Bangalore 560065, India
| | - R.G.M. Morris
- Edinburgh Neuroscience, Centre for Discovery Brain Sciences, 1 George Square, The University of Edinburgh, Edinburgh, EH8 9JZ, U.K
- Simons Initiative for the Developing Brain, The University of Edinburgh, Edinburgh, EH8 9XD, U.K
| |
Collapse
|