1
|
Wu Y, Yang F, Luo S, Li X, Gu Z, Fan R, Cao Y, Wang L, Song X. Single-cell RNA sequencing reveals epithelial cells driving brain metastasis in lung adenocarcinoma. iScience 2024; 27:109258. [PMID: 38433899 PMCID: PMC10905006 DOI: 10.1016/j.isci.2024.109258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Brain metastases (BM) of lung adenocarcinoma (LUAD) are the most common intracranial malignancy leading to death. However, the cellular origins and drivers of BM from LUAD have not been clarified. Cellular composition was characterized by single-cell sequencing analysis of primary lung adenocarcinoma (pLUAD), BM and lymph node metastasis (LNM) samples in GSE131907. Our study briefly analyzed the tumor microenvironment (TME), focusing on the role of epithelial cells (ECs) in BM. We have discovered a population of brain metastasis-associated epithelial cells (BMAECs) expressing SPP1, SAA1, and CDKN2A, and it has been observed that this population is mainly composed of aneuploid cells from pLUAD, playing a crucial role in brain metastasis. Our study concluded that both LNM and BM in LUAD originated from pLUAD lesions, but there is currently insufficient evidence to prove a direct association between BM lesions and LNM lesions, which provides inspiration for further investigation of the TME in BM.
Collapse
Affiliation(s)
- Yonghui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fujun Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shilan Luo
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhan Gu
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rui Fan
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yajuan Cao
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lixin Wang
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Yang M, Ali O, Bjørås M, Wang J. Identifying functional regulatory mutation blocks by integrating genome sequencing and transcriptome data. iScience 2023; 26:107266. [PMID: 37520692 PMCID: PMC10371843 DOI: 10.1016/j.isci.2023.107266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/05/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Millions of single nucleotide variants (SNVs) exist in the human genome; however, it remains challenging to identify functional SNVs associated with diseases. We propose a non-encoding SNVs analysis tool bpb3, BayesPI-BAR version 3, aiming to identify the functional mutation blocks (FMBs) by integrating genome sequencing and transcriptome data. The identified FMBs display high frequency SNVs, significant changes in transcription factors (TFs) binding affinity and are nearby the regulatory regions of differentially expressed genes. A two-level Bayesian approach with a biophysical model for protein-DNA interactions is implemented, to compute TF-DNA binding affinity changes based on clustered position weight matrices (PWMs) from over 1700 TF-motifs. The epigenetic data, such as the DNA methylome can also be integrated to scan FMBs. By testing the datasets from follicular lymphoma and melanoma, bpb3 automatically and robustly identifies FMBs, demonstrating that bpb3 can provide insight into patho-mechanisms, and therapeutic targets from transcriptomic and genomic data.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Omer Ali
- Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Junbai Wang
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital and University of Oslo, Lørenskog, Norway
| |
Collapse
|
3
|
Roy A, Sakthikumar S, Kozyrev SV, Nordin J, Pensch R, Mäkeläinen S, Pettersson M, Karlsson EK, Lindblad-Toh K, Forsberg-Nilsson K. Using evolutionary constraint to define novel candidate driver genes in medulloblastoma. Proc Natl Acad Sci U S A 2023; 120:e2300984120. [PMID: 37549291 PMCID: PMC10438395 DOI: 10.1073/pnas.2300984120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/07/2023] [Indexed: 08/09/2023] Open
Abstract
Current knowledge of cancer genomics remains biased against noncoding mutations. To systematically search for regulatory noncoding mutations, we assessed mutations in conserved positions in the genome under the assumption that these are more likely to be functional than mutations in positions with low conservation. To this end, we use whole-genome sequencing data from the International Cancer Genome Consortium and combined it with evolutionary constraint inferred from 240 mammals, to identify genes enriched in noncoding constraint mutations (NCCMs), mutations likely to be regulatory in nature. We compare medulloblastoma (MB), which is malignant, to pilocytic astrocytoma (PA), a primarily benign tumor, and find highly different NCCM frequencies between the two, in agreement with the fact that malignant cancers tend to have more mutations. In PA, a high NCCM frequency only affects the BRAF locus, which is the most commonly mutated gene in PA. In contrast, in MB, >500 genes have high levels of NCCMs. Intriguingly, several loci with NCCMs in MB are associated with different ages of onset, such as the HOXB cluster in young MB patients. In adult patients, NCCMs occurred in, e.g., the WASF-2/AHDC1/FGR locus. One of these NCCMs led to increased expression of the SRC kinase FGR and augmented responsiveness of MB cells to dasatinib, a SRC kinase inhibitor. Our analysis thus points to different molecular pathways in different patient groups. These newly identified putative candidate driver mutations may aid in patient stratification in MB and could be valuable for future selection of personalized treatment options.
Collapse
Affiliation(s)
- Ananya Roy
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85Uppsala, Sweden
| | - Sharadha Sakthikumar
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
- Broad Institute, Cambridge, MA02142
| | - Sergey V. Kozyrev
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
| | - Jessika Nordin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
| | - Raphaela Pensch
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
| | - Suvi Mäkeläinen
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
| | - Mats Pettersson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
| | | | - Elinor K. Karlsson
- Broad Institute, Cambridge, MA02142
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA01605
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA01605
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 23Uppsala, Sweden
- Broad Institute, Cambridge, MA02142
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85Uppsala, Sweden
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, NottinghamNG72RD, United Kingdom
| |
Collapse
|
4
|
Capparelli R, Cuomo P, Gentile A, Iannelli D. Microbiota-Liver Diseases Interactions. Int J Mol Sci 2023; 24:3883. [PMID: 36835291 PMCID: PMC9959879 DOI: 10.3390/ijms24043883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Gut microbiota regulates essential processes of host metabolism and physiology: synthesis of vitamins, digestion of foods non-digestible by the host (such as fibers), and-most important-protects the digestive tract from pathogens. In this study, we focus on the CRISPR/Cas9 technology, which is extensively used to correct multiple diseases, including liver diseases. Then, we discuss the non-alcoholic fatty liver disease (NAFLD), affecting more than 25% of the global population; colorectal cancer (CRC) is second in mortality. We give space to rarely discussed topics, such as pathobionts and multiple mutations. Pathobionts help to understand the origin and complexity of the microbiota. Since several types of cancers have as target the gut, it is vital extending the research of multiple mutations to the type of cancers affecting the gut-liver axis.
Collapse
Affiliation(s)
| | | | | | - Domenico Iannelli
- Department of Agriculture Sciences, University of Naples Federico II, 80055 Naples, Italy
| |
Collapse
|
5
|
Morova T, Ding Y, Huang CCF, Sar F, Schwarz T, Giambartolomei C, Baca S, Grishin D, Hach F, Gusev A, Freedman M, Pasaniuc B, Lack N. Optimized high-throughput screening of non-coding variants identified from genome-wide association studies. Nucleic Acids Res 2022; 51:e18. [PMID: 36546757 PMCID: PMC9943666 DOI: 10.1093/nar/gkac1198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
The vast majority of disease-associated single nucleotide polymorphisms (SNP) identified from genome-wide association studies (GWAS) are localized in non-coding regions. A significant fraction of these variants impact transcription factors binding to enhancer elements and alter gene expression. To functionally interrogate the activity of such variants we developed snpSTARRseq, a high-throughput experimental method that can interrogate the functional impact of hundreds to thousands of non-coding variants on enhancer activity. snpSTARRseq dramatically improves signal-to-noise by utilizing a novel sequencing and bioinformatic approach that increases both insert size and the number of variants tested per loci. Using this strategy, we interrogated known prostate cancer (PCa) risk-associated loci and demonstrated that 35% of them harbor SNPs that significantly altered enhancer activity. Combining these results with chromosomal looping data we could identify interacting genes and provide a mechanism of action for 20 PCa GWAS risk regions. When benchmarked to orthogonal methods, snpSTARRseq showed a strong correlation with in vivo experimental allelic-imbalance studies whereas there was no correlation with predictive in silico approaches. Overall, snpSTARRseq provides an integrated experimental and computational framework to functionally test non-coding genetic variants.
Collapse
Affiliation(s)
- Tunc Morova
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Yi Ding
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Funda Sar
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Tommer Schwarz
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Claudia Giambartolomei
- Central RNA Lab, Istituto Italiano di Tecnologia, Genova 16163, Italy,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sylvan C Baca
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Dennis Grishin
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Faraz Hach
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada,Department of Urologic Science, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Alexander Gusev
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Matthew L Freedman
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA 02215, USA,The Center for Cancer Genome Discovery, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Bogdan Pasaniuc
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA,Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nathan A Lack
- To whom correspondence should be addressed. Tel: +1 604 875 4411;
| |
Collapse
|
6
|
Castro-Mondragon JA, Aure M, Lingjærde O, Langerød A, Martens JWM, Børresen-Dale AL, Kristensen V, Mathelier A. Cis-regulatory mutations associate with transcriptional and post-transcriptional deregulation of gene regulatory programs in cancers. Nucleic Acids Res 2022; 50:12131-12148. [PMID: 36477895 PMCID: PMC9757053 DOI: 10.1093/nar/gkac1143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Most cancer alterations occur in the noncoding portion of the human genome, where regulatory regions control gene expression. The discovery of noncoding mutations altering the cells' regulatory programs has been limited to few examples with high recurrence or high functional impact. Here, we show that transcription factor binding sites (TFBSs) have similar mutation loads to those in protein-coding exons. By combining cancer somatic mutations in TFBSs and expression data for protein-coding and miRNA genes, we evaluate the combined effects of transcriptional and post-transcriptional alterations on the regulatory programs in cancers. The analysis of seven TCGA cohorts culminates with the identification of protein-coding and miRNA genes linked to mutations at TFBSs that are associated with a cascading trans-effect deregulation on the cells' regulatory programs. Our analyses of cis-regulatory mutations associated with miRNAs recurrently predict 12 mature miRNAs (derived from 7 precursors) associated with the deregulation of their target gene networks. The predictions are enriched for cancer-associated protein-coding and miRNA genes and highlight cis-regulatory mutations associated with the dysregulation of key pathways associated with carcinogenesis. By combining transcriptional and post-transcriptional regulation of gene expression, our method predicts cis-regulatory mutations related to the dysregulation of key gene regulatory networks in cancer patients.
Collapse
Affiliation(s)
- Jaime A Castro-Mondragon
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Miriam Ragle Aure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ole Christian Lingjærde
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Gaustadalléen 23 B, N-0373 Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Ullernchausseen 70, N-0372 Oslo, Norway
| | - Anita Langerød
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
| | - John W M Martens
- Erasmus MC Cancer Institute and Cancer Genomics Netherlands, University Medical Center Rotterdam, Department of Medical Oncology, 3015GD Rotterdam, The Netherlands
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
| | - Vessela N Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Yue T, Liu X, Zuo S, Zhu J, Li J, Liu Y, Chen S, Wang P. BCL2A1 and CCL18 Are Predictive Biomarkers of Cisplatin Chemotherapy and Immunotherapy in Colon Cancer Patients. Front Cell Dev Biol 2022; 9:799278. [PMID: 35265629 PMCID: PMC8898943 DOI: 10.3389/fcell.2021.799278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Cisplatin enhances the antitumor T cell response, and the combination of PD-L1 blockade produces a synergistic therapeutic effect. However, the clinical correlation between cisplatin and immunotherapy in colon cancer (CC) is unknown. Methods: Using the “pRRophetic” package, we calculated the IC50 of cisplatin. The correlation between cisplatin IC50, cisplatin resistance–related genes (CCL18 and BCL2A1), and immunotherapy were preliminarily verified in TCGA and further validated in independent cohorts (GSE39582 and GSE17538), cisplatin-resistant CC cell line DLD1, and our own clinical specimens. Classification performance was evaluated using the AUC value of the ROC curve. Scores of immune signatures, autophagy, ferroptosis, and stemness were quantified using the ssGSEA algorithm. Results: Based on respective medians of three CC cohorts, patients were divided into high- and low-IC50 groups. Compared with the high IC50 group, the low-IC50 group had significantly higher tumor microenvironment (TME) scores and lower tumor purity. Most co-signaling molecules were upregulated in low IC50 group. CC patients with good immunotherapy efficacy (MSI, dMMR, and more TMB) were more attributable to the low-IC50 group. Among seven shared differentially expressed cisplatin resistance–related genes, CCL18 and BCL2A1 had the best predictive efficacy of the above immunotherapy biomarkers. For wet experimental verification, compared with cisplatin-resistant DLD1, similar to PD-L1, CCL18 and BCL2A1 were significantly upregulated in wild-type DLD1. In our own CC tissues, the mRNA expression of CCL18, BCL2A1, and PD-L1 in dMMR were significantly increased. The high group of CCL18 or BCL2A1 had a higher proportion of MSI, dMMR, and more TMB. IC50, CCL18, BCL2A1, and PD-L1 were closely related to scores of immune-related pathways, immune signatures, autophagy, ferroptosis, and stemness. The microRNA shared by BCL2A1 and PD-L1, hsa-miR-137, were significantly associated with CCL18, BCL2A1, and PD-L1, and downregulated in low-IC50 group. The activity of the TOLL-like receptor signaling pathway affected the sensitivity of CC patients to cisplatin and immunotherapy. For subtype analysis, immune C2, immune C6, HM-indel, HM-SNV, C18, and C20 were equally sensitive to cisplatin chemotherapy and immunotherapy. Conclusions: CC patients sensitive to cisplatin chemotherapy were also sensitive to immunotherapy. CCL18 and BCL2A1 were novel biomarkers for cisplatin and immunotherapy.
Collapse
Affiliation(s)
- Taohua Yue
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Xiangzheng Liu
- Department of Thoracic Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Shuai Zuo
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Jing Zhu
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Jichang Li
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Yucun Liu
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Shanwen Chen
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Pengyuan Wang
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
8
|
Cheng Z, Vermeulen M, Rollins-Green M, Babak T, DeVeale B. Identifying tumorigenic non-coding mutations through altered cis-regulation. STAR Protoc 2021; 2:100934. [PMID: 34816127 PMCID: PMC8591365 DOI: 10.1016/j.xpro.2021.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Identification of non-coding mutations driving tumorigenesis requires alternative approaches to coding mutations. Enriched associations between mutated regulatory elements and altered cis-regulation in tumors are a promising approach to stratify candidate non-coding driver mutations. Here we provide a bioinformatics pipeline to mine data from the Cancer Genomic Commons (GDC) for such associations. The pipeline integrates RNA and whole-genome sequencing with genotyping data to reveal putative non-coding driver mutations by cancer type. For complete information on the generation and use of this protocol, please refer to Cheng et al. (2021). Integration of expression, genotyping, and whole-genome sequencing modalities RNA-seq profiles resolved to gene-level allele-specific expression (ASE). Mutated cis-regulatory features associated with gene-level ASE by cancer type
Collapse
Affiliation(s)
- Zhongshan Cheng
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Michael Vermeulen
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | - Tomas Babak
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Brian DeVeale
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|