1
|
Charette M, Rosenblum C, Shade O, Deiters A. Optogenetics with Atomic Precision─A Comprehensive Review of Optical Control of Protein Function through Genetic Code Expansion. Chem Rev 2025; 125:1663-1717. [PMID: 39928721 PMCID: PMC11869211 DOI: 10.1021/acs.chemrev.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 02/12/2025]
Abstract
Conditional control of protein activity is important in order to elucidate the particular functions and interactions of proteins, their regulators, and their substrates, as well as their impact on the behavior of a cell or organism. Optical control provides a perhaps optimal means of introducing spatiotemporal control over protein function as it allows for tunable, rapid, and noninvasive activation of protein activity in its native environment. One method of introducing optical control over protein activity is through the introduction of photocaged and photoswitchable noncanonical amino acids (ncAAs) through genetic code expansion in cells and animals. Genetic incorporation of photoactive ncAAs at key residues in a protein provides a tool for optical activation, or sometimes deactivation, of protein activity. Importantly, the incorporation site can typically be rationally selected based on structural, mechanistic, or computational information. In this review, we comprehensively summarize the applications of photocaged lysine, tyrosine, cysteine, serine, histidine, glutamate, and aspartate derivatives, as well as photoswitchable phenylalanine analogues. The extensive and diverse list of proteins that have been placed under optical control demonstrates the broad applicability of this methodology.
Collapse
Affiliation(s)
- Maura Charette
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Carolyn Rosenblum
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Olivia Shade
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
2
|
Beyer HM, Kumar S, Nieke M, Diehl CMC, Tang K, Shumka S, Koh CS, Fleck C, Davies JA, Khammash M, Zurbriggen MD. Genetically-stable engineered optogenetic gene switches modulate spatial cell morphogenesis in two- and three-dimensional tissue cultures. Nat Commun 2024; 15:10470. [PMID: 39622829 PMCID: PMC11612184 DOI: 10.1038/s41467-024-54350-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024] Open
Abstract
Recent advances in tissue engineering have been remarkable, yet the precise control of cellular behavior in 2D and 3D cultures remains challenging. One approach to address this limitation is to genomically engineer optogenetic control of cellular processes into tissues using gene switches that can operate with only a few genomic copies. Here, we implement blue and red light-responsive gene switches to engineer genomically stable two- and three-dimensional mammalian tissue models. Notably, we achieve precise control of cell death and morphogen-directed patterning in 2D and 3D tissues by optogenetically regulating cell necroptosis and synthetic WNT3A signaling at high spatiotemporal resolution. This is accomplished using custom-built patterned LED systems, including digital mirrors and photomasks, as well as laser techniques. These advancements demonstrate the capability of precise spatiotemporal modulation in tissue engineering and open up new avenues for developing programmable 3D tissue and organ models, with significant implications for biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Hannes M Beyer
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | - Sant Kumar
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Klingelbergstrasse 48, Basel, Switzerland
| | - Marius Nieke
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | - Carroll M C Diehl
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | - Kun Tang
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | - Sara Shumka
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | - Cha San Koh
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | - Christian Fleck
- Freiburg Center for Data Analysis and Modeling (FDM), University of Freiburg, Ernst-Zermelo-Straße 1, Freiburg im Breisgau, Germany
| | - Jamie A Davies
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Klingelbergstrasse 48, Basel, Switzerland.
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany.
- CEPLAS - Cluster of Excellence on Plant Sciences, Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany.
| |
Collapse
|
3
|
Meyer K, Lammers NC, Bugaj LJ, Garcia HG, Weiner OD. Optogenetic control of YAP reveals a dynamic communication code for stem cell fate and proliferation. Nat Commun 2023; 14:6929. [PMID: 37903793 PMCID: PMC10616176 DOI: 10.1038/s41467-023-42643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023] Open
Abstract
YAP is a transcriptional regulator that controls pluripotency, cell fate, and proliferation. How cells ensure the selective activation of YAP effector genes is unknown. This knowledge is essential to rationally control cellular decision-making. Here we leverage optogenetics, live-imaging of transcription, and cell fate analysis to understand and control gene activation and cell behavior. We reveal that cells decode the steady-state concentrations and timing of YAP activation to control proliferation, cell fate, and expression of the pluripotency regulators Oct4 and Nanog. While oscillatory YAP inputs induce Oct4 expression and proliferation optimally at frequencies that mimic native dynamics, cellular differentiation requires persistently low YAP levels. We identify the molecular logic of the Oct4 dynamic decoder, which acts through an adaptive change sensor. Our work reveals how YAP levels and dynamics enable multiplexing of information transmission for the regulation of developmental decision-making and establishes a platform for the rational control of these behaviors.
Collapse
Affiliation(s)
- Kirstin Meyer
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas C Lammers
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Hernan G Garcia
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Toh PJY, Sudol M, Saunders TE. Optogenetic control of YAP can enhance the rate of wound healing. Cell Mol Biol Lett 2023; 28:39. [PMID: 37170209 PMCID: PMC10176910 DOI: 10.1186/s11658-023-00446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Tissues need to regenerate to restore function after injury. Yet, this regenerative capacity varies significantly between organs and between species. For example, in the heart, some species retain full regenerative capacity throughout their lifespan but human cardiac cells display a limited ability to repair the injury. After a myocardial infarction, the function of cardiomyocytes is impaired and reduces the ability of the heart to pump, causing heart failure. Therefore, there is a need to restore the function of an injured heart post myocardial infarction. We investigate in cell culture the role of the Yes-associated protein (YAP), a transcriptional co-regulator with a pivotal role in growth, in driving repair after injury. METHODS We express optogenetic YAP (optoYAP) in three different cell lines. We characterised the behaviour and function of optoYAP using fluorescence imaging and quantitative real-time PCR of downstream YAP target genes. Mutant constructs were generated using site-directed mutagenesis. Nuclear localised optoYAP was functionally tested using wound healing assay. RESULTS Utilising optoYAP, which enables precise control of pathway activation, we show that YAP induces the expression of downstream genes involved in proliferation and migration. optoYAP can increase the speed of wound healing in H9c2 cardiomyoblasts. Interestingly, this is not driven by an increase in proliferation, but by collective cell migration. We subsequently dissect specific phosphorylation sites in YAP to identify the molecular driver of accelerated healing. CONCLUSIONS This study shows that optogenetic YAP is functional in H9c2 cardiomyoblasts and its controlled activation can potentially enhance wound healing in a range of conditions.
Collapse
Affiliation(s)
- Pearlyn Jia Ying Toh
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy Edward Saunders
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore.
- Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
5
|
Blatchley MR, Anseth KS. Middle-out methods for spatiotemporal tissue engineering of organoids. NATURE REVIEWS BIOENGINEERING 2023; 1:329-345. [PMID: 37168734 PMCID: PMC10010248 DOI: 10.1038/s44222-023-00039-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 05/13/2023]
Abstract
Organoids recapitulate many aspects of the complex three-dimensional (3D) organization found within native tissues and even display tissue and organ-level functionality. Traditional approaches to organoid culture have largely employed a top-down tissue engineering strategy, whereby cells are encapsulated in a 3D matrix, such as Matrigel, alongside well-defined biochemical cues that direct morphogenesis. However, the lack of spatiotemporal control over niche properties renders cellular processes largely stochastic. Therefore, bottom-up tissue engineering approaches have evolved to address some of these limitations and focus on strategies to assemble tissue building blocks with defined multi-scale spatial organization. However, bottom-up design reduces the capacity for self-organization that underpins organoid morphogenesis. Here, we introduce an emerging framework, which we term middle-out strategies, that relies on existing design principles and combines top-down design of defined synthetic matrices that support proliferation and self-organization with bottom-up modular engineered intervention to limit the degrees of freedom in the dynamic process of organoid morphogenesis. We posit that this strategy will provide key advances to guide the growth of organoids with precise geometries, structures and function, thereby facilitating an unprecedented level of biomimicry to accelerate the utility of organoids to more translationally relevant applications.
Collapse
Affiliation(s)
- Michael R. Blatchley
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO USA
| |
Collapse
|
6
|
Toh PJY, Lai JKH, Hermann A, Destaing O, Sheetz MP, Sudol M, Saunders TE. Optogenetic control of YAP cellular localisation and function. EMBO Rep 2022; 23:e54401. [PMID: 35876586 PMCID: PMC9442306 DOI: 10.15252/embr.202154401] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
YAP, an effector of the Hippo signalling pathway, promotes organ growth and regeneration. Prolonged YAP activation results in uncontrolled proliferation and cancer. Therefore, exogenous regulation of YAP activity has potential translational applications. We present a versatile optogenetic construct (optoYAP) for manipulating YAP localisation, and consequently its activity and function. We attach a LOV2 domain that photocages a nuclear localisation signal (NLS) to the N-terminus of YAP. In 488 nm light, the LOV2 domain unfolds, exposing the NLS, which shuttles optoYAP into the nucleus. Nuclear import of optoYAP is reversible and tuneable by light intensity. In cell culture, activated optoYAP promotes YAP target gene expression and cell proliferation. Similarly, optofYap can be used in zebrafish embryos to modulate target genes. We demonstrate that optoYAP can override a cell's response to substrate stiffness to generate anchorage-independent growth. OptoYAP is functional in both cell culture and in vivo, providing a powerful tool to address basic research questions and therapeutic applications in regeneration and disease.
Collapse
Affiliation(s)
- Pearlyn J Y Toh
- Mechanobiology InstituteNational University of SingaporeSingapore
| | - Jason K H Lai
- Mechanobiology InstituteNational University of SingaporeSingapore
| | - Anke Hermann
- Department of Nephrology, Hypertension and RheumatologyUniversity Hospital MünsterMünsterGermany
| | - Olivier Destaing
- Institute for Advanced BiosciencesUniversité Grenoble AlpesGrenobleFrance,INSERM U1209Institute for Advanced BiosciencesLa TroncheFrance,CNRS UMR 5039Institute for Advanced BiosciencesLa TroncheFrance
| | - Michael P Sheetz
- Mechanobiology InstituteNational University of SingaporeSingapore,Department of Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonTXUSA
| | - Marius Sudol
- Mechanobiology InstituteNational University of SingaporeSingapore,Icahn School of Medicine at Mount SinaiNew York CityNYUSA
| | - Timothy E Saunders
- Mechanobiology InstituteNational University of SingaporeSingapore,Institute of Molecular and Cell BiologyA*STARSingapore,Warwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
7
|
Geiger F, Schnitzler LG, Brugger MS, Westerhausen C, Engelke H. Directed invasion of cancer cell spheroids inside 3D collagen matrices oriented by microfluidic flow in experiment and simulation. PLoS One 2022; 17:e0264571. [PMID: 35231060 PMCID: PMC8887745 DOI: 10.1371/journal.pone.0264571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/14/2022] [Indexed: 01/07/2023] Open
Abstract
Invasion is strongly influenced by the mechanical properties of the extracellular matrix. Here, we use microfluidics to align fibers of a collagen matrix and study the influence of fiber orientation on invasion from a cancer cell spheroid. The microfluidic setup allows for highly oriented collagen fibers of tangential and radial orientation with respect to the spheroid, which can be described by finite element simulations. In invasion experiments, we observe a strong bias of invasion towards radial as compared to tangential fiber orientation. Simulations of the invasive behavior with a Brownian diffusion model suggest complete blockage of migration perpendicularly to fibers allowing for migration exclusively along fibers. This slows invasion toward areas with tangentially oriented fibers down, but does not prevent it.
Collapse
Affiliation(s)
- Florian Geiger
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukas G. Schnitzler
- Experimental Physics I, Institute of Physics, University of Augsburg, Augsburg, Germany
| | - Manuel S. Brugger
- Experimental Physics I, Institute of Physics, University of Augsburg, Augsburg, Germany
- Stiftung der Deutschen Wirtschaft (sdw) gGmbH, Berlin, Germany
| | - Christoph Westerhausen
- Experimental Physics I, Institute of Physics, University of Augsburg, Augsburg, Germany
- Physiology, Institute of Theoretical Medicine, University of Augsburg, Augsburg, Germany
- Center for NanoScience (CeNS), Munich, Germany
- * E-mail: (CW); (HE)
| | - Hanna Engelke
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Center for NanoScience (CeNS), Munich, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Graz, Austria
- * E-mail: (CW); (HE)
| |
Collapse
|
8
|
Symons RA, Colella F, Collins FL, Rafipay AJ, Kania K, McClure JJ, White N, Cunningham I, Ashraf S, Hay E, Mackenzie KS, Howard KA, Riemen AHK, Manzo A, Clark SM, Roelofs AJ, De Bari C. Targeting the IL-6-Yap-Snail signalling axis in synovial fibroblasts ameliorates inflammatory arthritis. Ann Rheum Dis 2022; 81:214-224. [PMID: 34844926 PMCID: PMC8762018 DOI: 10.1136/annrheumdis-2021-220875] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE We aimed to understand the role of the transcriptional co-factor Yes-associated protein (Yap) in the molecular pathway underpinning the pathogenic transformation of synovial fibroblasts (SF) in rheumatoid arthritis (RA) to become invasive and cause joint destruction. METHODS Synovium from patients with RA and mice with antigen-induced arthritis (AIA) was analysed by immunostaining and qRT-PCR. SF were targeted using Pdgfrα-CreER and Gdf5-Cre mice, crossed with fluorescent reporters for cell tracing and Yap-flox mice for conditional Yap ablation. Fibroblast phenotypes were analysed by flow cytometry, and arthritis severity was assessed by histology. Yap activation was detected using Yap-Tead reporter cells and Yap-Snail interaction by proximity ligation assay. SF invasiveness was analysed using matrigel-coated transwells. RESULTS Yap, its binding partner Snail and downstream target connective tissue growth factor were upregulated in hyperplastic human RA and in mouse AIA synovium, with Yap detected in SF but not macrophages. Lineage tracing showed polyclonal expansion of Pdgfrα-expressing SF during AIA, with predominant expansion of the Gdf5-lineage SF subpopulation descending from the embryonic joint interzone. Gdf5-lineage SF showed increased expression of Yap and adopted an erosive phenotype (podoplanin+Thy-1 cell surface antigen-), invading cartilage and bone. Conditional ablation of Yap in Gdf5-lineage cells or Pdgfrα-expressing fibroblasts ameliorated AIA. Interleukin (IL)-6, but not tumour necrosis factor alpha (TNF-α) or IL-1β, Jak-dependently activated Yap and induced Yap-Snail interaction. SF invasiveness induced by IL-6 stimulation or Snail overexpression was prevented by Yap knockdown, showing a critical role for Yap in SF transformation in RA. CONCLUSIONS Our findings uncover the IL-6-Yap-Snail signalling axis in pathogenic SF in inflammatory arthritis.
Collapse
Affiliation(s)
- Rebecca A Symons
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Fabio Colella
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Fraser L Collins
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Alexandra J Rafipay
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Karolina Kania
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jessica J McClure
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Nathan White
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Iain Cunningham
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Sadaf Ashraf
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Elizabeth Hay
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Kevin S Mackenzie
- Microscopy and Histology Core Facility, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Anna H K Riemen
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Antonio Manzo
- Rheumatology and Translational Immunology Research Laboratories (LaRIT), Division of Rheumatology, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Susan M Clark
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Anke J Roelofs
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
9
|
Lammers M. Post-translational Lysine Ac(et)ylation in Bacteria: A Biochemical, Structural, and Synthetic Biological Perspective. Front Microbiol 2021; 12:757179. [PMID: 34721364 PMCID: PMC8556138 DOI: 10.3389/fmicb.2021.757179] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Ac(et)ylation is a post-translational modification present in all domains of life. First identified in mammals in histones to regulate RNA synthesis, today it is known that is regulates fundamental cellular processes also in bacteria: transcription, translation, metabolism, cell motility. Ac(et)ylation can occur at the ε-amino group of lysine side chains or at the α-amino group of a protein. Furthermore small molecules such as polyamines and antibiotics can be acetylated and deacetylated enzymatically at amino groups. While much research focused on N-(ε)-ac(et)ylation of lysine side chains, much less is known about the occurrence, the regulation and the physiological roles on N-(α)-ac(et)ylation of protein amino termini in bacteria. Lysine ac(et)ylation was shown to affect protein function by various mechanisms ranging from quenching of the positive charge, increasing the lysine side chains’ size affecting the protein surface complementarity, increasing the hydrophobicity and by interfering with other post-translational modifications. While N-(ε)-lysine ac(et)ylation was shown to be reversible, dynamically regulated by lysine acetyltransferases and lysine deacetylases, for N-(α)-ac(et)ylation only N-terminal acetyltransferases were identified and so far no deacetylases were discovered neither in bacteria nor in mammals. To this end, N-terminal ac(et)ylation is regarded as being irreversible. Besides enzymatic ac(et)ylation, recent data showed that ac(et)ylation of lysine side chains and of the proteins N-termini can also occur non-enzymatically by the high-energy molecules acetyl-coenzyme A and acetyl-phosphate. Acetyl-phosphate is supposed to be the key molecule that drives non-enzymatic ac(et)ylation in bacteria. Non-enzymatic ac(et)ylation can occur site-specifically with both, the protein primary sequence and the three dimensional structure affecting its efficiency. Ac(et)ylation is tightly controlled by the cellular metabolic state as acetyltransferases use ac(et)yl-CoA as donor molecule for the ac(et)ylation and sirtuin deacetylases use NAD+ as co-substrate for the deac(et)ylation. Moreover, the accumulation of ac(et)yl-CoA and acetyl-phosphate is dependent on the cellular metabolic state. This constitutes a feedback control mechanism as activities of many metabolic enzymes were shown to be regulated by lysine ac(et)ylation. Our knowledge on lysine ac(et)ylation significantly increased in the last decade predominantly due to the huge methodological advances that were made in fields such as mass-spectrometry, structural biology and synthetic biology. This also includes the identification of additional acylations occurring on lysine side chains with supposedly different regulatory potential. This review highlights recent advances in the research field. Our knowledge on enzymatic regulation of lysine ac(et)ylation will be summarized with a special focus on structural and mechanistic characterization of the enzymes, the mechanisms underlying non-enzymatic/chemical ac(et)ylation are explained, recent technological progress in the field are presented and selected examples highlighting the important physiological roles of lysine ac(et)ylation are summarized.
Collapse
Affiliation(s)
- Michael Lammers
- Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Illes B, Engelke H. Protocol for photoactivation of YAP in cancer cell spheroids embedded in collagen gels. STAR Protoc 2021; 2:100657. [PMID: 34278337 PMCID: PMC8271177 DOI: 10.1016/j.xpro.2021.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
This protocol describes the necessary preparations and procedures to photo-activate Yes-associated protein (YAP) with optoYAP in cancer cell spheroids in 3D collagen matrices. We detail steps for immunofluorescent staining of the resulting YAP-activated HeLa spheroids. In addition, we describe handling of optoYAP on 2D substrates. While this protocol focuses on the use of optoYAP in 3D HeLa cell culture, it can be modified for other cell types. For complete details on the use and execution of this protocol, please refer to Illes et al. (2021).
Collapse
Affiliation(s)
- Bernhard Illes
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 Munich, Germany
| | - Hanna Engelke
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 Munich, Germany.,Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Humboldtstr. 46, 8010 Graz, Austria
| |
Collapse
|
11
|
Dowbaj AM, Jenkins RP, Williamson D, Heddleston JM, Ciccarelli A, Fallesen T, Hahn KM, O'Dea RD, King JR, Montagner M, Sahai E. An optogenetic method for interrogating YAP1 and TAZ nuclear-cytoplasmic shuttling. J Cell Sci 2021; 134:jcs253484. [PMID: 34060624 PMCID: PMC8313864 DOI: 10.1242/jcs.253484] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
The shuttling of transcription factors and transcriptional regulators into and out of the nucleus is central to the regulation of many biological processes. Here we describe a new method for studying the rates of nuclear entry and exit of transcriptional regulators. A photo-responsive LOV (light-oxygen-voltage) domain from Avena sativa is used to sequester fluorescently labelled transcriptional regulators YAP1 and TAZ (also known as WWTR1) on the surface of mitochondria and to reversibly release them upon blue light illumination. After dissociation, fluorescent signals from the mitochondria, cytoplasm and nucleus are extracted by a bespoke app and used to generate rates of nuclear entry and exit. Using this method, we demonstrate that phosphorylation of YAP1 on canonical sites enhances its rate of nuclear export. Moreover, we provide evidence that, despite high intercellular variability, YAP1 import and export rates correlate within the same cell. By simultaneously releasing YAP1 and TAZ from sequestration, we show that their rates of entry and exit are correlated. Furthermore, combining the optogenetic release of YAP1 with lattice light-sheet microscopy reveals high heterogeneity of YAP1 dynamics within different cytoplasmic regions, demonstrating the utility and versatility of our tool to study protein dynamics. This article has an associated First Person interview with Anna M. Dowbaj, joint first author of the paper.
Collapse
Affiliation(s)
- Anna M. Dowbaj
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Robert P. Jenkins
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Daniel Williamson
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - John M. Heddleston
- Advanced Imaging Center, Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Alessandro Ciccarelli
- Advanced Light Microscopy, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Todd Fallesen
- Advanced Light Microscopy, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Klaus M. Hahn
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7365, USA
| | - Reuben D. O'Dea
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - John R. King
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Marco Montagner
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35126 Padova, Italy
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|