1
|
Pereira C, Sarmiento S, Colmán A, Belachew-Bekele K, Evans H, Barreto R. Mycodiversity in a micro-habitat: twelve Cladosporium species, including four new taxa, isolated from uredinia of coffee leaf rust, Hemileia vastatrix. Fungal Syst Evol 2024; 14:9-33. [PMID: 39830303 PMCID: PMC11736085 DOI: 10.3114/fuse.2024.14.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2025] Open
Abstract
During surveys in the centres of origin of the coffee leaf rust (CLR), Hemileia vastatrix in Africa, as well as in its exotic range in Brazil, 23 isolates of the genus Cladosporium were obtained from uredinial pustules. Using a phylogenetic analysis of all isolates involving a combination of partial sequences of the internal transcribed spacer region of rDNA (ITS) and two gene regions: actin (act) and translation elongation factor-1α (tef1), 12 species were delimited; including four new species - Cladosporium chlamydosporiformans, C. hemileiicola, C. mucilaginosum and C. setoides. GCPSR criteria were employed for species recognition, supported by morphological and cultural characters. The potential of these purported mycoparasites is discussed in the context of biological control of CLR in Latin America. Citation: Pereira CM, Sarmiento SS, Colmán AA, Belachew-Bekele K, Evans HC, Barreto RW (2024). Mycodiversity in a micro-habitat: twelve Cladosporium species, including four new taxa, isolated from uredinia of coffee leaf rust, Hemileia vastatrix. Fungal Systematics and Evolution 14: 9-33. doi: 10.3114/fuse.2024.14.02.
Collapse
Affiliation(s)
- C.M. Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - S.S. Sarmiento
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - A.A. Colmán
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | - H.C. Evans
- CAB International, Bakeham Lane, Egham, Surrey TW20 9TY, UK
| | - R.W. Barreto
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| |
Collapse
|
2
|
Luiz BC, Sugiyama LS, Brill E, Keith LM. Survey of potential fungal antagonists of Coffee Leaf Rust (Hemileia vastatrix) on Coffea arabica in Hawai'i, USA. Braz J Microbiol 2024; 55:2839-2844. [PMID: 38743246 PMCID: PMC11405743 DOI: 10.1007/s42770-024-01304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/08/2024] [Indexed: 05/16/2024] Open
Abstract
Hemileia vastatrix, causal agent of coffee leaf rust (CLR), is an aggressive pathogen of coffee plants worldwide. Conventional fungicides play a major role in the suppression of this disease, but a recent shift toward eco-friendly farming practices has occurred and additional novel, effective, and sustainable strategies for CLR control are needed. Naturally occurring fungal antagonists could be well-positioned to meet this demand, but these fungi need to be isolated and tested for efficacy to identify organisms with potential. In this study, a survey of fungi associated with CLR lesions in four districts of Hawai'i Island, HI, USA (Kona, Ka'ū, Hāmākua, and Hilo) was conducted. Coffee leaves infected with CLR were collected from 22 locations and over 600 lesions were plated on ½ APDA and CTC 4T media. DNA was extracted from purified isolates and the internal transcribed spacer region (ITS) was sequenced and analyzed by BLASTn. In total, 194 isolates comprising 50 taxa were recovered. Several of the genera are known antagonists of CLR or other plant pathogens, including Simplicillium, Akanthomyces, Cladosporium, Fusarium, and Clonostachys. The wide diversity of fungi associated with CLR lesions provide a wealth of possibilities for identifying potential CLR antagonists that could serve as a valuable tool for coffee farmers as part of an integrated pest management plan.
Collapse
Affiliation(s)
- Blaine C Luiz
- Tropical Plant Genetic Resources and Disease Research Unit, USDA Agricultural Research Service, Hilo, HI, 96720, USA
| | - Lionel S Sugiyama
- Tropical Plant Genetic Resources and Disease Research Unit, USDA Agricultural Research Service, Hilo, HI, 96720, USA
| | - Eva Brill
- Tropical Plant Genetic Resources and Disease Research Unit, USDA Agricultural Research Service, Hilo, HI, 96720, USA
| | - Lisa M Keith
- Tropical Plant Genetic Resources and Disease Research Unit, USDA Agricultural Research Service, Hilo, HI, 96720, USA.
| |
Collapse
|
3
|
Pereira CM, Bautz KR, Rodríguez MDCH, Saavedra-Tobar LM, Kapeua-Ndacnou M, Belachew-Bekele K, Elliot SL, Evans HC, Barreto RW. Cordyceps cateniannulata: An endophyte of coffee, a parasite of coffee leaf rust and a pathogen of coffee pests. Fungal Biol 2024; 128:1917-1932. [PMID: 39059847 DOI: 10.1016/j.funbio.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 07/28/2024]
Abstract
Here, we report on a Cordyceps species entering into a multi-trophic, multi-kingdom association. Cordyceps cateniannulata, isolated from the stem of wild Coffea arabica in Ethiopia, is shown to function as an endophyte, a mycoparasite and an entomopathogen. A detailed polyphasic taxonomic study, including a multilocus phylogenetic analysis, confirmed its identity. An emended description of C. cateniannulata is provided herein. Previously, this species was known as a pathogen of various insect hosts in both the Old and New World. The endophytic status of C. cateniannulata was confirmed by re-isolating it from inoculated coffee plants. Inoculation studies have further shown that C. cateniannulata is a mycoparasite of Hemileia vastatrix, as well as an entomopathogen of major coffee pests; infecting and killing Hypothenemus hampei and Leucoptera coffeella. This is the first record of C. cateniannulata from Africa, as well as an endophyte and a mycoparasite. The implications for its use as a biocontrol agent are discussed.
Collapse
Affiliation(s)
- Caio M Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Keminy R Bautz
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | - Laura M Saavedra-Tobar
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Miraine Kapeua-Ndacnou
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Institute of Agricultural Research for Development, Regional Biocontrol and Applied Microbiology Laboratory, PO Box 2067, Yaoundé, Cameroon
| | | | - Simon L Elliot
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Harry C Evans
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; CAB International, Bakeham Lane, Egham, Surrey, TW20 9TY, UK
| | - Robert W Barreto
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
4
|
López-Velázquez JC, García-Morales S, López-Sánchez GP, Montero-Cortés MI, Uc-Várguez A, Qui-Zapata JA. High-Density Chitosan Induces a Biochemical and Molecular Response in Coffea arabica during Infection with Hemileia vastatrix. Int J Mol Sci 2023; 24:16165. [PMID: 38003355 PMCID: PMC10671657 DOI: 10.3390/ijms242216165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The coffee industry faces coffee leaf rust caused by Hemileia vastratix, which is considered the most devastating disease of the crop, as it reduces the photosynthetic rate and limits productivity. The use of plant resistance inducers, such as chitosan, is an alternative for the control of the disease by inducing the synthesis of phytoalexins, as well as the activation of resistance genes. Previously, the effect of chitosan from different sources and physicochemical properties was studied; however, its mechanisms of action have not been fully elucidated. In this work, the ability of food-grade high-density chitosan (0.01% and 0.05%) to control the infection caused by the pathogen was evaluated. Subsequently, the effect of high-density chitosan (0.05%) on the induction of pathogenesis-related gene expression (GLUC, POX, PAL, NPR1, and CAT), the enzymatic activity of pathogenesis-related proteins (GLUC, POX, SOD, PPO, and APX), and phytoalexin production were evaluated. The results showed that 0.05% chitosan increased the activity and gene expression of ß-1,3 glucanases and induced a differentiated response in enzymes related to the antioxidant system of plants. In addition, a correlation was observed between the activities of polyphenol oxidase and the production of phytoalexin, which allowed an effective defense response in coffee plants.
Collapse
Affiliation(s)
- Julio César López-Velázquez
- Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico;
| | - Soledad García-Morales
- Biotecnología Vegetal, CONAHCYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico;
| | - Gloria Paola López-Sánchez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, General Ramón Corona 2514, Nuevo México, Zapopan 45201, Mexico;
| | | | - Alberto Uc-Várguez
- Subsede Sureste, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Tablaje Catastral 31264 Km 5.5 Carretera Sierra Papacal-Chuburna, Mérida 97302, Mexico;
| | - Joaquín Alejandro Qui-Zapata
- Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico;
| |
Collapse
|
5
|
da Silva NMP, Guterres DC, Borges LS, Barreto RW, Furtado GQ. Surveying potentially antagonistic fungi to myrtle rust (Austropuccinia psidii) in Brazil: fungicolous Cladosporium spp. Braz J Microbiol 2023; 54:1899-1914. [PMID: 37389796 PMCID: PMC10484887 DOI: 10.1007/s42770-023-01047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
The myrtle rust (MR), caused by Austropuccinia psidii, is a worldwide threat to the cultivated and wild Myrtaceae. Originally from the neotropics, it has spread to North America, Africa, and Asia and has reached geographically isolated areas in the Pacific and Australasia. It is attacking native species in those new ranges and is still spreading and causing great concern for the damage caused to endemic Myrtaceae, and to the environment. Classical biological control is regarded as the most sustainable management option for mitigating such biological invasions. However, there are no examples of introductions of host-specific co-evolved natural enemies of plant pathogens, from their native range, as a management strategy for plant pathogens. In order to explore this neglected approach, a survey of potential fungal natural enemies of A. psidii was initiated recently in the state of Minas Gerais (Brazil). Several purported mycoparasites have been collected from A. Psidii pustules formed on myrtaceous hosts. This included some isolates of dematiaceous fungi recognized as having a Cladosporium-like morphology. Here we present the results of the investigation aimed at elucidating their identity through a polyphasic taxonomic approach. Besides morphological and cultural features, molecular analyses using sequences of translation elongation factor 1-α (EF1) and actin (ACT) were performed. The combination of data generated is presented herein and placed all Cladosporium-like isolates in six species of Cladosporium, namely, Cladosporium angulosum, C. anthropophilum, C. bambusicola, C. benschii, C. guizhouense, and C. macadamiae. None of these have ever been recorded in association with A. psidii. Now, with the identification of these isolates at hand, an evaluation of biocontrol potential of these fungi will be initiated. In contrast with the ready finding of fungicolous (possibly mycoparasitic) fungi on MR in this study, no evidence of those was recorded from Australasia until now.
Collapse
Affiliation(s)
| | | | - Luísa Salvador Borges
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Robert Weingart Barreto
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Gleiber Quintão Furtado
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
6
|
Kapeua-Ndacnou M, de Abreu LM, de Macedo DM, da Nóbrega TF, Pereira CM, Evans HC, Barreto RW. Assessing the Biocontrol Potential of Clonostachys Species Isolated as Endophytes from Coffea Species and as Mycoparasites of Hemileia Rusts of Coffee in Africa. J Fungi (Basel) 2023; 9:248. [PMID: 36836362 PMCID: PMC9962503 DOI: 10.3390/jof9020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
During surveys conducted in South America and Africa to identify natural fungal enemies of coffee leaf rust (CLR), Hemileia vastatrix, over 1500 strains were isolated, either as endophytes from healthy tissues of Coffea species or as mycoparasites growing on rust pustules. Based on morphological data, eight isolates-three isolated from wild or semiwild coffee and five from Hemileia species on coffee, all from Africa-were provisionally assigned to the genus Clonostachys. A polyphasic study of their morphological, cultural and molecular characteristics-including the Tef1 (translation elongation factor 1 alpha), RPB1 (largest subunit of RNA polymerase II), TUB (β-tubulin) and ACL1 (ATP citrate lyase) regions-confirmed these isolates as belonging to three species of the genus Clonostachys: namely C. byssicola, C. rhizophaga and C. rosea f. rosea. Preliminary assays were also conducted to test the potential of the Clonostachys isolates to reduce CLR severity on coffee under greenhouse conditions. Foliar and soil applications indicated that seven of the isolates had a significant effect (p < 0.05) in reducing CLR severity. In parallel, in vitro tests that involved conidia suspensions of each of the isolates together with urediniospores of H. vastatrix resulted in high levels of inhibition of urediniospore germination. All eight isolates showed their ability to establish as endophytes in C. arabica during this study, and some proved to be mycoparasites of H. vastatrix. In addition to reporting the first records of Clonostachys associated with healthy coffee tissues and with Hemileia rusts of coffee, this work provides the first evidence that Clonostachys isolates have potential as biological control agents against CLR.
Collapse
Affiliation(s)
- Miraine Kapeua-Ndacnou
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
- Regional Biocontrol and Applied Microbiology Laboratory, Institute of Agricultural Research for Development, Yaoundé P.O. Box 2067, Cameroon
| | | | | | | | - Caio Mattos Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | | | | |
Collapse
|
7
|
da Silva UP, Ferreira BW, de Sousa BL, Barreto RW, Martins FT, de A Neto JH, Vaz BG, da Silva RR, Martins TVF, de Oliveira Mendes TA, Varejão EVV. Synthesis of bis(ylidene) cyclohexanones and their antifungal activity against selected plant pathogenic fungi. Mol Divers 2023; 27:281-297. [PMID: 35441971 DOI: 10.1007/s11030-022-10431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/31/2022] [Indexed: 02/08/2023]
Abstract
Botrytis cinerea, Rhizoctonia solani and Hemileia vastatrix are three species of phytopathogenic fungi behind major crop losses worldwide. These have been selected as target models for testing the fungicide potential of a series of bis(ylidene) cyclohexanones. Although some compounds of this chemical class are known to have inhibitory activity against human pathogens, they have never been explored for the control of phytopathogens until now. In the present work, bis(ylidene) cyclohexanones were synthesized through simple, fast and low-cost base- or acid-catalyzed aldol condensation reaction and tested in vitro against B. cinerea, R. solani and H. vastatrix. bis(pyridylmethylene) cyclohexanones showed the highest activity against the target fungi. When tested at 200 nmol per mycelial plug against R. solani., these compounds completely inhibited the mycelial growth, and the most active bis(pyridylmethylene) cyclohexanone compound had an IC50 of 155.5 nmol plug-1. Additionally, bis(pyridylmethylene) cyclohexanones completely inhibited urediniospore germination of H. vastatrix, at 125 μmol L-1. The most active bis(pyridylmethylene) cyclohexanone had an IC50 value of 4.8 µmol L-1, which was estimated as approximately 2.6 times lower than that found for the copper oxychloride-based fungicide, used as control. Additionally, these substances had a low cytotoxicity against the mammalian Vero cell line. Finally, in silico calculations indicated that these compounds present physicochemical parameters regarded as suitable for agrochemicals. Bis(ylidene) cyclohexanones may constitute promising candidates for the development of novel antifungal agents for the control of relevant fungal diseases in agriculture.
Collapse
Affiliation(s)
- Ueveton Pimentel da Silva
- Department of Chemistry, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais, 36.570-900, Brazil
| | - Bruno Wesley Ferreira
- Department of Phytopathology, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais, 36.570-900, Brazil
| | - Bianca Lana de Sousa
- Department of Chemistry, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais, 36.570-900, Brazil
| | - Robert Weingart Barreto
- Department of Phytopathology, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais, 36.570-900, Brazil
| | - Felipe Terra Martins
- Institute of Chemistry, Universidade Federal de Goiás, Av Esperança, sn, Samambaia, Goiânia, 74.690-900, Brazil
| | - João Honorato de A Neto
- Department of Chemistry, Universidade Federal de São Carlos, Rodovia Washington Luís s/n Km 235, Sao Carlos, SP, 74.690-900, Brazil
| | - Boniek Gontijo Vaz
- Institute of Chemistry, Universidade Federal de Goiás, Av Esperança, sn, Samambaia, Goiânia, 74.690-900, Brazil
| | - Rodolfo Rodrigues da Silva
- Institute of Chemistry, Universidade Federal de Goiás, Av Esperança, sn, Samambaia, Goiânia, 74.690-900, Brazil
| | - Thaís Viana Fialho Martins
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais, 36.570-900, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av PH Rolfs sn, Viçosa, Minas Gerais, 36.570-900, Brazil
| | | |
Collapse
|
8
|
Velásquez S, Banchón C. Influence of pre-and post-harvest factors on the organoleptic and physicochemical quality of coffee: a short review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 60:1-13. [PMID: 35993003 PMCID: PMC9376573 DOI: 10.1007/s13197-022-05569-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022]
Abstract
The coffee quality is affected by 40% pre-harvest, 40% post-harvest, and 20% export handling. Besides, future risks for the coffee industry are related with climate change and increased pathogens. Considering the importance of the aroma profile and unique flavor of Arabica coffee, most literature focuses on this variety because of the high market share; however, nowadays, Robusta coffee stands out for its increasing industrial value and resistance to drought. In this review, both species are emphasized, highlighting sensory aspects of possible new products mixed with a higher proportion of Robusta given market trends for bitter beverages. In the present work, a systematic search of peer-reviewed literature evaluates how the coffee cup quality and physicochemical characteristics of Robusta and Arabica are influenced by environmental, agronomic, and further processing factors.
Collapse
Affiliation(s)
- Sofía Velásquez
- Escuela Superior Politécnica Agropecuaria de Manabí, ESPAM-MFL, 130602 Calceta, Ecuador
- Universidad de Córdoba, Campus de Rabanales, Madrid-Cádiz Km. 396, 14014 Córdoba, Spain
| | - Carlos Banchón
- Escuela Superior Politécnica Agropecuaria de Manabí, ESPAM-MFL, 130602 Calceta, Ecuador
| |
Collapse
|
9
|
Den Breeyen A, Lange C, Fowler SV. Plant pathogens as introduced weed biological control agents: Could antagonistic fungi be important factors determining agent success or failure? FRONTIERS IN FUNGAL BIOLOGY 2022; 3:959753. [PMID: 37746189 PMCID: PMC10512343 DOI: 10.3389/ffunb.2022.959753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/28/2022] [Indexed: 09/26/2023]
Abstract
Mycoparasitic interactions are common in nature, form part of the microbiota of plants, and are considered significant contributors to fungus-fungus antagonism. Mycoparasites kill plant pathogens, protect the plant from abiotic and biotic stressors, and reduce disease incidence and severity at the plant population level. Their exploitation as biocontrol agents in agriculture is well documented. However, mycoparasites may potentially affect classical fungal biocontrol agents of invasive weed species. Classical biological control, or biocontrol, of invasive weeds involves the intentional introduction of exotic, usually co-evolved plant pathogens and insects, for permanent establishment and long-term control of the target plant. Agent establishment, effectiveness, and safety are the critical elements for a successful weed biocontrol programme. Establishment and effectiveness of agents on the invasive plant often vary throughout the invaded range with about two-thirds of weed biocontrol agents failing to suppress their target weed. There are many documented reasons why weed biocontrol agents do not establish or are ineffective when they do, and the presence and accumulation of natural enemies in the invaded range is one of them. Endophyte-enriched, invasive weeds and those forming mutualistic associations with indigenous, native endophytes could explain the lack of consistency of some classical biological control introductions. However, another variable could be factored into the mix: mycoparasitism, where one fungus parasitises another, the natural enemies of the plant's natural enemies. In this review article, we introduce the concept of invasive weed biocontrol and the history of using plant pathogens as biocontrol agents. We discuss the success and failure of fungal agent programmes and delve into the patterns of success or failure, with a focus on the potential antagonistic role of endophytes and mycoparasites.
Collapse
Affiliation(s)
| | - Claudia Lange
- Manaaki Whenua – Landcare Research, Lincoln, New Zealand
| | | |
Collapse
|
10
|
Comprehensive Review of Fungi on Coffee. Pathogens 2022; 11:pathogens11040411. [PMID: 35456086 PMCID: PMC9024902 DOI: 10.3390/pathogens11040411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Coffee is grown in more than 80 countries as a cash crop and consumed worldwide as a beverage and food additive. It is susceptible to fungal infection during growth, processing and storage. Fungal infections, in particular, can seriously affect the quality of coffee and threaten human health. The data for this comprehensive review were collected from the United States Department of Agriculture, Agricultural Research Service (USDA ARS) website and published papers. This review lists the fungal species reported on coffee based on taxonomy, life mode, host, affected plant part and region. Five major fungal diseases and mycotoxin-producing species (post-harvest diseases of coffee) are also discussed. Furthermore, we address why coffee yield and quality are affected by fungi and propose methods to control fungal infections to increase coffee yield and improve quality. Endophytic fungi and their potential as biological control agents of coffee disease are also discussed.
Collapse
|
11
|
Cryptococcus depauperatus, a close relative of the human-pathogen C. neoformans, associated with coffee leaf rust (Hemileia vastatrix) in Cameroon. Braz J Microbiol 2021; 52:2205-2214. [PMID: 34417998 DOI: 10.1007/s42770-021-00592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022] Open
Abstract
The genus Cryptococcus is well known for its two species -Cryptococcus neoformans and C. gatii- that are etiological agents of cryptococcosis, an important fungal disease of mammals, including humans, and which is particularly common in immunocompromised patients. Nevertheless, Cryptococcus is a large and widely distributed genus of basidiomycetes occupying a broad range of niches, including mycoparasitism. One such mycoparasitic species is Cryptococcus depauperatus, which was firstly mistakenly described as a pathogen of scale insects under the name Aspergillus depauperatus. The "Aspergillus" conidiophores were later shown to be basidia of a Cryptococcus and the new combination C. depauperatus was proposed. Additionally, instead of an entomopathogen, the fungus was found to be a mycoparasite growing on the entomopathogen Akanthomyces (Lecanicillium) lecanii. Recently, during surveys for mycoparasites of coffee leaf rust (Hemileia vastatrix) in the context of a biocontrol project, white colonies covering rust pustules were observed in Cameroon. Upon close examination, instead of a member of the "white colony forming complex" of Ascomycetes, commonly collected growing on H. vastatrix, such colonies were found to represent a basidiomycete fungus with basidia-bearing chains of basidiospores, typical of the genus Cryptococcus. Morphological and molecular evidence was generated supporting the identification of the fungus on rust pustules as C. depauperatus. This is the first record of C. depauperatus from Africa and of its association with coffee leaf rust.
Collapse
|
12
|
López-Velázquez JC, Haro-González JN, García-Morales S, Espinosa-Andrews H, Navarro-López DE, Montero-Cortés MI, Qui-Zapata JA. Evaluation of the Physicochemical Properties of Chitosans in Inducing the Defense Response of Coffea arabica against the Fungus Hemileia vastatrix. Polymers (Basel) 2021; 13:polym13121940. [PMID: 34207947 PMCID: PMC8230575 DOI: 10.3390/polym13121940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/05/2022] Open
Abstract
Chitosan is a natural polymer, and its biological properties depend on factors such as the degree of deacetylation and polymerization, viscosity, molecular mass, and dissociation constant. Chitosan has multiple advantages: it is biodegradable, biocompatible, safe, inexpensive, and non-toxic. Due to these characteristics, it has a wide range of applications. In agriculture, one of the most promising properties of chitosan is as an elicitor in plant defense against pathogenic microorganisms. In this work, four kinds of chitosan (practical grade, low molecular weight, medium molecular weight, and high-density commercial food grade) were used in concentrations of 0.01 and 0.05% to evaluate its protective effect against coffee rust. The best treatment was chosen to evaluate the defense response in coffee plants. The results showed a protective effect using practical-grade and commercial food-grade chitosan. In addition, the activity of enzymes with β-1,3 glucanase and peroxidase was induced, and an increase in the amount of phenolic compounds was observed in plants treated with high-molecular-weight chitosan at 0.05%; therefore, chitosan can be considered an effective molecule for controlling coffee rust.
Collapse
Affiliation(s)
- Julio César López-Velázquez
- Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC., Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico;
| | - José Nabor Haro-González
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC., Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico; (J.N.H.-G.); (H.E.-A.)
| | - Soledad García-Morales
- Biotecnología Vegetal, CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC., Zapopan 45019, Mexico;
| | - Hugo Espinosa-Andrews
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC., Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico; (J.N.H.-G.); (H.E.-A.)
| | - Diego Eloyr Navarro-López
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, General Ramón Corona 2514, Nuevo México, Zapopan 45201, Mexico;
| | | | - Joaquín Alejandro Qui-Zapata
- Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC., Camino Arenero 1227, El Bajío, Zapopan 45019, Mexico;
- Correspondence: ; Tel.: +52-33-33-45-52-00 (ext. 1707)
| |
Collapse
|