1
|
Sangokoya C. The FIRE biosensor illuminates iron regulatory protein activity and cellular iron homeostasis. CELL REPORTS METHODS 2025; 5:100960. [PMID: 39824193 PMCID: PMC11840943 DOI: 10.1016/j.crmeth.2024.100960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025]
Abstract
On Earth, iron is abundant, bioavailable, and crucial for initiating the first catalytic reactions of life from prokaryotes to plants to mammals. Iron-complexed proteins are critical to biological pathways and essential cellular functions. While it is well known that the regulation of iron is necessary for mammalian development, little is known about the timeline of how specific transcripts network and interact in response to cellular iron regulation to shape cell fate, function, and plasticity in the developing embryo and beyond. Here, we present a ratiometric genetically encoded dual biosensor called FIRE (Fe-IRE [iron-responsive element]) to evaluate iron regulatory protein (IRP)-binding activity and cellular iron status in live cells, allowing for the study and dissection of dynamic changes in cellular iron and IRP activity over developmental time. FIRE reveals a previously unrecognized foundational timeline of IRP activity and cellular iron homeostasis during stem cell pluripotency transition and early differentiation.
Collapse
Affiliation(s)
- Carolyn Sangokoya
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Chen L, Su Y, Wang C, Huang Q, Chen W, Hai N, Wang J, Lian H, Zhao J, Xu J, Liu Q. Rc3h1 negatively regulates osteoclastogenesis by limiting energy metabolism. Theranostics 2024; 14:7554-7568. [PMID: 39659568 PMCID: PMC11626950 DOI: 10.7150/thno.99565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024] Open
Abstract
Rationale: Osteoclasts are giant bone-resorbing cells that need vigorous mitochondrial respiration to support their activation. Rc3h1, an RNA-binding protein, precisely governs the homeostasis of mRNA. However, the precise role of Rc3h1 in regulating iron metabolism and mitochondrial respiration in osteoclasts is not yet understood. Methods: We generated Rc3h1-deficient mice in osteoclast precursors and mature osteoclasts. The bone mass and osteoclast activity in bone tissues were evaluated. Moreover, we assessed the differentiation, bone resorption, iron content, and mitochondrial function of osteoclasts in vitro. In the end, the target gene of Rc3h1 and its role in mediating the effect of Rc3h1 on mitochondrial respiration in osteoclasts were further investigated. Results: Mice lacking Rc3h1 exhibit low bone mass. In addition, Rc3h1 deletion in osteoclasts significantly promotes osteoclast activation. Mechanistically, Rc3h1 post-transcriptionally represses the expression of transferrin receptor 1 (Tfr1), restricting iron absorption and mitochondrial respiration in osteoclasts. Inhibition of Tfr1 in Rc3h1-deficient osteoclasts diminishes excessive osteoclast formation and mitochondrial respiration. Conclusion: These findings suggest that Rc3h1 has a negative effect on osteoclast activation via limiting iron resorption and mitochondrial respiration. Finally, targeting the Rc3h1/Tfr1 axis might represent a potential therapeutic approach for bone-loss diseases.
Collapse
Affiliation(s)
- Liuyuan Chen
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yuangang Su
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chaofeng Wang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qian Huang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Weiwei Chen
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Na Hai
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jikang Wang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Haoyu Lian
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jiake Xu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, and Chinese Academy of Sciences, Shenzhen, China
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
3
|
Xie T, Yao L, Li X. Advance in Iron Metabolism, Oxidative Stress and Cellular Dysfunction in Experimental and Human Kidney Diseases. Antioxidants (Basel) 2024; 13:659. [PMID: 38929098 PMCID: PMC11200795 DOI: 10.3390/antiox13060659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases pose a significant global health issue, frequently resulting in the gradual decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases. Iron homeostasis is strictly regulated in the body, and disturbance in this regulatory system results in abnormal iron accumulation or deficiency, both of which are associated with the pathogenesis of kidney diseases. Iron overload promotes the production of reactive oxygen species (ROS) through the Fenton reaction, resulting in oxidative damage to cellular molecules and impaired cellular function. Increased oxidative stress can also influence iron metabolism through upregulation of iron regulatory proteins and altering the expression and activity of key iron transport and storage proteins. This creates a harmful cycle in which abnormal iron metabolism and oxidative stress perpetuate each other, ultimately contributing to the advancement of kidney diseases. The crosstalk of iron metabolism and oxidative stress involves multiple signaling pathways, such as hypoxia-inducible factor (HIF) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. This review delves into the functions and mechanisms of iron metabolism and oxidative stress, along with the intricate relationship between these two factors in the context of kidney diseases. Understanding the underlying mechanisms should help to identify potential therapeutic targets and develop novel and effective therapeutic strategies to combat the burden of kidney diseases.
Collapse
Affiliation(s)
- Tiancheng Xie
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Zhang YY, Han Y, Li WN, Xu RH, Ju HQ. Tumor iron homeostasis and immune regulation. Trends Pharmacol Sci 2024; 45:145-156. [PMID: 38212195 DOI: 10.1016/j.tips.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
Abnormal iron metabolism has long been regarded as a key metabolic hallmark of cancer. As a critical cofactor, iron contributes to tumor progression by participating in various processes such as mitochondrial electron transport, gene regulation, and DNA synthesis or repair. Although the role of iron in tumor cells has been widely studied, recent studies have uncovered the interplay of iron metabolism between tumor cells and immune cells, which may affect both innate and adaptive immune responses. In this review, we discuss the current understanding of the regulatory networks of iron metabolism between cancer cells and immune cells and how they contribute to antitumor immunity, and we analyze potential therapeutics targeting iron metabolism. Also, we highlight several key challenges and describe potential therapeutic approaches for future investigations.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Yi Han
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Wen-Ning Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China.
| | - Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510060, P. R. China.
| |
Collapse
|
5
|
Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol 2024; 25:133-155. [PMID: 37783783 DOI: 10.1038/s41580-023-00648-1] [Citation(s) in RCA: 244] [Impact Index Per Article: 244.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/04/2023]
Abstract
In mammals, hundreds of proteins use iron in a multitude of cellular functions, including vital processes such as mitochondrial respiration, gene regulation and DNA synthesis or repair. Highly orchestrated regulatory systems control cellular and systemic iron fluxes ensuring sufficient iron delivery to target proteins is maintained, while limiting its potentially deleterious effects in iron-mediated oxidative cell damage and ferroptosis. In this Review, we discuss how cells acquire, traffick and export iron and how stored iron is mobilized for iron-sulfur cluster and haem biogenesis. Furthermore, we describe how these cellular processes are fine-tuned by the combination of various sensory and regulatory systems, such as the iron-regulatory protein (IRP)-iron-responsive element (IRE) network, the nuclear receptor co-activator 4 (NCOA4)-mediated ferritinophagy pathway, the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) axis or the nuclear factor erythroid 2-related factor 2 (NRF2) regulatory hub. We further describe how these pathways interact with systemic iron homeostasis control through the hepcidin-ferroportin axis to ensure appropriate iron fluxes. This knowledge is key for the identification of novel therapeutic opportunities to prevent diseases of cellular and/or systemic iron mismanagement.
Collapse
Affiliation(s)
- Bruno Galy
- German Cancer Research Center (DKFZ), Division of Virus-associated Carcinogenesis (F170), Heidelberg, Germany
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Martina Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
6
|
Pan S, Hale AT, Lemieux ME, Raval DK, Garton TP, Sadler B, Mahaney KB, Strahle JM. Iron homeostasis and post-hemorrhagic hydrocephalus: a review. Front Neurol 2024; 14:1287559. [PMID: 38283681 PMCID: PMC10811254 DOI: 10.3389/fneur.2023.1287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024] Open
Abstract
Iron physiology is regulated by a complex interplay of extracellular transport systems, coordinated transcriptional responses, and iron efflux mechanisms. Dysregulation of iron metabolism can result in defects in myelination, neurotransmitter synthesis, and neuronal maturation. In neonates, germinal matrix-intraventricular hemorrhage (GMH-IVH) causes iron overload as a result of blood breakdown in the ventricles and brain parenchyma which can lead to post-hemorrhagic hydrocephalus (PHH). However, the precise mechanisms by which GMH-IVH results in PHH remain elusive. Understanding the molecular determinants of iron homeostasis in the developing brain may lead to improved therapies. This manuscript reviews the various roles iron has in brain development, characterizes our understanding of iron transport in the developing brain, and describes potential mechanisms by which iron overload may cause PHH and brain injury. We also review novel preclinical treatments for IVH that specifically target iron. Understanding iron handling within the brain and central nervous system may provide a basis for preventative, targeted treatments for iron-mediated pathogenesis of GMH-IVH and PHH.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew T. Hale
- Department of Neurosurgery, University of Alabama at Birmingham School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mackenzie E. Lemieux
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Dhvanii K. Raval
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Thomas P. Garton
- Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Brooke Sadler
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Hematology and Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Kelly B. Mahaney
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopedic Surgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
7
|
Connell GJ, Abasiri IM, Chaney EH. A temporal difference in the stabilization of two mRNAs with a 3' iron-responsive element during iron deficiency. RNA (NEW YORK, N.Y.) 2023; 29:1117-1125. [PMID: 37160355 PMCID: PMC10351883 DOI: 10.1261/rna.079665.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
The interactions of iron regulatory proteins (IRPs) with mRNAs containing an iron-responsive element (IRE) maintain cellular iron homeostasis and coordinate it with metabolism and possibly cellular behavior. The mRNA encoding transferrin receptor-1 (TFRC, TfR1), which is a major means of iron importation, has five IREs within its 3' UTR, and IRP interactions help maintain cytosolic iron through the protection of the TfR1 mRNA from degradation. An IRE within the 3' UTR of an mRNA splice variant encoding human cell division cycle 14A (CDC14A) has the potential to coordinate the cellular iron status with cellular behavior through a similar IRP-mediated mechanism. However, the stability of the CDC14A splice variant was reported earlier to be unaffected by the cellular iron status, which suggested that the IRE is not functional. We labeled newly synthesized mRNA in HEK293 cells with 5-ethynyl uridine and found that the stability of the CDC14A variant is responsive to iron deprivation, but there are two major differences from the regulation of TfR1 mRNA stability. First, the decay of the CDC14A mRNA does not utilize the Roquin-mediated reaction that acts on the TfR1 mRNA, indicating that there is flexibility in the degradative machinery antagonized by the IRE-IRP interactions. Second, the stabilization of the CDC14A mRNA is delayed relative to the TfR1 mRNA and does not occur until IRP binding activity has been induced. The result is consistent with a hierarchy of IRP interactions in which the maintenance of cellular iron through the stabilization of the TfR1 mRNA is initially prioritized.
Collapse
Affiliation(s)
- Gregory J Connell
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | - Elizabeth H Chaney
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
8
|
Shen M, Goforth JB, Eisenstein RS. Iron-dependent post transcriptional control of mitochondrial aconitase expression. Metallomics 2023; 15:mfac099. [PMID: 36702557 PMCID: PMC9902864 DOI: 10.1093/mtomcs/mfac099] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/23/2022] [Indexed: 01/28/2023]
Abstract
Iron regulatory proteins (IRPs) control the translation of animal cell mRNAs encoding proteins with diverse roles. This includes the iron storage protein ferritin and the tricarboxylic cycle (TCA) enzyme mitochondrial aconitase (ACO2) through iron-dependent binding of IRP to the iron responsive element (IRE) in the 5' untranslated region (UTR). To further elucidate the mechanisms allowing IRPs to control translation of 5' IRE-containing mRNA differentially, we focused on Aco2 mRNA, which is weakly controlled versus the ferritins. Rat liver contains two classes of Aco2 mRNAs, with and without an IRE, due to alterations in the transcription start site. Structural analysis showed that the Aco2 IRE adopts the canonical IRE structure but lacks the dynamic internal loop/bulge five base pairs 5' of the CAGUG(U/C) terminal loop in the ferritin IREs. Unlike ferritin mRNAs, the Aco2 IRE lacks an extensive base-paired flanking region. Using a full-length Aco2 mRNA expression construct, iron controlled ACO2 expression in an IRE-dependent and IRE-independent manner, the latter of which was eliminated with the ACO23C3S mutant that cannot bind the FeS cluster. Iron regulation of ACO23C3S encoded by the full-length mRNA was completely IRE-dependent. Replacement of the Aco23C3S 5' UTR with the Fth1 IRE with base-paired flanking sequences substantially improved iron responsiveness, as did fusing of the Fth1 base-paired flanking sequences to the native IRE in the Aco3C3S construct. Our studies further define the mechanisms underlying the IRP-dependent translational regulatory hierarchy and reveal that Aco2 mRNA species lacking the IRE contribute to the expression of this TCA cycle enzyme.
Collapse
Affiliation(s)
- Macy Shen
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA
- Department of Chemistry and Biochemistry, California State University-Fullerton, Fullerton, CA 92834-6866, USA
| | - Jeremy B Goforth
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA
- Science Department, Lodi Middle School, 945 S. Ham Lane, Lodi, CA 95242, USA
| | - Richard S Eisenstein
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
9
|
Xu C, Li W, Li T, Yuan J, Pang X, Liu T, Liang B, Cheng L, Sun X, Dong S. Iron metabolism-related genes reveal predictive value of acute coronary syndrome. Front Pharmacol 2022; 13:1040845. [PMID: 36330096 PMCID: PMC9622999 DOI: 10.3389/fphar.2022.1040845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022] Open
Abstract
Iron deficiency has detrimental effects in patients with acute coronary syndrome (ACS), which is a common nutritional disorder and inflammation-related disease affects up to one-third people worldwide. However, the specific role of iron metabolism in ACS progression is opaque. In this study, we construct an iron metabolism-related genes (IMRGs) based molecular signature of ACS and to identify novel iron metabolism gene markers for early stage of ACS. The IMRGs were mainly collected from Molecular Signatures Database (mSigDB) and two relevant studies. Two blood transcriptome datasets GSE61144 and GSE60993 were used for constructing the prediction model of ACS. After differential analysis, 22 IMRGs were differentially expressed and defined as DEIGs in the training set. Then, the 22 DEIGs were trained by the Elastic Net to build the prediction model. Five genes, PADI4, HLA-DQA1, LCN2, CD7, and VNN1, were determined using multiple Elastic Net calculations and retained to obtain the optimal performance. Finally, the generated model iron metabolism-related gene signature (imSig) was assessed by the validation set GSE60993 using a series of evaluation measurements. Compared with other machine learning methods, the performance of imSig using Elastic Net was superior in the validation set. Elastic Net consistently scores the higher than Lasso and Logistic regression in the validation set in terms of ROC, PRC, Sensitivity, and Specificity. The prediction model based on iron metabolism-related genes may assist in ACS early diagnosis.
Collapse
Affiliation(s)
- Cong Xu
- Shenzhen People’s Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Wanyang Li
- School of Mathematics, South China University of Technology, Guangzhou, China
| | - Tangzhiming Li
- Shenzhen People’s Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Jie Yuan
- Shenzhen People’s Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Xinli Pang
- Shenzhen People’s Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Tao Liu
- International Digital Economy Academy, Shenzhen, China
| | - Benhui Liang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lixin Cheng
- Shenzhen People’s Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
- *Correspondence: Lixin Cheng, ; Xin Sun, ; Shaohong Dong,
| | - Xin Sun
- Shenzhen People’s Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
- *Correspondence: Lixin Cheng, ; Xin Sun, ; Shaohong Dong,
| | - Shaohong Dong
- Shenzhen People’s Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
- *Correspondence: Lixin Cheng, ; Xin Sun, ; Shaohong Dong,
| |
Collapse
|
10
|
Bonadonna M, Altamura S, Tybl E, Palais G, Qatato M, Polycarpou-Schwarz M, Schneider M, Kalk C, Rüdiger W, Ertl A, Anstee N, Bogeska R, Helm D, Milsom MD, Galy B. Iron regulatory protein (IRP)-mediated iron homeostasis is critical for neutrophil development and differentiation in the bone marrow. SCIENCE ADVANCES 2022; 8:eabq4469. [PMID: 36197975 PMCID: PMC9534496 DOI: 10.1126/sciadv.abq4469] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/18/2022] [Indexed: 06/01/2023]
Abstract
Iron is mostly devoted to the hemoglobinization of erythrocytes for oxygen transport. However, emerging evidence points to a broader role for the metal in hematopoiesis, including the formation of the immune system. Iron availability in mammalian cells is controlled by iron-regulatory protein 1 (IRP1) and IRP2. We report that global disruption of both IRP1 and IRP2 in adult mice impairs neutrophil development and differentiation in the bone marrow, yielding immature neutrophils with abnormally high glycolytic and autophagic activity, resulting in neutropenia. IRPs promote neutrophil differentiation in a cell intrinsic manner by securing cellular iron supply together with transcriptional control of neutropoiesis to facilitate differentiation to fully mature neutrophils. Unlike neutrophils, monocyte count was not affected by IRP and iron deficiency, suggesting a lineage-specific effect of iron on myeloid output. This study unveils the previously unrecognized importance of IRPs and iron metabolism in the formation of a major branch of the innate immune system.
Collapse
Affiliation(s)
- Michael Bonadonna
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Biosciences Faculty, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sandro Altamura
- University of Heidelberg, Department of Pediatric Hematology, Oncology and Immunology, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Elisabeth Tybl
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- IB-Cancer Research Foundation, Science Park 2, 66123 Saarbrücken, Germany
| | - Gael Palais
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Maria Qatato
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Maria Polycarpou-Schwarz
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Martin Schneider
- German Cancer Research Center, Mass Spectrometry based Protein Analysis Unit, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christina Kalk
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Wibke Rüdiger
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Alina Ertl
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Natasha Anstee
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Research Center, “Division of Experimental Hematology”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ruzhica Bogeska
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Research Center, “Division of Experimental Hematology”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Dominic Helm
- German Cancer Research Center, Mass Spectrometry based Protein Analysis Unit, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Michael D. Milsom
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Research Center, “Division of Experimental Hematology”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Bruno Galy
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Abstract
An abundant metal in the human body, iron is essential for key biological pathways including oxygen transport, DNA metabolism, and mitochondrial function. Most iron is bound to heme but it can also be incorporated into iron-sulfur clusters or bind directly to proteins. Iron's capacity to cycle between Fe2+ and Fe3+ contributes to its biological utility but also renders it toxic in excess. Heme is an iron-containing tetrapyrrole essential for diverse biological functions including gas transport and sensing, oxidative metabolism, and xenobiotic detoxification. Like iron, heme is essential yet toxic in excess. As such, both iron and heme homeostasis are tightly regulated. Here we discuss molecular and physiologic aspects of iron and heme metabolism. We focus on dietary absorption; cellular import; utilization; and export, recycling, and elimination, emphasizing studies published in recent years. We end with a discussion on current challenges and needs in the field of iron and heme biology.
Collapse
Affiliation(s)
- Sohini Dutt
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Iqbal Hamza
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | | |
Collapse
|