1
|
Mohanty SS, Warrier S, Rangarajan A. Rethinking AMPK: A Reversible Switch Fortifying Cancer Cell Stress-Resilience. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2025; 98:33-52. [PMID: 40165808 PMCID: PMC11952127 DOI: 10.59249/jkbb6336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Stress adaptation is an evolutionarily conserved mechanism that promotes survival in the face of adverse conditions. AMP-activated protein kinase (AMPK) is a highly conserved energy-sensing kinase found in nearly all eukaryotic cells. It maintains energy homeostasis by promoting catabolism and inhibiting anabolism. In the context of cancer, the role of AMPK is controversial. It was initially touted as a tumor suppressor due to its association with Liver Kinase B1 (LKB1) (an upstream regulator and a known tumor suppressor) and ensuing growth-suppressive actions. However, emerging studies across a variety of cancer types unambiguously reveal AMPK's pro-survival and, thus, tumor-promoting activity, especially under cancer-associated stresses such as hypoxia, nutrient deprivation, oxidative stress, matrix detachment, and chemotherapy. In cancer cells, AMPK is activated in response to stress-induced increases in the levels of adenosine monophosphate (AMP), Ca2+, or reactive oxygen species (ROS). Upon activation, AMPK engages in metabolic rewiring and crosstalk with signaling molecules to mobilize resources toward survival while compromising proliferation. Here, we posit that AMPK is a non-genetic "reversible switch," allowing cancer cells' phenotype to switch to dormant, stem-like, and drug-resistant states, thereby enabling tumor cell survival, pathological progression, and therapy resistance. This review underscores the critical role of AMPK in driving cancer cell stress resilience and survival, advocating for the strategic use of AMPK inhibitors to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Shraddha S. Mohanty
- Department of Developmental Biology and Genetics, Indian Institute of Science,
Bengaluru, India
| | - Shweta Warrier
- Department of Developmental Biology and Genetics, Indian Institute of Science,
Bengaluru, India
| | - Annapoorni Rangarajan
- Department of Developmental Biology and Genetics, Indian Institute of Science,
Bengaluru, India
| |
Collapse
|
2
|
Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol 2023; 24:255-272. [PMID: 36316383 DOI: 10.1038/s41580-022-00547-x] [Citation(s) in RCA: 399] [Impact Index Per Article: 199.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
The classical role of AMP-activated protein kinase (AMPK) is as a cellular energy sensor activated by falling energy status, signalled by increases in AMP to ATP and ADP to ATP ratios. Once activated, AMPK acts to restore energy homeostasis by promoting ATP-producing catabolic pathways while inhibiting energy-consuming processes. In this Review, we provide an update on this canonical (AMP/ADP-dependent) activation mechanism, but focus mainly on recently described non-canonical pathways, including those by which AMPK senses the availability of glucose, glycogen or fatty acids and by which it senses damage to lysosomes and nuclear DNA. We also discuss new findings on the regulation of carbohydrate and lipid metabolism, mitochondrial and lysosomal homeostasis, and DNA repair. Finally, we discuss the role of AMPK in cancer, obesity, diabetes, nonalcoholic steatohepatitis (NASH) and other disorders where therapeutic targeting may exert beneficial effects.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - D Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
3
|
Ryu K, Yoshida A, Funato Y, Yamazaki D, Miki H. PRL stimulates mitotic errors by suppressing kinetochore-localized activation of AMPK during mitosis. Cell Struct Funct 2022; 47:75-87. [PMID: 36336348 PMCID: PMC10511051 DOI: 10.1247/csf.22034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/28/2022] [Indexed: 12/17/2023] Open
Abstract
Phosphatase of regenerating liver (PRL) is frequently overexpressed in various malignant cancers and is known to be a driver of malignancy. Here, we demonstrated that PRL overexpression causes mitotic errors that accompany spindle misorientation and aneuploidy, which are intimately associated with cancer progression. Mechanistic analyses of this phenomenon revealed dysregulation of the energy sensor kinase, AMP-activated protein kinase (AMPK), in PRL-induced mitotic errors. Specifically, immunofluorescence analysis showed that levels of phosphorylated AMPK (P-AMPK), an activated form of AMPK, at the kinetochore were reduced by PRL expression. Moreover, artificial activation of AMPK using chemical activators, such as A769662 and AICAR, in PRL-expressing cells restored P-AMPK signals at the kinetochore and normalized spindle orientation. Collectively, these results indicate the crucial importance of the activation of kinetochore-localized AMPK in the normal progression of mitosis, which is specifically perturbed by PRL overexpression.Key words: cancer, AMPK, PRL, kinetochore, mitotic errors.
Collapse
Affiliation(s)
- Kajung Ryu
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Atsushi Yoshida
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yosuke Funato
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Yamazaki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Miki
- Department of Cellular Regulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Yang J, Yang X, Liu A, Li Y, Niu Z, Lyu C, Liang X, Xia N, Cui J, Li M, Wu P, Peng C, Shen B. The beta subunit of AMP-activated protein kinase is critical for cell cycle progression and parasite development in Toxoplasma gondii. Cell Mol Life Sci 2022; 79:532. [PMID: 36205781 PMCID: PMC11802946 DOI: 10.1007/s00018-022-04556-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/30/2022] [Accepted: 09/10/2022] [Indexed: 11/03/2022]
Abstract
Toxoplasma gondii is a widespread eukaryotic pathogen that causes life-threatening diseases in humans and diverse animals. It has a complex life cycle with multiple developmental stages, which are timely adjusted according to growth conditions. But the regulatory mechanisms are largely unknown. Here we show that the AMP-activated protein kinase (AMPK), a key regulator of energy homeostasis in eukaryotes, plays crucial roles in controlling the cell cycle progression and bradyzoite development in Toxoplasma. Deleting the β regulatory subunit of AMPK in the type II strain ME49 caused massive DNA damage and increased spontaneous conversion to bradyzoites (parasites at chronic infection stage), leading to severe growth arrest and reduced virulence of the parasites. Under alkaline stress, all Δampkβ mutants converted to a bradyzoite-like state but the cell division pattern was significantly impaired, resulting in compromised parasite viability. Moreover, we found that phosphorylation of the catalytic subunit AMPKα was greatly increased in alkaline stressed parasites, whereas AMPKβ deletion mutants failed to do so. Phosphoproteomics found that many proteins with predicted roles in cell cycle and cell division regulation were differentially phosphorylated after AMPKβ deletion, under both normal and alkaline stress conditions. Together, these results suggest that the parasite AMPK has critical roles in safeguarding cell cycle progression, and guiding the proper exist of the cell cycle to form mature bradyzoites when the parasites are stressed. Consistent with this model, growth of parasites was not significantly altered when AMPKβ was deleted in a strain that was naturally reluctant to bradyzoite development.
Collapse
Affiliation(s)
- Jichao Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xuke Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Anqi Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Yaqiong Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Zhipeng Niu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Congcong Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xiaohan Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Ningbo Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Jianmin Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Mingjun Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Ping Wu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, People's Republic of China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, People's Republic of China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
- Key Laboratory of Preventive Medicine in Hubei Province, Wuhan, 430070, Hubei Province, People's Republic of China.
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
5
|
Huang Y, Lu J, Zhan L, Wang M, Shi R, Yuan X, Gao X, Liu X, Zang J, Liu W, Yao X. Resveratrol-induced Sirt1 phosphorylation by LKB1 mediates mitochondrial metabolism. J Biol Chem 2021; 297:100929. [PMID: 34216621 PMCID: PMC8326426 DOI: 10.1016/j.jbc.2021.100929] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/15/2021] [Accepted: 06/29/2021] [Indexed: 12/29/2022] Open
Abstract
The NAD+-dependent deacetylase Sirt1 has been implicated in the prevention of many age-related diseases, including cancer, type 2 diabetes, and cardiovascular disease. Resveratrol, a plant polyphenol, exhibits antiaging, antitumor, and vascular protection effects by activating Sirt1. However, the molecular mechanism of Sirt1 activation as induced by resveratrol remains unclear. By knockdown/rescue experiments, fluorometric Sirt1 activity assay, immunoprecipitation, and pull-down assays, we identify here that the tumor suppressor LKB1 (liver kinase B1) as a direct activator of Sirt1 elicited by resveratrol. Resveratrol promotes the binding between LKB1 and Sirt1, which we first reported, and this binding leads to LKB1-mediated phosphorylation of Sirt1 at three different serine residues in the C terminus of Sirt1. Mechanistically, LKB1-mediated phosphorylation increases intramolecular interactions in Sirt1, such as the binding of the C terminus to the deacetylase core domain, thereby eliminating DBC1 (Deleted in Breast Cancer 1, Sirt1 endogenous inhibitor) inhibition and promoting Sirt1-substrate interaction. Functionally, LKB1-dependent Sirt1 activation increases mitochondrial biogenesis and respiration through deacetylation and activation of the transcriptional coactivator PGC-1α. These results identify Sirt1 as a context-dependent target of LKB1 and suggest that a resveratrol-stimulated LKB1-Sirt1 pathway plays a vital role in mitochondrial metabolism, a key physiological process that contributes to numerous age-related diseases.
Collapse
Affiliation(s)
- Yuanyuan Huang
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, CAS Center for Excellence in Molecular Cell Science & Hefei National Science Center for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Jianlin Lu
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, CAS Center for Excellence in Molecular Cell Science & Hefei National Science Center for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Li Zhan
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, CAS Center for Excellence in Molecular Cell Science & Hefei National Science Center for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Ming Wang
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, CAS Center for Excellence in Molecular Cell Science & Hefei National Science Center for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Ronghua Shi
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, CAS Center for Excellence in Molecular Cell Science & Hefei National Science Center for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Xiao Yuan
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, CAS Center for Excellence in Molecular Cell Science & Hefei National Science Center for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Xinjiao Gao
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, CAS Center for Excellence in Molecular Cell Science & Hefei National Science Center for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, CAS Center for Excellence in Molecular Cell Science & Hefei National Science Center for Physical Sciences at Microscale, Hefei, Anhui, China; Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Jianye Zang
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, CAS Center for Excellence in Molecular Cell Science & Hefei National Science Center for Physical Sciences at Microscale, Hefei, Anhui, China
| | - Wei Liu
- Department of Biochemistry and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, University of Science & Technology of China School of Life Sciences, Hefei, China; Anhui Key Laboratory for Cellular Dynamics & Chemical Biology, CAS Center for Excellence in Molecular Cell Science & Hefei National Science Center for Physical Sciences at Microscale, Hefei, Anhui, China; Keck Center for Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|