1
|
Su X, Cui Y, Gong H, Xu T, Sun Y. The gene characteristics and adaptive evolution of the tumor necrosis factor superfamily (TNFSF) in miiuy croaker, Miichthysmiiuy. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110369. [PMID: 40288618 DOI: 10.1016/j.fsi.2025.110369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
The tumor necrosis factor superfamily (TNFSF) is crucial in regulating immune responses, with its members mediating various biological functions through key signaling pathways. However, the gene characteristics of this family and their comparative and evolutionary analysis across species remain limited. In this study, 12 TNFSF genes were identified in the genome-wide of miiuy croaker. Analyses were conducted on evolutionary relationships, conserved motifs, gene duplication, and selection pressure. Conserved motif analyses revealed that the C-terminal motifs of vertebrate TNFSF proteins were more conserved than the N-terminus. Sequence alignment and conservation analysis identified an unrecognized helix structure within the TNF homology domain, which exhibited structural conservation among vertebrates. Synteny and selection pressure analyses indicated that the TNFSF in miiuy croaker exhibited tandem and segmental duplication events. Evolutionary selection pressures may contributed to the functional differentiation of this family. These findings could enhance the understanding of TNFSF gene characteristics and evolutionary relationships, and provide new insights for studying immune-related TNFSF genes.
Collapse
Affiliation(s)
- Xiaoqin Su
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yanqiu Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Hanfu Gong
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
2
|
Wittich C, Ettich J, Hertell M, Ghosh Roy B, Xu HC, Floss DM, Lang PA, Scheller J. An engineered palivizumab IgG2 subclass for synthetic gp130 and fas-mediated signaling. J Biol Chem 2025; 301:108205. [PMID: 39828098 PMCID: PMC11872477 DOI: 10.1016/j.jbc.2025.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/18/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
Recently, we phenocopied interleukin (IL-)6 signaling using the dimerized single-chain variable fragment (scFv) derived from the respiratory syncytial virus IgG1-antibody palivizumab (PscFvLHFc) to activate a palivizumab antiidiotypic nanobody (AIPVHH)-gp130 receptor fusion protein. Palivizumab was unable to activate STAT3 signaling, so we aimed to create a similar ligand capable of triggering this pathway. Here, we created three variants of the ligand called PscFvLH0Fc, PscFvLH4Fc and PscFvLH8Fc by shortening the spacer region connecting PscFvLH and Fc from 23 amino acids in PscFvLHFc to 0 amino acids or expanding it by rigid linkers of four or eight alpha helical loops, respectively. The rigid-linker ligands had completely altered cellular activation patterns via AIPVHHgp130 fusion proteins. Deleting the extracellular stalk region between transmembrane and AIPVHH in the synthetic receptors AIP2VHHgp130Δstalk and AIP3VHHgp130Δstalk to increase rigidity and enhanced the biological activity of the short spacer PscFvFc ligands. Since scFv constructs are less stable than antibodies and have not been Food and Drug Administration approved, we looked for different antibody backbones. Transferring palivizumab's variable region to a more rigid and hence more agonistic IgG2 backbone (PIgG2) maintained affinity while improving agonistic properties activating cells expressing AIP2VHHgp130Δstalk and AIP3VHHgp130Δstalk but not their full-length counterparts. Furthermore, we engineered a tetravalent palivizumab variant (PscFvPIgG2) capable of inducing higher-order receptor clustering, activating Fas-induced apoptosis. In summary, we engineered a fully-synthetic cytokine/cytokine receptor pair based on the IgG2-variant of palivizumab and the AIPVHHgp130Δstalk variants opening avenues for therapeutic applications using nonphysiological targets in immunotherapy.
Collapse
Affiliation(s)
- Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Marcel Hertell
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Biswadeep Ghosh Roy
- Institue of Molecular Medicine II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Haifeng C Xu
- Institue of Molecular Medicine II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Philipp A Lang
- Institue of Molecular Medicine II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
3
|
Zoler E, Meyer T, Bellón JS, Mönnig M, Sun B, Piehler J, Schreiber G. Promiscuous Janus kinase binding to cytokine receptors modulates signaling efficiencies and contributes to cytokine pleiotropy. Sci Signal 2024; 17:eadl1892. [PMID: 39561221 DOI: 10.1126/scisignal.adl1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/09/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
Janus kinases (JAKs) bind to class I and II cytokine receptors, activating signaling and regulating gene transcription through signal transducer and activator of transcription (STAT) proteins. Type I interferons (IFNs) require the JAK members TYK2 and JAK1, which bind to the receptor subunits IFNAR1 and IFNAR2, respectively. We investigated the role of JAKs in regulating IFNAR signaling activity. Synthetic IFNARs in which the extracellular domains of IFNAR1 and IFNAR2 are replaced with nanobodies had near-native type I IFN signaling, whereas the homomeric variant of IFNAR2 initiated much weaker signaling, despite harboring docking sites for JAKs and STATs. Cells with JAK1 and TYK2 knockout (KO) showed residual signaling, suggesting partial complementation by the remaining JAKs, particularly when they were overexpressed. Live-cell micropatterning experiments confirmed the promiscuous binding of JAK1, JAK2, and TYK2 to IFNAR1 and IFNAR2, and their recruitment correlated with their relative cellular abundances. However, each JAK had a different efficacy in inducing cross-phosphorylation and downstream signaling. JAK binding was also promiscuous for other cytokine receptors, including IFN-L1, IL-10Rβ, TPOR, and GHR, but not for EPOR, which activated different downstream signaling pathways. These findings suggest that competitive binding of JAKs to cytokine receptors together with the varying absolute and relative abundances of the JAKs in different cell types can account for the cell type-dependent signaling pleiotropy of cytokine receptors.
Collapse
Affiliation(s)
- Eyal Zoler
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Thomas Meyer
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Junel Sotolongo Bellón
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Mia Mönnig
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Boyue Sun
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Lin AE, Mesev EV, Toettcher JE, Ploss A. Engineered chimeric receptors for dissecting interferon signaling. J Virol 2024; 98:e0168023. [PMID: 39291974 PMCID: PMC11495025 DOI: 10.1128/jvi.01680-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Though interferons (IFNs) were once heralded as panaceas to numerous diseases, how cells decode varying IFN stimuli and subsequently produce (in)appropriate signaling remain unclear. Our labs recently engineered novel erythropoietin receptor-IFN chimeric receptors, and we highlight their utility in two cases uncovering differential genetic determinants of type I (IFN-α/β) and type III (IFN-λ) IFN signaling. These and other types of synthetic (cytokine) receptors could be expanded to real-time signaling dynamics and in vivo studies.
Collapse
Affiliation(s)
- Aaron E. Lin
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Emily V. Mesev
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Jared E. Toettcher
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
5
|
Ettich J, Wittich C, Moll JM, Behnke K, Floss DM, Reiners J, Christmann A, Lang PA, Smits SHJ, Kolmar H, Scheller J. Respiratory syncytial virus-approved mAb Palivizumab as ligand for anti-idiotype nanobody-based synthetic cytokine receptors. J Biol Chem 2023; 299:105270. [PMID: 37734558 PMCID: PMC10630626 DOI: 10.1016/j.jbc.2023.105270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Synthetic cytokine receptors can modulate cellular functions based on an artificial ligand to avoid off-target and/or unspecific effects. However, ligands that can modulate receptor activity so far have not been used clinically because of unknown toxicity and immunity against the ligands. Here, we developed a fully synthetic cytokine/cytokine receptor pair based on the antigen-binding domain of the respiratory syncytial virus-approved mAb Palivizumab as a synthetic cytokine and a set of anti-idiotype nanobodies (AIPVHH) as synthetic receptors. Importantly, Palivizumab is neither cross-reactive with human proteins nor immunogenic. For the synthetic receptors, AIPVHH were fused to the activating interleukin-6 cytokine receptor gp130 and the apoptosis-inducing receptor Fas. We found that the synthetic cytokine receptor AIPVHHgp130 was efficiently activated by dimeric Palivizumab single-chain variable fragments. In summary, we created an in vitro nonimmunogenic full-synthetic cytokine/cytokine receptor pair as a proof of concept for future in vivo therapeutic strategies utilizing nonphysiological targets during immunotherapy.
Collapse
Affiliation(s)
- Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; PROvendis GmbH, Muelheim an der Ruhr, Germany
| | - Kristina Behnke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jens Reiners
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Christmann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Philipp A Lang
- Institute of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Structural Studies, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany; Centre of Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
6
|
Minafra AR, Rafii P, Mossner S, Bazgir F, Floss DM, Moll JM, Scheller J. Synthetic receptor platform to identify loss-of-function single nucleotide variants and designed mutants in the death receptor Fas/CD95. J Biol Chem 2023; 299:104989. [PMID: 37392849 PMCID: PMC10413154 DOI: 10.1016/j.jbc.2023.104989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 07/03/2023] Open
Abstract
Synthetic biology has emerged as a useful technology for studying cytokine signal transduction. Recently, we described fully synthetic cytokine receptors to phenocopy trimeric receptors such as the death receptor Fas/CD95. Using a nanobody as an extracellular-binding domain for mCherry fused to the natural receptor's transmembrane and intracellular domain, trimeric mCherry ligands were able to induce cell death. Among the 17,889 single nucleotide variants in the SNP database for Fas, 337 represent missense mutations that functionally remained largely uncharacterized. Here, we developed a workflow for the Fas synthetic cytokine receptor system to functionally characterize missense SNPs within the transmembrane and intracellular domain of Fas. To validate our system, we selected five functionally assigned loss-of-function (LOF) polymorphisms and included 15 additional unassigned SNPs. Moreover, based on structural data, 15 gain-of-function or LOF candidate mutations were additionally selected. All 35 nucleotide variants were functionally investigated through cellular proliferation, apoptosis and caspases 3 and 7 cleavage assays. Collectively, our results showed that 30 variants resulted in partial or complete LOF, while five lead to a gain-of-function. In conclusion, we demonstrated that synthetic cytokine receptors are a suitable tool for functional SNPs/mutations characterization in a structured workflow.
Collapse
Affiliation(s)
- Anna Rita Minafra
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sofie Mossner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; PROvendis GmbH, Muelheim an der Ruhr, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
7
|
Zoellner N, Coesfeld N, De Vos FH, Denter J, Xu HC, Zimmer E, Knebel B, Al-Hasani H, Mossner S, Lang PA, Floss DM, Scheller J. Synthetic mimetics assigned a major role to IFNAR2 in type I interferon signaling. Front Microbiol 2022; 13:947169. [PMID: 36118237 PMCID: PMC9480868 DOI: 10.3389/fmicb.2022.947169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Type I interferons (IFNs) are potent inhibitors of viral replication. Here, we reformatted the natural murine and human type I interferon-α/β receptors IFNAR1 and IFNAR2 into fully synthetic biological switches. The transmembrane and intracellular domains of natural IFNAR1 and IFNAR2 were conserved, whereas the extracellular domains were exchanged by nanobodies directed against the fluorescent proteins Green fluorescent protein (GFP) and mCherry. Using this approach, multimeric single-binding GFP-mCherry ligands induced synthetic IFNAR1/IFNAR2 receptor complexes and initiated STAT1/2 mediated signal transduction via Jak1 and Tyk2. Homodimeric GFP and mCherry ligands showed that IFNAR2 but not IFNAR1 homodimers were sufficient to induce STAT1/2 signaling. Transcriptome analysis revealed that synthetic murine type I IFN signaling was highly comparable to IFNα4 signaling. Moreover, replication of vesicular stomatitis virus (VSV) in a cell culture-based viral infection model using MC57 cells was significantly inhibited after stimulation with synthetic ligands. Using intracellular deletion variants and point mutations, Y510 and Y335 in murine IFNAR2 were verified as unique phosphorylation sites for STAT1/2 activation, whereas the other tyrosine residues in IFNAR1 and IFNAR2 were not involved in STAT1/2 phosphorylation. Comparative analysis of synthetic human IFNARs supports this finding. In summary, our data showed that synthetic type I IFN signal transduction is originating from IFNAR2 rather than IFNAR1.
Collapse
Affiliation(s)
- Nele Zoellner
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Noémi Coesfeld
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Frederik Henry De Vos
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jennifer Denter
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Haifeng C. Xu
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Elena Zimmer
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Birgit Knebel
- Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hadi Al-Hasani
- Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sofie Mossner
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Philipp A. Lang
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M. Floss
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|