1
|
Goswami N, Anastasio MA, Popescu G. Quantitative phase imaging techniques for measuring scattering properties of cells and tissues: a review-part I. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S22713. [PMID: 39026612 PMCID: PMC11257415 DOI: 10.1117/1.jbo.29.s2.s22713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 07/20/2024]
Abstract
Significance Quantitative phase imaging (QPI) techniques offer intrinsic information about the sample of interest in a label-free, noninvasive manner and have an enormous potential for wide biomedical applications with negligible perturbations to the natural state of the sample in vitro. Aim We aim to present an in-depth review of the scattering formulation of light-matter interactions as applied to biological samples such as cells and tissues, discuss the relevant quantitative phase measurement techniques, and present a summary of various reported applications. Approach We start with scattering theory and scattering properties of biological samples followed by an exploration of various microscopy configurations for 2D QPI for measurement of structure and dynamics. Results We reviewed 157 publications and presented a range of QPI techniques and discussed suitable applications for each. We also presented the theoretical frameworks for phase reconstruction associated with the discussed techniques and highlighted their domains of validity. Conclusions We provide detailed theoretical as well as system-level information for a wide range of QPI techniques. Our study can serve as a guideline for new researchers looking for an exhaustive literature review of QPI methods and relevant applications.
Collapse
Affiliation(s)
- Neha Goswami
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
| | - Mark A. Anastasio
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Gabriel Popescu
- University of Illinois Urbana-Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| |
Collapse
|
2
|
Goswami N, Winston N, Choi W, Lai NZE, Arcanjo RB, Chen X, Sobh N, Nowak RA, Anastasio MA, Popescu G. EVATOM: an optical, label-free, machine learning assisted embryo health assessment tool. Commun Biol 2024; 7:268. [PMID: 38443460 PMCID: PMC10915136 DOI: 10.1038/s42003-024-05960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
The combination of a good quality embryo and proper maternal health factors promise higher chances of a successful in vitro fertilization (IVF) procedure leading to clinical pregnancy and live birth. Of these two factors, selection of a good embryo is a controllable aspect. The current gold standard in clinical practice is visual assessment of an embryo based on its morphological appearance by trained embryologists. More recently, machine learning has been incorporated into embryo selection "packages". Here, we report EVATOM: a machine-learning assisted embryo health assessment tool utilizing an optical quantitative phase imaging technique called artificial confocal microscopy (ACM). We present a label-free nucleus detection method with, to the best of our knowledge, novel quantitative embryo health biomarkers. Two viability assessment models are presented for grading embryos into two classes: healthy/intermediate (H/I) or sick (S) class. The models achieve a weighted F1 score of 1.0 and 0.99 respectively on the in-distribution test set of 72 fixed embryos and a weighted F1 score of 0.9 and 0.95 respectively on the out-of-distribution test dataset of 19 time-instances from 8 live embryos.
Collapse
Affiliation(s)
- Neha Goswami
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Beckman Institute of Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Nicola Winston
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Wonho Choi
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Nastasia Z E Lai
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rachel B Arcanjo
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Xi Chen
- Beckman Institute of Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14850, USA
| | - Nahil Sobh
- NCSA Center for Artificial Intelligence Innovation, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Mark A Anastasio
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Beckman Institute of Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Gabriel Popescu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute of Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
3
|
Goswami N, Winston N, Choi W, Lai NZE, Arcanjo RB, Chen X, Sobh N, Nowak RA, Anastasio MA, Popescu G. Machine learning assisted health viability assay for mouse embryos with artificial confocal microscopy (ACM). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.30.550591. [PMID: 37547014 PMCID: PMC10402120 DOI: 10.1101/2023.07.30.550591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The combination of a good quality embryo and proper maternal health factors promise higher chances of a successful in vitro fertilization (IVF) procedure leading to clinical pregnancy and live birth. Of these two factors, selection of a good embryo is a controllable aspect. The current gold standard in clinical practice is visual assessment of an embryo based on its morphological appearance by trained embryologists. More recently, machine learning has been incorporated into embryo selection "packages". Here, we report a machine-learning assisted embryo health assessment tool utilizing a quantitative phase imaging technique called artificial confocal microscopy (ACM). We present a label-free nucleus detection method with novel quantitative embryo health biomarkers. Two viability assessment models are presented for grading embryos into two classes: healthy/intermediate (H/I) or sick (S) class. The models achieve a weighted F1 score of 1.0 and 0.99 respectively on the in-distribution test set of 72 fixed embryos and a weighted F1 score of 0.9 and 0.95 respectively on the out-of-distribution test dataset of 19 time-instances from 8 live embryos.
Collapse
|