1
|
Schmid D, Neumann H. A model of thalamo-cortical interaction for incremental binding in mental contour-tracing. PLoS Comput Biol 2025; 21:e1012835. [PMID: 40338986 PMCID: PMC12061125 DOI: 10.1371/journal.pcbi.1012835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/29/2025] [Indexed: 05/10/2025] Open
Abstract
Object-basd visual attention marks a key process of mammalian perception. By which mechanisms this process is implemented and how it can be interacted with by means of attentional control is not completely understood yet. Incremental binding is a mechanism required in demanding scenarios of object-based attention and is experimentally well investigated. Attention spreads across a representation of the visual object and labels bound elements by constant up-modulation of neural activity. The speed of incremental binding was found to be dependent on the spatial arrangement of distracting elements in the scene and to be scale invariant giving rise to the growth-cone hypothesis. In this work, we propose a neural dynamical model of incremental binding that provides a mechanistic account for these findings. Through simulations, we investigate the model properties and demonstrate how an attentional spreading mechanism tags neurons that participate in the object binding process. They utilize Gestalt properties and eventually show growth-cone characteristics labeling perceptual items by delayed activity enhancement of neuronal firing rates. We discuss the algorithmic process underlying incremental binding and relate it to our model computations. This theoretical investigation encompasses complexity considerations and finds the model to be not only of explanatory value in terms of neurophysiological evidence, but also to be an efficient implementation of incremental binding striving to establish a normative account. By relating the connectivity motifs of the model to neuroanatomical evidence, we suggest thalamo-cortical interactions to be a likely candidate for the flexible and efficient realization suggested by the model. There, pyramidal cells are proposed to serve as the processors of incremental grouping information. Local bottom-up evidence about stimulus features is integrated via basal dendritic sites. It is combined with an apical signal consisting of contextual grouping information which is gated by attentional task-relevance selection mediated via higher-order thalamic representations.
Collapse
Affiliation(s)
- Daniel Schmid
- Institute for Neural Information Processing, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Heiko Neumann
- Institute for Neural Information Processing, Ulm University, Ulm, Baden-Württemberg, Germany
| |
Collapse
|
2
|
Florio TM. Emergent Aspects of the Integration of Sensory and Motor Functions. Brain Sci 2025; 15:162. [PMID: 40002495 PMCID: PMC11853489 DOI: 10.3390/brainsci15020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
This article delves into the intricate mechanisms underlying sensory integration in the executive control of movement, encompassing ideomotor activity, predictive capabilities, and motor control systems. It examines the interplay between motor and sensory functions, highlighting the role of the cortical and subcortical regions of the central nervous system in enhancing environmental interaction. The acquisition of motor skills, procedural memory, and the representation of actions in the brain are discussed emphasizing the significance of mental imagery and training in motor function. The development of this aspect of sensorimotor integration control can help to advance our understanding of the interactions between executive motor control, cortical mechanisms, and consciousness. Bridging theoretical insights with practical applications, it sets the stage for future innovations in clinical rehabilitation, assistive technology, and education. The ongoing exploration of these domains promises to uncover new pathways for enhancing human capability and well-being.
Collapse
Affiliation(s)
- Tiziana M Florio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
3
|
Bianco MG, Caligiuri ME, Calomino C, Bonacci MC, Aquila V, Buonocore J, Augimeri A, Sarica A, Vaccaro MG, Quattrone A, Quattrone A. Volumetric Assessment and Graph Theoretical Analysis of Thalamic Nuclei in Essential Tremor. Brain Behav 2025; 15:e70346. [PMID: 39972961 PMCID: PMC11839756 DOI: 10.1002/brb3.70346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/21/2025] Open
Abstract
INTRODUCTION Essential tremor (ET) is a neurological disorder primarily characterized by upper limb action tremor. It is widely recognized that the thalamus is implicated in ET pathophysiology, playing a central role in treatment approaches. This study aimed to explore thalamic morphology, assessing macrostructural changes and intrinsic thalamic networks in ET patients. METHODS A total of 109 ET (41 with and 68 without resting tremor) and 81 healthy controls (HC) were enrolled in the study. An automatic probabilistic segmentation of thalamic nuclei was employed on T1-weighted MRI images using FreeSurfer 7.4. Subsequently, volumetric data were extracted, and graph theoretical analysis was applied on the cortical-thalamic nuclei network, assessing global and local network properties. RESULTS No significant differences were observed in the volume of thalamic nuclei between ET patients and HC. ET patients exhibited significant alterations in the global thalamic network, suggesting a less efficient brain network in comparison with HC. ET patients also showed local alterations of thalamic network such as lower eccentricity and path length in the ventral nuclei and reduced efficiency in the pulvinar, indicating a less interconnected network. No significant differences were observed between ET patients with and without rest tremor. CONCLUSION Our study demonstrates reduced global and local efficiency of brain networks in ET patients, suggesting impaired communication and interconnection between brain regions. These findings confirm the involvement of the ventral lateral and pulvinar nuclei as key regions in tremor pathophysiology in ET patients, supporting the targeting of these regions for therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Camilla Calomino
- Neuroscience Research CenterMagna Graecia UniversityCatanzaroItaly
| | | | - Valerio Aquila
- Neuroscience Research CenterMagna Graecia UniversityCatanzaroItaly
| | - Jolanda Buonocore
- Neuroscience Research CenterMagna Graecia UniversityCatanzaroItaly
- Department of Medical and Surgical SciencesInstitute of NeurologyMagna Graecia UniversityCatanzaroItaly
| | | | - Alessia Sarica
- Neuroscience Research CenterMagna Graecia UniversityCatanzaroItaly
| | | | - Aldo Quattrone
- Neuroscience Research CenterMagna Graecia UniversityCatanzaroItaly
| | - Andrea Quattrone
- Neuroscience Research CenterMagna Graecia UniversityCatanzaroItaly
- Department of Medical and Surgical SciencesInstitute of NeurologyMagna Graecia UniversityCatanzaroItaly
| |
Collapse
|
4
|
Bagarinao E, Maesawa S, Kato S, Mutoh M, Ito Y, Ishizaki T, Tanei T, Tsuboi T, Suzuki M, Watanabe H, Hoshiyama M, Isoda H, Katsuno M, Sobue G, Saito R. Cerebellar and thalamic connector hubs facilitate the involvement of visual and cognitive networks in essential tremor. Parkinsonism Relat Disord 2024; 121:106034. [PMID: 38382401 DOI: 10.1016/j.parkreldis.2024.106034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
INTRODUCTION Connector hubs are specialized brain regions that connect multiple brain networks and therefore have the potential to affect the functions of multiple systems. This study aims to examine the involvement of connector hub regions in essential tremor. METHODS We examined whole-brain functional connectivity alterations across multiple brain networks in 27 patients with essential tremor and 27 age- and sex-matched healthy controls to identify affected hub regions using a network metric called functional connectivity overlap ratio estimated from resting-state functional MRI. We also evaluated the relationships of affected hubs with cognitive and tremor scores in all patients and with motor function improvement scores in 15 patients who underwent postoperative follow-up evaluations after focused ultrasound thalamotomy. RESULTS We have identified affected connector hubs in the cerebellum and thalamus. Specifically, the dentate nucleus in the cerebellum and the dorsomedial thalamus exhibited more extensive connections with the sensorimotor network in patients. Moreover, the connections of the thalamic pulvinar with the visual network were also significantly widespread in the patient group. The connections of these connector hub regions with cognitive networks were negatively associated (FDR q < 0.05) with cognitive, tremor, and motor function improvement scores. CONCLUSION In patients with essential tremor, connector hub regions within the cerebellum and thalamus exhibited widespread functional connections with sensorimotor and visual networks, leading to alternative pathways outside the classical tremor axis. Their connections with cognitive networks also affect patients' cognitive function.
Collapse
Affiliation(s)
- Epifanio Bagarinao
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan.
| | - Satoshi Maesawa
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan; Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Sachiko Kato
- Focused Ultrasound Therapy Center, Nagoya Kyoritsu Hospital, Nagoya, Aichi, Japan
| | - Manabu Mutoh
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yoshiki Ito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomotaka Ishizaki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takafumi Tanei
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takashi Tsuboi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masashi Suzuki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hirohisa Watanabe
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan; Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Minoru Hoshiyama
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| | - Haruo Isoda
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan
| | - Masahisa Katsuno
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan; Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan; Aichi Medical University, Nagakute, Aichi, Japan
| | - Ryuta Saito
- Brain and Mind Research Center, Nagoya University, Nagoya, Aichi, Japan; Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
5
|
Luo Z, Yin E, Zeng LL, Shen H, Su J, Peng L, Yan Y, Hu D. Frequency-specific segregation and integration of human cerebral cortex: An intrinsic functional atlas. iScience 2024; 27:109206. [PMID: 38439977 PMCID: PMC10910261 DOI: 10.1016/j.isci.2024.109206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/24/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
The cognitive and behavioral functions of the human brain are supported by its frequency multiplexing mechanism. However, there is limited understanding of the dynamics of the functional network topology. This study aims to investigate the frequency-specific topology of the functional human brain using 7T rs-fMRI data. Frequency-specific parcellations were first performed, revealing frequency-dependent dynamics within the frontoparietal control, parietal memory, and visual networks. An intrinsic functional atlas containing 456 parcels was proposed and validated using stereo-EEG. Graph theory analysis suggested that, in addition to the task-positive vs. task-negative organization observed in static networks, there was a cognitive control system additionally from a frequency perspective. The reproducibility and plausibility of the identified hub sets were confirmed through 3T fMRI analysis, and their artificial removal had distinct effects on network topology. These results indicate a more intricate and subtle dynamics of the functional human brain and emphasize the significance of accurate topography.
Collapse
Affiliation(s)
- Zhiguo Luo
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Erwei Yin
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Ling-Li Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Jianpo Su
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Limin Peng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Ye Yan
- Defense Innovation Institute, Academy of Military Sciences (AMS), Beijing 100071, China
- Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin 300450, China
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
| |
Collapse
|
6
|
Hirsch F, Wohlschlaeger A. Subcortical influences on the topology of cortical networks align with functional processing hierarchies. Neuroimage 2023; 283:120417. [PMID: 37866758 DOI: 10.1016/j.neuroimage.2023.120417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023] Open
Abstract
fMRI of the human brain reveals spatiotemporal patterns of functional connectivity (FC), forming distinct cortical networks. Lately, subcortical contributions to these configurations are receiving renewed interest, but investigations rarely focus explicitly on their effects on cortico-cortical FC. Here, we employ a straightforward multivariable approach and graph-theoretic tools to assess subcortical impact on topological features of cortical networks. Given recent evidence showing that structures like the thalamus and basal ganglia integrate input from multiple networks, we expect increased segregation between cortical networks after removal of subcortical effects on their FC patterns. We analyze resting state data of young and healthy participants (male and female; N = 100) from the human connectome project. We find that overall, the cortical network architecture becomes less segregated, and more integrated, when subcortical influences are accounted for. Underlying these global effects are the following trends: 'Transmodal' systems become more integrated with the rest of the network, while 'unimodal' networks show the opposite effect. For single nodes this hierarchical organization is reflected by a close correspondence with the spatial layout of the principal gradient of FC (Margulies et al., 2016). Lastly, we show that the limbic system is significantly less coherent with subcortical influences removed. The findings are validated in a (split-sample) replication dataset. Our results provide new insight regarding the interplay between subcortex and cortical networks, by putting the integrative impact of subcortex in the context of macroscale patterns of cortical organization.
Collapse
Affiliation(s)
- Fabian Hirsch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany.
| | - Afra Wohlschlaeger
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany
| |
Collapse
|
7
|
Horiike S, Nishi R, Maekawa T, Sagisaka T. [Simultanagnosia caused by cerebral infarction in the right temporal stem, right lateral thalamus, and right pulvinar regions]. Rinsho Shinkeigaku 2023; 63:643-649. [PMID: 37779025 DOI: 10.5692/clinicalneurol.cn-001846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
A 76-year-old male patient was admitted to our hospital for the treatment of acute cerebral infarction in the right temporal stem, right lateral thalamus, and right pulvinar regions. Although his overall cognitive function was almost normal, he exhibited reduced visual sensitivity in the homonymous lower left quadrant of the visual field, left unilateral spatial neglect (USN), and simultanagnosia. Left USN improved 4 months after the onset of infarction; however, simultanagnosia persisted. To the best of our knowledge, this is the first case of simultanagnosia caused by cerebral infarction in the right temporal stem, right lateral thalamus, and right pulvinar regions.
Collapse
|
8
|
Howell AM, Warrington S, Fonteneau C, Cho YT, Sotiropoulos SN, Murray JD, Anticevic A. The spatial extent of anatomical connections within the thalamus varies across the cortical hierarchy in humans and macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550168. [PMID: 37546767 PMCID: PMC10401924 DOI: 10.1101/2023.07.22.550168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Each cortical area has a distinct pattern of anatomical connections within the thalamus, a central subcortical structure composed of functionally and structurally distinct nuclei. Previous studies have suggested that certain cortical areas may have more extensive anatomical connections that target multiple thalamic nuclei, which potentially allows them to modulate distributed information flow. However, there is a lack of quantitative investigations into anatomical connectivity patterns within the thalamus. Consequently, it remains unknown if cortical areas exhibit systematic differences in the extent of their anatomical connections within the thalamus. To address this knowledge gap, we used diffusion magnetic resonance imaging (dMRI) to perform brain-wide probabilistic tractography for 828 healthy adults from the Human Connectome Project. We then developed a framework to quantify the spatial extent of each cortical area's anatomical connections within the thalamus. Additionally, we leveraged resting-state functional MRI, cortical myelin, and human neural gene expression data to test if the extent of anatomical connections within the thalamus varied along the cortical hierarchy. Our results revealed two distinct corticothalamic tractography motifs: 1) a sensorimotor cortical motif characterized by focal thalamic connections targeting posterolateral thalamus, associated with fast, feed-forward information flow; and 2) an associative cortical motif characterized by diffuse thalamic connections targeting anteromedial thalamus, associated with slow, feed-back information flow. These findings were consistent across human subjects and were also observed in macaques, indicating cross-species generalizability. Overall, our study demonstrates that sensorimotor and association cortical areas exhibit differences in the spatial extent of their anatomical connections within the thalamus, which may support functionally-distinct cortico-thalamic information flow.
Collapse
Affiliation(s)
- Amber M Howell
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Clara Fonteneau
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Youngsun T Cho
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
- Physics, Yale University, New Haven, Connecticut, 06511, USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
- Department of Psychology, Yale University, New Haven, Connecticut, 06511, USA
| |
Collapse
|
9
|
Shine JM, Lewis LD, Garrett DD, Hwang K. The impact of the human thalamus on brain-wide information processing. Nat Rev Neurosci 2023; 24:416-430. [PMID: 37237103 DOI: 10.1038/s41583-023-00701-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/28/2023]
Abstract
The thalamus is a small, bilateral structure in the diencephalon that integrates signals from many areas of the CNS. This critical anatomical position allows the thalamus to influence whole-brain activity and adaptive behaviour. However, traditional research paradigms have struggled to attribute specific functions to the thalamus, and it has remained understudied in the human neuroimaging literature. Recent advances in analytical techniques and increased accessibility to large, high-quality data sets have brought forth a series of studies and findings that (re-)establish the thalamus as a core region of interest in human cognitive neuroscience, a field that otherwise remains cortico-centric. In this Perspective, we argue that using whole-brain neuroimaging approaches to investigate the thalamus and its interaction with the rest of the brain is key for understanding systems-level control of information processing. To this end, we highlight the role of the thalamus in shaping a range of functional signatures, including evoked activity, interregional connectivity, network topology and neuronal variability, both at rest and during the performance of cognitive tasks.
Collapse
Affiliation(s)
- James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Kai Hwang
- Cognitive Control Collaborative, Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA.
- Department of Psychiatry, The University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
10
|
Altered structural and functional homotopic connectivity associated with the progression from mild cognitive impairment to Alzheimer's disease. Psychiatry Res 2023; 319:115000. [PMID: 36502711 DOI: 10.1016/j.psychres.2022.115000] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
The progressive mild cognitive impairment (pMCI) is associated with an increased risk of Alzheimer's disease (AD). Many studies have reported the disrupted brain alteration during the imminent conversion from pMCI to AD. However, the subtle difference of structural and functional of inter-hemispheric between pMCI and stable mild cognitive impairment (sMCI) remains unknown. In the present study, we scanned the multimodal magnetic resonance imaging of 38 sMCI, 26 pMCI, and 50 healthy controls (HC) and assessed the cognitive function. The voxel-mirrored homotopic connectivity (VMHC) and volume of corpus callosum were calculated. A structural equation modeling (SEM) was established to determine the relationships between the corpus callosum, the inter-hemispheric connectivity, and cognitive assessment. Compared to sMCI, pMCI exhibited decreased VMHC in insular and thalamus, and reduced volume of corpus callosum. SEM results showed that decreased inter-hemispheric connectivity was directly associated with cognitive impairment and corpus callosum atrophy, and corpus callosum atrophy indirectly caused cognitive impairment by mediating inter-hemispheric connectivity in pMCI. In conclusion, the destruction of homotopic connectivity is related to cognitive impairment, and the corpus callosum atrophy partially mediates the association between the homotopic connectivity and cognitive impairment in pMCI.
Collapse
|
11
|
Bernhard H, Schaper FLWVJ, Janssen MLF, Gommer ED, Jansma BM, Van Kranen-Mastenbroek V, Rouhl RPW, de Weerd P, Reithler J, Roberts MJ. Spatiotemporal patterns of sleep spindle activity in human anterior thalamus and cortex. Neuroimage 2022; 263:119625. [PMID: 36103955 DOI: 10.1016/j.neuroimage.2022.119625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/28/2022] [Accepted: 09/10/2022] [Indexed: 11/24/2022] Open
Abstract
Sleep spindles (8 - 16 Hz) are transient electrophysiological events during non-rapid eye movement sleep. While sleep spindles are routinely observed in the cortex using scalp electroencephalography (EEG), recordings of their thalamic counterparts have not been widely studied in humans. Based on a few existing studies, it has been hypothesized that spindles occur as largely local phenomena. We investigated intra-thalamic and thalamocortical spindle co-occurrence, which may underlie thalamocortical communication. We obtained scalp EEG and thalamic recordings from 7 patients that received bilateral deep brain stimulation (DBS) electrodes to the anterior thalamus for the treatment of drug resistant focal epilepsy. Spindles were categorized into subtypes based on their main frequency (i.e., slow (10±2 Hz) or fast (14±2 Hz)) and their level of thalamic involvement (spanning one channel, or spreading uni- or bilaterally within the thalamus). For the first time, we contrasted observed spindle patterns with permuted data to estimate random spindle co-occurrence. We found that multichannel spindle patterns were systematically coordinated at the thalamic and thalamocortical level. Importantly, distinct topographical patterns of thalamocortical spindle overlap were associated with slow and fast subtypes of spindles. These observations provide further evidence for coordinated spindle activity in thalamocortical networks.
Collapse
Affiliation(s)
- Hannah Bernhard
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Centre for Integrative Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Frederic L W V J Schaper
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's hospital, Harvard Medical School, Boston, United States
| | - Marcus L F Janssen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Erik D Gommer
- Academic Center for Epileptology Kempenhaeghe/MUMC+ Maastricht and Heeze, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Bernadette M Jansma
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, the Netherlands
| | - Vivianne Van Kranen-Mastenbroek
- Academic Center for Epileptology Kempenhaeghe/MUMC+ Maastricht and Heeze, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Rob P W Rouhl
- Department of Neurology, Maastricht University Medical Center, Maastricht, the Netherlands; Academic Center for Epileptology Kempenhaeghe/MUMC+ Maastricht and Heeze, the Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Peter de Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, the Netherlands
| | - Joel Reithler
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, the Netherlands
| | - Mark J Roberts
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
12
|
Bagarinao E, Kawabata K, Watanabe H, Hara K, Ohdake R, Ogura A, Masuda M, Kato T, Maesawa S, Katsuno M, Sobue G. Connectivity impairment of cerebellar and sensorimotor connector hubs in Parkinson’s disease. Brain Commun 2022; 4:fcac214. [PMID: 36072644 PMCID: PMC9438962 DOI: 10.1093/braincomms/fcac214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/25/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Cognitive and movement processes involved integration of several large-scale brain networks. Central to these integrative processes are connector hubs, brain regions characterized by strong connections with multiple networks. Growing evidence suggests that many neurodegenerative and psychiatric disorders are associated with connector hub dysfunctions. Using a network metric called functional connectivity overlap ratio, we investigated connector hub alterations in Parkinson’s disease. Resting-state functional MRI data from 99 patients (male/female = 44/55) and 99 age- and sex-matched healthy controls (male/female = 39/60) participating in our cross-sectional study were used in the analysis. We have identified two sets of connector hubs, mainly located in the sensorimotor cortex and cerebellum, with significant connectivity alterations with multiple resting-state networks. Sensorimotor connector hubs have impaired connections primarily with primary processing (sensorimotor, visual), visuospatial, and basal ganglia networks, whereas cerebellar connector hubs have impaired connections with basal ganglia and executive control networks. These connectivity alterations correlated with patients’ motor symptoms. Specifically, values of the functional connectivity overlap ratio of the cerebellar connector hubs were associated with tremor score, whereas that of the sensorimotor connector hubs with postural instability and gait disturbance score, suggesting potential association of each set of connector hubs with the disorder’s two predominant forms, the akinesia/rigidity and resting tremor subtypes. In addition, values of the functional connectivity overlap ratio of the sensorimotor connector hubs were highly predictive in classifying patients from controls with an accuracy of 75.76%. These findings suggest that, together with the basal ganglia, cerebellar and sensorimotor connector hubs are significantly involved in Parkinson’s disease with their connectivity dysfunction potentially driving the clinical manifestations typically observed in this disorder.
Collapse
Affiliation(s)
- Epifanio Bagarinao
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 461–8673 Japan
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
| | - Kazuya Kawabata
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Hirohisa Watanabe
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
- Department of Neurology, Fujita Health University School of Medicine , Toyoake, Aichi, 470-1192 Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Reiko Ohdake
- Department of Neurology, Fujita Health University School of Medicine , Toyoake, Aichi, 470-1192 Japan
| | - Aya Ogura
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Satoshi Maesawa
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurosurgery, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Gen Sobue
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Aichi Medical University , Nagakute, Aichi, 480-1195 Japan
| |
Collapse
|
13
|
Kawabata K, Bagarinao E, Watanabe H, Maesawa S, Mori D, Hara K, Ohdake R, Masuda M, Ogura A, Kato T, Koyama S, Katsuno M, Wakabayashi T, Kuzuya M, Hoshiyama M, Isoda H, Naganawa S, Ozaki N, Sobue G. Functional connector hubs in the cerebellum. Neuroimage 2022; 257:119263. [PMID: 35500805 DOI: 10.1016/j.neuroimage.2022.119263] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 01/11/2023] Open
Abstract
Accumulating evidence from anatomical and neuroimaging studies suggests that the cerebellum is engaged in a variety of motor and cognitive tasks. Given its various functions, a key question is whether the cerebellum also plays an important role in the brain's integrative functions. Here, we hypothesize the existence of connector regions, also known as connector hubs, where multiple resting state networks converged in the cerebellum. To verify this, we employed a recently developed voxel-level network measure called functional connectivity overlap ratio (FCOR), which could be used to quantify the spatial extent of a region's connection to several large-scale cortical networks. Using resting state functional MRI data from 101 healthy participants, cerebellar FCOR maps were constructed and used to identify the locations of connector hubs in the cerebellum. Results showed that a number of cerebellar regions exhibited strong connectivity with multiple functional networks, verifying our hypothesis. These highly connected regions were located in the posterior cerebellum, especially in lobules VI, VII, and IX, and mainly connected to the core neurocognitive networks such as default mode and executive control networks. Regions associated with the sensorimotor network were also localized in lobule V, VI, and VIII, albeit in small clusters. These cerebellar connector hubs may play an essential role in the processing of information across the core neurocognitive networks.
Collapse
Affiliation(s)
- Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Neurology, Medical University of Innsbruck, Austria.
| | - Epifanio Bagarinao
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Satoshi Maesawa
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Daisuke Mori
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Reiko Ohdake
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Neurology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Shuji Koyama
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masafumi Kuzuya
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine and Institutes of Innovation for Future Society, Nagoya, Aichi, Japan
| | - Minoru Hoshiyama
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Haruo Isoda
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Norio Ozaki
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan; Aichi Medical University, Nagakute, Japan.
| |
Collapse
|