1
|
Franklin R, Zhang B, Frazier J, Chen M, Do BT, Padayao S, Wu K, Vander Heiden MG, Vakoc CR, Roe JS, Ninova M, Murn J, Sykes DB, Cheloufi S. Histone chaperones coupled to DNA replication and transcription control divergent chromatin elements to maintain cell fate. Genes Dev 2025; 39:652-675. [PMID: 40240143 DOI: 10.1101/gad.352316.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025]
Abstract
The manipulation of DNA replication and transcription can be harnessed to control cell fate. Central to the regulation of these DNA-templated processes are histone chaperones, which in turn are emerging as cell fate regulators. Histone chaperones are a group of proteins with diverse functions that are primarily involved in escorting histones to assemble nucleosomes and maintain the chromatin landscape. Whether distinct histone chaperone pathways control cell fate and whether they function using related mechanisms remain unclear. To address this, we performed a screen to assess the requirement of diverse histone chaperones in the self-renewal of hematopoietic stem and progenitor cells. Remarkably, all candidates were required to maintain cell fate to differing extents, with no clear correlation with their specific histone partners or DNA-templated process. Among all the histone chaperones, the loss of the transcription-coupled histone chaperone SPT6 most strongly promoted differentiation, even more than the major replication-coupled chromatin assembly factor complex CAF-1. To directly compare how DNA replication- and transcription-coupled histone chaperones maintain stem cell self-renewal, we generated an isogenic dual-inducible system to perturb each pathway individually. We found that SPT6 and CAF-1 perturbations required cell division to induce differentiation but had distinct effects on cell cycle progression, chromatin accessibility, and lineage choice. CAF-1 depletion led to S-phase accumulation, increased heterochromatic accessibility (particularly at H3K27me3 sites), and aberrant multilineage gene expression. In contrast, SPT6 loss triggered cell cycle arrest, altered accessibility at promoter elements, and drove lineage-specific differentiation, which is in part influenced by AP-1 transcription factors. Thus, CAF-1 and SPT6 histone chaperones maintain cell fate through distinct mechanisms, highlighting how different chromatin assembly pathways can be leveraged to alter cell fate.
Collapse
Affiliation(s)
- Reuben Franklin
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
- Stem Cell Center, University of California Riverside, Riverside, California 92521, USA
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, California 92521, USA
| | - Brian Zhang
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
- Stem Cell Center, University of California Riverside, Riverside, California 92521, USA
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, California 92521, USA
| | - Jonah Frazier
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
- Stem Cell Center, University of California Riverside, Riverside, California 92521, USA
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, California 92521, USA
| | - Meijuan Chen
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
- Stem Cell Center, University of California Riverside, Riverside, California 92521, USA
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, California 92521, USA
| | - Brian T Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sally Padayao
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
- Stem Cell Center, University of California Riverside, Riverside, California 92521, USA
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, California 92521, USA
| | - Kun Wu
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, California 92521, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusets 02142, USA
| | | | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Maria Ninova
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, California 92521, USA
| | - Jernej Murn
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA
- Stem Cell Center, University of California Riverside, Riverside, California 92521, USA
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, California 92521, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Sihem Cheloufi
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA;
- Stem Cell Center, University of California Riverside, Riverside, California 92521, USA
- Center for RNA Biology and Medicine, University of California Riverside, Riverside, California 92521, USA
| |
Collapse
|
2
|
Miller CLW, Warner JL, Winston F. Insights into Spt6: a histone chaperone that functions in transcription, DNA replication, and genome stability. Trends Genet 2023; 39:858-872. [PMID: 37481442 PMCID: PMC10592469 DOI: 10.1016/j.tig.2023.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Transcription elongation requires elaborate coordination between the transcriptional machinery and chromatin regulatory factors to successfully produce RNA while preserving the epigenetic landscape. Recent structural and genomic studies have highlighted that suppressor of Ty 6 (Spt6), a conserved histone chaperone and transcription elongation factor, sits at the crux of the transcription elongation process. Other recent studies have revealed that Spt6 also promotes DNA replication and genome integrity. Here, we review recent studies of Spt6 that have provided new insights into the mechanisms by which Spt6 controls transcription and have revealed the breadth of Spt6 functions in eukaryotic cells.
Collapse
Affiliation(s)
- Catherine L W Miller
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Genome Maintenance, Rockefeller University, New York, NY 10065, USA
| | - James L Warner
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Miller CLW, Winston F. The conserved histone chaperone Spt6 is strongly required for DNA replication and genome stability. Cell Rep 2023; 42:112264. [PMID: 36924499 PMCID: PMC10106089 DOI: 10.1016/j.celrep.2023.112264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/31/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Histone chaperones are an important class of proteins that regulate chromatin accessibility for DNA-templated processes. Spt6 is a conserved histone chaperone and key regulator of transcription and chromatin structure. However, its functions outside of these roles have been little explored. In this work, we demonstrate a requirement for S. cerevisiae Spt6 in DNA replication and, more broadly, as a regulator of genome stability. Depletion or mutation of Spt6 impairs DNA replication in vivo. Additionally, spt6 mutants are sensitive to DNA replication stress-inducing agents. Interestingly, this sensitivity is independent of the association of Spt6 with RNA polymerase II (RNAPII), suggesting that spt6 mutants have a transcription-independent impairment of DNA replication. Specifically, genomic studies reveal that spt6 mutants have decreased loading of the MCM replicative helicase at replication origins, suggesting that Spt6 promotes origin licensing. Our results identify Spt6 as a regulator of genome stability, at least in part through a role in DNA replication.
Collapse
Affiliation(s)
- Catherine L W Miller
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Fred Winston
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Ghosh P, Campos VJ, Vo DT, Guccione C, Goheen-Holland V, Tindle C, Mazzini GS, He Y, Alexandrov LB, Lippman SM, Gurski RR, Das S, Yadlapati R, Curtius K, Sahoo D. AI-assisted discovery of an ethnicity-influenced driver of cell transformation in esophageal and gastroesophageal junction adenocarcinomas. JCI Insight 2022; 7:e161334. [PMID: 36134663 PMCID: PMC9675486 DOI: 10.1172/jci.insight.161334] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Although Barrett's metaplasia of the esophagus (BE) is the only known precursor lesion to esophageal adenocarcinomas (EACs), drivers of cellular transformation in BE remain incompletely understood. We use an artificial intelligence-guided network approach to study EAC initiation and progression. Key predictions are subsequently validated in a human organoid model, in patient-derived biopsy specimens of BE, a case-control study of genomics of BE progression, and in a cross-sectional study of 113 patients with BE and EACs. Our model classified healthy esophagus from BE and BE from EACs in several publicly available gene expression data sets (n = 932 samples). The model confirmed that all EACs must originate from BE and pinpointed a CXCL8/IL8↔neutrophil immune microenvironment as a driver of cellular transformation in EACs and gastroesophageal junction adenocarcinomas. This driver is prominent in White individuals but is notably absent in African Americans (AAs). Network-derived gene signatures, independent signatures of neutrophil processes, CXCL8/IL8 expression, and an absolute neutrophil count (ANC) are associated with risk of progression. SNPs associated with changes in ANC by ethnicity (e.g., benign ethnic neutropenia [BEN]) modify that risk. Findings define a racially influenced immunological basis for cell transformation and suggest that BEN in AAs may be a deterrent to BE→EAC progression.
Collapse
Affiliation(s)
- Pradipta Ghosh
- Department of Cellular and Molecular Medicine
- Department of Medicine
- HUMANOID Center of Research Excellence, and
- Moores Comprehensive Cancer Center, UCSD, La Jolla, California, USA
| | - Vinicius J. Campos
- Department of Gastrointestinal Surgery, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Caitlin Guccione
- Division of Biomedical Informatics, UCSD, La Jolla, California, USA
| | - Vanae Goheen-Holland
- Department of Cellular and Molecular Medicine
- HUMANOID Center of Research Excellence, and
| | - Courtney Tindle
- Department of Cellular and Molecular Medicine
- HUMANOID Center of Research Excellence, and
| | - Guilherme S. Mazzini
- Department of Gastrointestinal Surgery, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Surgical Scienceas, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Yudou He
- Department of Cellular and Molecular Medicine
- Moores Comprehensive Cancer Center, UCSD, La Jolla, California, USA
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine
- Moores Comprehensive Cancer Center, UCSD, La Jolla, California, USA
| | - Scott M. Lippman
- Department of Medicine
- Moores Comprehensive Cancer Center, UCSD, La Jolla, California, USA
| | - Richard R. Gurski
- Department of Gastrointestinal Surgery, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Surgical Scienceas, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Medical School of Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Soumita Das
- HUMANOID Center of Research Excellence, and
- Department of Pathology and
| | | | - Kit Curtius
- Department of Medicine
- Moores Comprehensive Cancer Center, UCSD, La Jolla, California, USA
- Division of Biomedical Informatics, UCSD, La Jolla, California, USA
| | - Debashis Sahoo
- Moores Comprehensive Cancer Center, UCSD, La Jolla, California, USA
- Department of Pediatrics and
- Department of Computer Science and Engineering, Jacob’s School of Engineering, UCSD, California, La Jolla, USA
| |
Collapse
|