1
|
Bafna A, Banks G, Vasilyev V, Dallmann R, Hastings MH, Nolan PM. Zinc finger homeobox-3 (ZFHX3) orchestrates genome-wide daily gene expression in the suprachiasmatic nucleus. eLife 2025; 14:RP102019. [PMID: 40117332 PMCID: PMC11928027 DOI: 10.7554/elife.102019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
The mammalian suprachiasmatic nucleus (SCN), situated in the ventral hypothalamus, directs daily cellular and physiological rhythms across the body. The SCN clockwork is a self-sustaining transcriptional-translational feedback loop (TTFL) that in turn coordinates the expression of clock-controlled genes (CCGs) directing circadian programmes of SCN cellular activity. In the mouse, the transcription factor, ZFHX3 (zinc finger homeobox-3), is necessary for the development of the SCN and influences circadian behaviour in the adult. The molecular mechanisms by which ZFHX3 affects the SCN at transcriptomic and genomic levels are, however, poorly defined. Here, we used chromatin immunoprecipitation sequencing to map the genomic localization of ZFHX3-binding sites in SCN chromatin. To test for function, we then conducted comprehensive RNA sequencing at six distinct times-of-day to compare the SCN transcriptional profiles of control and ZFHX3-conditional null mutants. We show that the genome-wide occupancy of ZFHX3 occurs predominantly around gene transcription start sites, co-localizing with known histone modifications, and preferentially partnering with clock transcription factors (CLOCK, BMAL1) to regulate clock gene(s) transcription. Correspondingly, we show that the conditional loss of ZFHX3 in the adult has a dramatic effect on the SCN transcriptome, including changes in the levels of transcripts encoding elements of numerous neuropeptide neurotransmitter systems while attenuating the daily oscillation of the clock TF Bmal1. Furthermore, various TTFL genes and CCGs exhibited altered circadian expression profiles, consistent with an advanced in daily behavioural rhythms under 12 h light-12 h dark conditions. Together, these findings reveal the extensive genome-wide regulation mediated by ZFHX3 in the central clock that orchestrates daily timekeeping in mammals.
Collapse
Affiliation(s)
- Akanksha Bafna
- Medical Research Council, Harwell Science CampusDidcotUnited Kingdom
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordshireUnited Kingdom
| | - Gareth Banks
- Medical Research Council, Harwell Science CampusDidcotUnited Kingdom
- Nottingham Trent UniversityNottinghamUnited Kingdom
| | - Vadim Vasilyev
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of WarwickCoventryUnited Kingdom
| | | | - Patrick M Nolan
- Medical Research Council, Harwell Science CampusDidcotUnited Kingdom
| |
Collapse
|
2
|
Ono D, Weaver DR, Hastings MH, Honma KI, Honma S, Silver R. The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward. J Biol Rhythms 2024; 39:135-165. [PMID: 38366616 PMCID: PMC7615910 DOI: 10.1177/07487304231225706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
It has been 50 years since the suprachiasmatic nucleus (SCN) was first identified as the central circadian clock and 25 years since the last overview of developments in the field was published in the Journal of Biological Rhythms. Here, we explore new mechanisms and concepts that have emerged in the subsequent 25 years. Since 1997, methodological developments, such as luminescent and fluorescent reporter techniques, have revealed intricate relationships between cellular and network-level mechanisms. In particular, specific neuropeptides such as arginine vasopressin, vasoactive intestinal peptide, and gastrin-releasing peptide have been identified as key players in the synchronization of cellular circadian rhythms within the SCN. The discovery of multiple oscillators governing behavioral and physiological rhythms has significantly advanced our understanding of the circadian clock. The interaction between neurons and glial cells has been found to play a crucial role in regulating these circadian rhythms within the SCN. Furthermore, the properties of the SCN network vary across ontogenetic stages. The application of cell type-specific genetic manipulations has revealed components of the functional input-output system of the SCN and their correlation with physiological functions. This review concludes with the high-risk effort of identifying open questions and challenges that lie ahead.
Collapse
Affiliation(s)
- Daisuke Ono
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - David R Weaver
- Department of Neurobiology and NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ken-Ichi Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Center for Sleep and Circadian Rhythm Disorders, Sapporo Hanazono Hospital, Sapporo, Japan
| | - Sato Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Center for Sleep and Circadian Rhythm Disorders, Sapporo Hanazono Hospital, Sapporo, Japan
| | - Rae Silver
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neuroscience & Behavior, Barnard College and Department of Psychology, Columbia University, New York City, New York, USA
| |
Collapse
|
3
|
Elberling F, Spulber S, Bose R, Keung HY, Ahola V, Zheng Z, Ceccatelli S. Sex Differences in Long-term Outcome of Prenatal Exposure to Excess Glucocorticoids-Implications for Development of Psychiatric Disorders. Mol Neurobiol 2023; 60:7346-7361. [PMID: 37561236 PMCID: PMC10657788 DOI: 10.1007/s12035-023-03522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
Exposure to prenatal insults, such as excess glucocorticoids (GC), may lead to pathological outcomes, including neuropsychiatric disorders. The aim of the present study was to investigate the long-term effects of in utero exposure to the synthetic GC analog dexamethasone (Dex) in adult female offspring. We monitored spontaneous activity in the home cage under a constant 12 h/12 h light/dark cycle, as well as the changes following a 6-h advance of dark onset (phase shift). For comparison, we re-analysed data previously recorded in males. Dex-exposed females were spontaneously more active, and the activity onset re-entrained slower than in controls. In contrast, Dex-exposed males were less active, and the activity onset re-entrained faster than in controls. Following the phase shift, control females displayed a transient reorganisation of behaviour in light and virtually no change in dark, while Dex-exposed females showed limited variations from baseline in both light and dark, suggesting weaker photic entrainment. Next, we ran bulk RNA-sequencing in the suprachiasmatic nucleus (SCN) of Dex and control females. SPIA pathway analysis of ~ 2300 differentially expressed genes identified significantly downregulated dopamine signalling, and upregulated glutamate and GABA signalling. We selected a set of candidate genes matching the behaviour alterations and found consistent differential regulation for ~ 73% of tested genes in SCN and hippocampus tissue samples. Taken together, our data highlight sex differences in the outcome of prenatal exposure to excess GC in adult mice: in contrast to depression-like behaviour in males, the phenotype in females, defined by behaviour and differential gene expression, is consistent with ADHD models.
Collapse
Affiliation(s)
- Frederik Elberling
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden.
| | - Raj Bose
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Hoi Yee Keung
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 15W Science and Technology W Ave, Sha Tin, Hong Kong Special Administrative Region, People's Republic of China
| | - Virpi Ahola
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 15W Science and Technology W Ave, Sha Tin, Hong Kong Special Administrative Region, People's Republic of China
| | - Zongli Zheng
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 15W Science and Technology W Ave, Sha Tin, Hong Kong Special Administrative Region, People's Republic of China
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| |
Collapse
|
4
|
Nolan PM, Banks G, Bourbia N, Wilcox AG, Bentley L, Moir L, Kent L, Hillier R, Wilson D, Barrett P, Dumbell R. A missense mutation in zinc finger homeobox-3 (ZFHX3) impedes growth and alters metabolism and hypothalamic gene expression in mice. FASEB J 2023; 37:e23189. [PMID: 37713040 PMCID: PMC7615594 DOI: 10.1096/fj.202201829r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/07/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
A protein altering variant in the gene encoding zinc finger homeobox-3 (ZFHX3) has recently been associated with lower BMI in a human genome-wide association study. We investigated metabolic parameters in mice harboring a missense mutation in Zfhx3 (Zfhx3Sci/+ ) and looked for altered in situ expression of transcripts that are associated with energy balance in the hypothalamus to understand how ZFHX3 may influence growth and metabolic effects. One-year-old male and female Zfhx3Sci/+ mice weighed less, had shorter body length, lower fat mass, smaller mesenteric fat depots, and lower circulating insulin, leptin, and insulin-like growth factor-1 (IGF1) concentrations than Zfhx3+/+ littermates. In a second cohort of 9-20-week-old males and females, Zfhx3Sci/+ mice ate less than wildtype controls, in proportion to body weight. In a third cohort of female-only Zfhx3Sci/+ and Zfhx3+/+ mice that underwent metabolic phenotyping from 6 to 14 weeks old, Zfhx3Sci/+ mice weighed less and had lower lean mass and energy expenditure, but fat mass did not differ. We detected increased expression of somatostatin and decreased expression of growth hormone-releasing hormone and growth hormone-receptor mRNAs in the arcuate nucleus (ARC). Similarly, ARC expression of orexigenic neuropeptide Y was decreased and ventricular ependymal expression of orphan G protein-coupled receptor Gpr50 was decreased. We demonstrate for the first time an energy balance effect of the Zfhx3Sci mutation, likely by altering expression of key ARC neuropeptides to alter growth, food intake, and energy expenditure.
Collapse
Affiliation(s)
- Patrick M Nolan
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Oxfordshire, UK
| | - Gareth Banks
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Oxfordshire, UK
- Nottingham Trent University, School of Science and Technology, Nottingham, UK
| | - Nora Bourbia
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Oxfordshire, UK
| | - Ashleigh G Wilcox
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Oxfordshire, UK
| | - Liz Bentley
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Oxfordshire, UK
| | - Lee Moir
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Oxfordshire, UK
| | - Lee Kent
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Oxfordshire, UK
| | - Rosie Hillier
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Oxfordshire, UK
| | - Dana Wilson
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Perry Barrett
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Rebecca Dumbell
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Oxfordshire, UK
- Nottingham Trent University, School of Science and Technology, Nottingham, UK
| |
Collapse
|
5
|
Senesi P, Ferrulli A, Luzi L, Terruzzi I. Chrono-communication and cardiometabolic health: The intrinsic relationship and therapeutic nutritional promises. Front Endocrinol (Lausanne) 2022; 13:975509. [PMID: 36176473 PMCID: PMC9513421 DOI: 10.3389/fendo.2022.975509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Circadian rhythm, an innate 24-h biological clock, regulates several mammalian physiological activities anticipating daily environmental variations and optimizing available energetic resources. The circadian machinery is a complex neuronal and endocrinological network primarily organized into a central clock, suprachiasmatic nucleus (SCN), and peripheral clocks. Several small molecules generate daily circadian fluctuations ensuring inter-organ communication and coordination between external stimuli, i.e., light, food, and exercise, and body metabolism. As an orchestra, this complex network can be out of tone. Circadian disruption is often associated with obesity development and, above all, with diabetes and cardiovascular disease onset. Moreover, accumulating data highlight a bidirectional relationship between circadian misalignment and cardiometabolic disease severity. Food intake abnormalities, especially timing and composition of meal, are crucial cause of circadian disruption, but evidence from preclinical and clinical studies has shown that food could represent a unique therapeutic approach to promote circadian resynchronization. In this review, we briefly summarize the structure of circadian system and discuss the role playing by different molecules [from leptin to ghrelin, incretins, fibroblast growth factor 21 (FGF-21), growth differentiation factor 15 (GDF15)] to guarantee circadian homeostasis. Based on the recent data, we discuss the innovative nutritional interventions aimed at circadian re-synchronization and, consequently, improvement of cardiometabolic health.
Collapse
Affiliation(s)
- Pamela Senesi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Anna Ferrulli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
| | - Ileana Terruzzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
- *Correspondence: Ileana Terruzzi,
| |
Collapse
|