1
|
Skóra B, Szychowski KA. Proteostasis and autophagy disruption by the aging-related VGVAPG hexapeptide - preliminary insights into a potential novel elastin-induced neurodegeneration pathway in an in vitro human cellular neuron model. Neurochem Int 2025; 187:105992. [PMID: 40348194 DOI: 10.1016/j.neuint.2025.105992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
The hexapeptide Val-Gly-Val-Ala-Pro-Gly (VGVAPG) is the most readily released product of elastin degradation, a process closely associated with aging. Recent studies have demonstrated the ability of this peptide to upregulate Sirtuin 2 (SIRT2) mRNA and protein expression. The correlation between HRD1 ligase (Synoviolin 1) and the degradation of SIRT2 has been previously reported in the literature. This study aimed to explore the impact of VGVAPG-induced interaction between HRD1 and SIRT2 and its effects on autophagy in differentiated SH-SY5Y cells in vitro (a simplified model of neurons). The results revealed that VGVAPG decreases HRD1 mRNA and protein expression while correlating with SIRT2 overexpression. Further analysis showed reduced SEL1L protein levels and an increase in p97/VCP protein expression. Additionally, enhanced phosphorylation of IRE1α indicated induction of ER stress in the tested cell model without affecting mTOR. Decreased proteasome activity and accumulation of ubiquitin were also noted. This phenomenon triggered VGVAPG-induced autophagy, as evidenced by increased expression of autophagy-related proteins ATG16L1, ATG5, ATG18, and FIP200. However, autophagy was suppressed probably as a result of VGVAPG-induced phosphorylation of ERK1/2. These findings demonstrate that the aging-related hexapeptide VGVAPG downregulates the function of the SEL1L-HRD1 complex, leading to SIRT2 accumulation and subsequent ER stress due to ERAD and UPS. This cascade, in turn, activates autophagy as an alternative clearance pathway aimed at restoring proteostasis; however, the process becomes dysregulated, leading to persistent ER stress. This dual effect may have significant implications in neurobiology, given the well-established correlation between autophagy impairment and aging-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, St. Sucharskiego 2, 35 -225, Rzeszów, Poland.
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, St. Sucharskiego 2, 35 -225, Rzeszów, Poland
| |
Collapse
|
2
|
Zhao Z, Chen Q, Xiang X, Dai W, Fang W, Cui K, Li B, Liu Q, Liu Y, Shen Y, Li Y, Xu W, Mai K, Ai Q. Tip60-mediated Rheb acetylation links palmitic acid with mTORC1 activation and insulin resistance. J Cell Biol 2024; 223:e202309090. [PMID: 39422647 PMCID: PMC11489267 DOI: 10.1083/jcb.202309090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Excess dietary intake of saturated fatty acids (SFAs) induces glucose intolerance and metabolic disorders. In contrast, unsaturated fatty acids (UFAs) elicit beneficial effects on insulin sensitivity. However, it remains elusive how SFAs and UFAs signal differentially toward insulin signaling to influence glucose homeostasis. Here, using a croaker model, we report that dietary palmitic acid (PA), but not oleic acid or linoleic acid, leads to dysregulation of mTORC1, which provokes systemic insulin resistance. Mechanistically, we show that PA profoundly elevates acetyl-CoA derived from mitochondrial fatty acid β oxidation to intensify Tip60-mediated Rheb acetylation, which triggers mTORC1 activation by promoting the interaction between Rheb and FKBPs. Subsequently, hyperactivation of mTORC1 enhances IRS1 serine phosphorylation and inhibits TFEB-mediated IRS1 transcription, inducing impairment of insulin signaling. Collectively, our results reveal a conserved molecular insight into the mechanism by which Tip60-mediated Rheb acetylation induces mTORC1 activation and insulin resistance under the PA condition, which may provide therapeutic avenues to intervene in the development of T2D.
Collapse
Affiliation(s)
- Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Qiang Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Weiwei Dai
- Department of Biological Science, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Wei Fang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Baolin Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yanan Shen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| |
Collapse
|
3
|
Elsherbiny NM, Abdel-Maksoud MS, Prabahar K, Mohammedsaleh ZM, Badr OAM, Dessouky AA, Salem HA, Refadah OA, Farid AS, Shamaa AA, Ebrahim N. MSCs-derived EVs protect against chemotherapy-induced ovarian toxicity: role of PI3K/AKT/mTOR axis. J Ovarian Res 2024; 17:222. [PMID: 39529187 PMCID: PMC11552115 DOI: 10.1186/s13048-024-01545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Chemotherapy detrimentally impacts fertility via depletion of follicular reserves in the ovaries leading to ovarian failure (OF) and development of estrogen deficiency-related complications. The currently proposed options to preserve fertility such as Oocyte or ovarian cortex cryopreservation are faced with many technical obstacles that limit their effective implementation. Therefore, developing new modalities to protect ovarian function remains a pending target. Exosomes are nano-sized cell-derived extracellular vesicles (EVs) with documented efficacy in the field of regenerative medicine. The current study sought to determine the potential beneficial effects of mesenchymal stem cells (MSCs)-derived EVs in experimentally induced OF. Female albino rats were randomly allocated to four groups: control, OF group, OF + MSCs-EVs group, OF + Rapamycin (mTOR inhibitor) group, and OF + Quercetin (PI3K/AKT inhibitor) group. Follicular development was assessed via histopathological and immunohistochemical examination, and ovarian function was evaluated by hormonal assay. PI3K/Akt/mTOR signaling pathway as a key modulator of ovarian follicular activation was also assessed. MSCs-EVs administration to OF rats resulted in restored serum hormonal levels, preserved primordial follicles and oocytes, suppressed ovarian PI3K/AKT axis and downstream effectors (mTOR and FOXO3), modulated miRNA that target this axis, decreased expression of ovarian apoptotic markers (BAX, BCl2) and increased expression of proliferation marker Ki67. The present study validated the effectiveness of MSCs-EVs therapy in preventing ovarian insufficiency induced by chemotherapy. Concomitant MSCs-EVs treatment during chemotherapy could significantly preserve ovarian function and fertility by suppressing the PI3K/Akt axis, preventing follicular overactivation, maintaining normal ovarian cellular proliferation, and inhibiting granulosa cell apoptosis.
Collapse
Affiliation(s)
- Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Mohamed S Abdel-Maksoud
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Omnia A M Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Hoda A Salem
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Omnia A Refadah
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Ayman Samir Farid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubia, 13736, Egypt
| | - Ashraf A Shamaa
- Surgery, Anesthesiology and Radiology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Nesrine Ebrahim
- Department of Medical Histology and Cell Biology Faculty of Medicine, Benha University, Benha, Egypt.
- Stem Cell Unit, Faculty of Medicine, Benha University, Benha, Egypt.
- Faculty of Medicine, Benha National University, Al Obour City, Egypt.
- Cell and Tissue Engineering, School of Pharmacy and Bioengineering, Keele University, Keele, UK.
| |
Collapse
|
4
|
Xiong Y, Tu B, Zhang M, Chen B, Lai Q, Chen J, Chen L, Wan Z. Case Report: A case of rapamycin-eluting stent for the treatment of refractory stenosis of arteriovenous fistula stenosis. Front Cardiovasc Med 2024; 11:1449989. [PMID: 39257850 PMCID: PMC11385607 DOI: 10.3389/fcvm.2024.1449989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
For patients with repeated stenosis of autologous arteriovenous fistula, percutaneous transluminal angioplasty (PTA) or bare metal stent placement had limited efficacy. Rapamycin was reported to inhibit neointimal hyperplasia and keep blood vessels patent. In this study, we reported a case with refractory stenosis, i.e., a short duration of patency maintenance after each repeated PTA, which was treated with a rapamycin-eluting stent (RES). The RES extended the patency duration from 4 to 5 months on average to 14 months. The stent was used to maintain dialysis for over 30 months. RES may be an effective way to treat refractory stenosis and salvage limited vascular resources.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Tu
- Department of Ultrasonography, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Minglu Zhang
- Department of Ultrasonography, The 941st Hospital of the PLA Joint Logistic Support Force, Xining, China
| | - Bo Chen
- Department of Ultrasonography, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiquan Lai
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Chen
- Department of Nephrology, Southwest Hospital Jiangbei Area (The 958th Hospital of Chinese People's Liberation Army), Chongqing, China
| | - Ling Chen
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ziming Wan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Liu X, Zhou Q, Meng J, Zuo H, Li R, Zhang R, Lu H, Zhang Z, Li H, Zeng S, Tian M, Wang H, Hu K, Li N, Mao L, Hou S. Autophagy-mediated activation of the AIM2 inflammasome enhances M1 polarization of microglia and exacerbates retinal neovascularization. MedComm (Beijing) 2024; 5:e668. [PMID: 39081514 PMCID: PMC11286542 DOI: 10.1002/mco2.668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Retinopathy of prematurity (ROP) is a retinal neovascularization (RNV) disease that is characterized by abnormal blood vessel development in the retina. Importantly, the etiology of ROP remains understudied. We re-analyzed previously published single-cell data and discovered a strong correlation between microglia and RNV diseases, particularly ROP. Subsequently, we found that reactive oxygen species reduced autophagy-dependent protein degradation of absent in melanoma 2 (AIM2) in hypoxic BV2 cells, leading to increased AIM2 protein accumulation. Furthermore, we engineered AIM2 knockout mice and observed that the RNV was significantly reduced compared to wild-type mice. In vitro vascular function assays also demonstrated diminished angiogenic capabilities following AIM2 knockdown in hypoxic BV2 cells. Mechanistically, AIM2 enhanced the M1-type polarization of microglia via the ASC/CASP1/IL-1β pathway, resulting in RNV. Notably, the administration of recombinant protein IL-1β exacerbated angiogenesis, while its inhibition ameliorated the condition. Taken together, our study provides a novel therapeutic target for ROP and offers insight into the interaction between pyroptosis and autophagy.
Collapse
Affiliation(s)
- Xianyang Liu
- The First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of OphthalmologyChongqingChina
| | - Qian Zhou
- The First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of OphthalmologyChongqingChina
| | - Jiayu Meng
- Sichuan Provincial Key Laboratory for Human Disease Gene StudySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hangjia Zuo
- The First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of OphthalmologyChongqingChina
| | - Ruonan Li
- The First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of OphthalmologyChongqingChina
| | - Rui Zhang
- Department of OphthalmologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Huiping Lu
- The First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of OphthalmologyChongqingChina
| | - Zhi Zhang
- The First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of OphthalmologyChongqingChina
| | - Hongshun Li
- The First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of OphthalmologyChongqingChina
| | - Shuhao Zeng
- The First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of OphthalmologyChongqingChina
| | - Meng Tian
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Ophthalmology & Visual Sciences Key LaboratoryBeijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Hong Wang
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Ophthalmology & Visual Sciences Key LaboratoryBeijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of OphthalmologyChongqingChina
| | - Na Li
- Department of Laboratory Medicine, Beijing Tongren HospitalCapital Medical UniversityBeijingChina
| | - Liming Mao
- Department of ImmunologySchool of MedicineNantong UniversityNantongChina
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Ophthalmology & Visual Sciences Key LaboratoryBeijing Tongren HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
6
|
Li T, Zhu J, Yu Q, Zhu Y, Wu C, Zheng X, Chen N, Pei P, Yang K, Wang K, Hu L. Dietary Flavonoid Quercetin Supplement Promotes Antiviral Innate Responses Against Vesicular Stomatitis Virus Infection by Reshaping the Bacteriome and Host Metabolome in Mice. Mol Nutr Food Res 2024; 68:e2300898. [PMID: 38752791 DOI: 10.1002/mnfr.202300898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/28/2024] [Indexed: 07/21/2024]
Abstract
SCOPE Active ingredients in functional foods exhibit broad-spectrum antiviral activity. The objective of this study is to investigate the protective effect of quercetin derived from bee propolis, a natural product with antiviral activity and modulating effects on the gut microbiota, against vesicular stomatitis virus (VSV) infection. METHODS AND RESULTS Through a cellular-based study, this study demonstrates that quercetin can modulate the activity of interferon-regulating factor 3 (IRF3). In vivo, it shows that quercetin protects mice from VSV infection by enhancing interferon production and inhibiting the production of proinflammatory cytokines. The study conducts 16S rRNA-based gut microbiota and nontargets metabolomics analyses to elucidate the mechanisms underlying quercetin-mediated bidirectional communication between the gut microbiome and host metabolome during viral infection. Quercetin not only ameliorates VSV-induced dysbiosis of the intestinal flora but also alters serum metabolites related to lipid metabolism. Cross-correlations between the gut bacteriome and the serum metabolome indicate that quercetin can modulate phosphatidylcholine (16:0/0:0) and 5-acetylamino-6-formylamino-3-methyluracil to prevent VSV infection. CONCLUSION This study systematically elucidates the anti-VSV mechanism of quercetin through gut bacteriome and host metabolome assays, offering new insights into VSV treatment and revealing the mechanisms behind a novel disease management strategy using dietary flavonoid supplements.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Jinfeng Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, Roma, 00133, Italy
| | - Qifeng Yu
- Department of General Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316021, China
| | - Yinrui Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Chao Wu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Xing Zheng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Nannan Chen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Pei Pei
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, China
| |
Collapse
|
7
|
Ye Q, Zhou W, Xu S, Que Q, Zhan Q, Zhang L, Zheng S, Ling S, Xu X. Ubiquitin-specific protease 22 promotes tumorigenesis and progression by an FKBP12/mTORC1/autophagy positive feedback loop in hepatocellular carcinoma. MedComm (Beijing) 2023; 4:e439. [PMID: 38045832 PMCID: PMC10691294 DOI: 10.1002/mco2.439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
Ubiquitin-specific protease 22 (USP22) has been identified as a potential marker for cancer stem cells in hepatocellular carcinoma (HCC). It can promote HCC stemness, which is considered a driver of tumorigenesis. Here, we sought to determine the role of USP22 in tumorigenesis, elucidate its underlying mechanism, and explore its therapeutic significance in HCC. As a result, we found that tissue-specific Usp22 overexpression accelerated tumorigenesis, whereas Usp22 ablation decelerated it in a c-Myc/NRasGV12-induced HCC mouse model and that the mammalian target of rapamycin complex 1 (mTORC1) pathway was activated downstream. USP22 overexpression resulted in increased tumorigenic properties that were reversed by rapamycin in vitro and in vivo. In addition, USP22 activated mTORC1 by deubiquitinating FK506-binding protein 12 (FKBP12) and activated mTORC1, in turn, further stabilizing USP22 by inhibiting autophagic degradation. Clinically, HCC patients with high USP22 expression tend to benefit from mTOR inhibitors after liver transplantation (LT). Our results revealed that USP22 promoted tumorigenesis and progression via an FKBP12/mTORC1/autophagy positive feedback loop in HCC. Clinically, USP22 may be an effective biomarker for selecting eligible recipients with HCC for anti-mTOR-based therapy after LT.
Collapse
Affiliation(s)
- Qianwei Ye
- Department of General SurgeryHangzhou First People's HospitalHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- NHC Key Laboratory of Combined Multi‐Organ TransplantationHangzhouChina
| | - Wei Zhou
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Shengjun Xu
- Department of General SurgeryHangzhou First People's HospitalHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Qingyang Que
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Qifan Zhan
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Lincheng Zhang
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi‐Organ TransplantationHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Sunbin Ling
- Department of General SurgeryHangzhou First People's HospitalHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
8
|
Du Y, Cai X. Therapeutic potential of natural compounds from herbs and nutraceuticals in spinal cord injury: Regulation of the mTOR signaling pathway. Biomed Pharmacother 2023; 163:114905. [PMID: 37207430 DOI: 10.1016/j.biopha.2023.114905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023] Open
Abstract
Spinal cord injury (SCI) is a disease in which the spinal cord is subjected to various external forces that cause it to burst, shift, or, in severe cases, injure the spinal tissue, resulting in nerve injury. SCI includes not only acute primary injury but also delayed and persistent spinal tissue injury (i.e., secondary injury). The pathological changes post-SCI are complex, and effective clinical treatment strategies are lacking. The mammalian target of rapamycin (mTOR) coordinates the growth and metabolism of eukaryotic cells in response to various nutrients and growth factors. The mTOR signaling pathway has multiple roles in the pathogenesis of SCI. There is evidence for the beneficial effects of natural compounds and nutraceuticals that regulate the mTOR signaling pathways in a variety of diseases. Therefore, the effects of natural compounds on the pathogenesis of SCI were evaluated by a comprehensive review using electronic databases, such as PubMed, Web of Science, Scopus, and Medline, combined with our expertise in neuropathology. In particular, we reviewed the pathogenesis of SCI, including the importance of secondary nerve injury after the primary mechanical injury, the roles of the mTOR signaling pathways, and the beneficial effects and mechanisms of natural compounds that regulate the mTOR signaling pathway on pathological changes post-SCI, including effects on inflammation, neuronal apoptosis, autophagy, nerve regeneration, and other pathways. This recent research highlights the value of natural compounds in regulating the mTOR pathway, providing a basis for developing novel therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Yan Du
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xue Cai
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
9
|
The Prognostic Significance of FKBP1A and Its Related Immune Infiltration in Liver Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms232112797. [PMID: 36361587 PMCID: PMC9659304 DOI: 10.3390/ijms232112797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022] Open
Abstract
Liver hepatocellular carcinoma (LIHC) remains a global health challenge with poor prognosis and high mortality. FKBP1A was first discovered as a receptor for the immunosuppressant drug FK506 in immune cells and is critical for various tumors and cancers. However, the relationships between FKBP1A expression, cellular distribution, tumor immunity, and prognosis in LIHC remain unclear. Here, we investigated the expression level of FKBP1A and its prognostic value in LIHC via multiple datasets including ONCOMINE, TIMER, GEPIA, UALCAN, HCCDB, Kaplan–Meier plotter, LinkedOmics, and STRING. Human liver tissue microarray was employed to analyze the characteristics of FKBP1A protein including the expression level and pathological alteration in cellular distribution. FKBP1A expression was significantly higher in LIHC and correlated with tumor stage, grade and metastasis. The expression level of the FKBP1A protein was also increased in LIHC patients along with its accumulation in endoplasmic reticulum (ER). High FKBP1A expression was correlated with a poor survival rate in LIHC patients. The analysis of gene co-expression and the regulatory pathway network suggested that FKBP1A is mainly involved in protein synthesis, metabolism and the immune-related pathway. FKBP1A expression had a significantly positive association with the infiltration of hematopoietic immune cells including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. Moreover, M2 macrophage infiltration was especially associated with a poor survival prognosis in LIHC. Furthermore, FKBP1A expression was significantly positively correlated with the expression of markers of M2 macrophages and immune checkpoint proteins such as PD-L1, CTLA-4, LAG3 and HAVCR2. Our study demonstrated that FKBP1A could be a potential prognostic target involved in tumor immune cell infiltration in LIHC.
Collapse
|
10
|
Haas-Neill S, Iwashita E, Dvorkin-Gheva A, Forsythe P. Effects of Two Distinct Psychoactive Microbes, Lacticaseibacillus rhamnosus JB-1 and Limosilactobacillus reuteri 6475, on Circulating and Hippocampal mRNA in Male Mice. Int J Mol Sci 2022; 23:ijms23179653. [PMID: 36077051 PMCID: PMC9456087 DOI: 10.3390/ijms23179653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Discovery of the microbiota-gut–brain axis has led to proposed microbe-based therapeutic strategies in mental health, including the use of mood-altering bacterial species, termed psychobiotics. However, we still have limited understanding of the key signaling pathways engaged by specific organisms in modulating brain function, and evidence suggests that bacteria with broadly similar neuroactive and immunomodulatory actions can drive different behavioral outcomes. We sought to identify pathways distinguishing two psychoactive bacterial strains that seemingly engage similar gut–brain signaling pathways but have distinct effects on behaviour. We used RNAseq to identify mRNAs differentially expressed in the blood and hippocampus of mice following Lacticaseibacillus rhamnosus JB-1, and Limosilactobacillus reuteri 6475 treatment and performed Gene Set Enrichment Analysis (GSEA) to identify enrichment in pathway activity. L. rhamnosus, but not L. reuteri treatment altered several pathways in the blood and hippocampus, and the rhamnosus could be clearly distinguished based on mRNA profile. In particular, L. rhamnosus treatment modulated the activity of interferon signaling, JAK/STAT, and TNF-alpha via NF-KB pathways. Our results highlight that psychobiotics can induce complex changes in host gene expression, andin understanding these changes, we may help fine-tune selection of psychobiotics for treating mood disorders.
Collapse
Affiliation(s)
- Sandor Haas-Neill
- The Brain Body Institute, St. Joseph’s Hospital, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Eiko Iwashita
- The Brain Body Institute, St. Joseph’s Hospital, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Paul Forsythe
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 569 Heritage Medical Research Center, Edmonton, AB T6G 2S2, Canada
- Alberta Respiratory Centre, University of Alberta, Edmonton, AB T6G 1H9, Canada
- Correspondence:
| |
Collapse
|