1
|
Yan L, Li X, Xu J, Tang S, Wang G, Shi M, Liu P. The CNC-family transcription factor NRF3: A crucial therapeutic target for cancer treatment. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167794. [PMID: 40081618 DOI: 10.1016/j.bbadis.2025.167794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/20/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
The CNC-bZIP family member NRF3 (NFE2L3) has received limited attention since its discovery. However, recent research has gradually revealed its biological functions, such as involvement in the regulation of cell differentiation, lipid metabolism, and malignant cell proliferation. Under physiological conditions, NRF3 is anchored to the endoplasmic reticulum within the cytoplasm and is biologically inactive. Upon cellular exposure to microenvironmental stresses such as oxidative stress, NRF3 translocates to the nucleus, binds to DNA, and acts as a transcription factor by inducing or repressing the expression of various genes. In terms of tumor regulation, NRF3 exhibits a dual role. It can function as a tumor suppressor to prevent the malignant progression of tumor tissues, protecting the organism from harm. Conversely, current research indicates that NRF3 plays a tumor-promoting role in most tumor tissues. NRF3 enhances the proliferation, migration and invasion of tumor cells by regulating cell cycle-related proteins and enhancing proteasome assembly to degrade tumor suppressors. Studies correlating NRF3 expression with clinical tumor features have found that elevated NRF3 expression is often associated with poor prognoses in various cancers, with patients exhibiting higher NRF3 expression typically having lower survival rates. Several studies suggest that NRF3 could serve as a clinical diagnostic and prognostic marker for tumors. Finally, from the clinical perspective, exploring the feasibility of inhibiting NRF3 activity in tumor treatment provides new insights for the development of NRF3-targeted oncological therapies.
Collapse
Affiliation(s)
- Liangwen Yan
- Department of Critical Care Medicine, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyan Li
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiayi Xu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shenkang Tang
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Gang Wang
- Department of Critical Care Medicine, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China
| | - Mengjiao Shi
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Pengfei Liu
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China.
| |
Collapse
|
2
|
Chen Q, Zheng A, Xu X, Shi Z, Yang M, Sun S, Wang L, Wang Y, Zhao H, Xiao Q, Zhang L. Nrf3-Mediated Mitochondrial Superoxide Promotes Cardiomyocyte Apoptosis and Impairs Cardiac Functions by Suppressing Pitx2. Circulation 2025; 151:1024-1046. [PMID: 40099370 DOI: 10.1161/circulationaha.124.070286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/31/2024] [Indexed: 03/19/2025]
Abstract
BACKGROUND Myocardial infarction (MI) elicits mitochondria reactive oxygen species (ROS) production and cardiomyocyte (CM) apoptosis. Nrf3 (nuclear factor erythroid 2-related factor 3) has an established role in regulating redox signaling and tissue homeostasis. Here, we aimed to evaluate the role and mechanism of Nrf3 in injury-induced pathological cardiac remodeling. METHODS Global (Nrf3-KO) and CM-specific (Nrf3△CM) Nrf3 knockout mice were subjected to MI or ischemia/reperfusion injury, followed by functional and histopathological analysis. Primary neonatal mouse and rat ventricular myocytes and CMs derived from human induced pluripotent stem cells were used to evaluate the impact of Nrf3 on CM apoptosis and mitochondrial ROS production. Chromatin immunoprecipitation sequencing and immunoprecipitation-mass spectrometry analysis were used to uncover potential targets of Nrf3. MitoParaquat administration and CM-specific adeno-associated virus vectors were used to further confirm the in vivo relevance of the identified signal pathways. RESULTS Nrf3 was expressed mainly in CMs in healthy human hearts, and an increased level of Nrf3 was observed in CMs within the border zone of infarcted human hearts and murine cardiac tissues after MI. Both global and CM-specific Nrf3 knockout significantly decreased injury-induced mitochondrial ROS production, CM apoptosis, and pathological cardiac remodeling, consequently improving cardiac functions. In addition, cardiac-specific Nrf3 overexpression reversed the ameliorative cardiac phenotypes observed in Nrf3-KO mice. Functional studies showed that Nrf3 promoted neonatal mouse ventricular myocyte, neonatal rat ventricular myocyte, and CMs derived from human induced pluripotent stem cell apoptosis by increasing mitochondrial ROS production. Critically, augmenting mitochondrial ROS with MitoParaquat blunted the beneficial effects of Nrf3 deletion on cardiac function and remodeling. Mechanistically, a redox regulator Pitx2 (paired-like homeodomain transcription factor 2) was identified as one of the main target genes of Nrf3. Specifically, Nrf3 binds to Pitx2 promoter, where it increases DNA methylation through recruiting heterogeneous nuclear ribonucleoprotein K and DNA-methyltransferase 1 complex, thereby inhibiting Pitx2 expression. CM-specific knockdown of Pitx2 blunted the beneficial effects of Nrf3 deletion on cardiac function and remodeling, and cardiac-specific Pitx2 overexpression attenuated MI-induced mitochondrial ROS production and CM apoptosis, as well as preserved cardiac functions after MI. CONCLUSIONS Nrf3 promotes injury-induced CM apoptosis and deteriorates cardiac functions by increasing mitochondrial ROS production through suppressing Pitx2 expression. Targeting the Nrf3-Pitx2-mitochondrial ROS signal axis may therefore represent a novel therapeutic approach for MI treatment.
Collapse
Affiliation(s)
- Qishan Chen
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China (Q.C., A.Z., X.X., Z.S., M.Y., S.S., L.W., Y.W., L.Z.)
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, William Harvey Research, Queen Mary University of London, UK (Q.C., A.Z., Z.S., M.Y., L.W., Q.X.)
| | - Ancheng Zheng
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China (Q.C., A.Z., X.X., Z.S., M.Y., S.S., L.W., Y.W., L.Z.)
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, William Harvey Research, Queen Mary University of London, UK (Q.C., A.Z., Z.S., M.Y., L.W., Q.X.)
| | - Xiaolei Xu
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China (Q.C., A.Z., X.X., Z.S., M.Y., S.S., L.W., Y.W., L.Z.)
| | - Zhenning Shi
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China (Q.C., A.Z., X.X., Z.S., M.Y., S.S., L.W., Y.W., L.Z.)
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, William Harvey Research, Queen Mary University of London, UK (Q.C., A.Z., Z.S., M.Y., L.W., Q.X.)
| | - Mei Yang
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China (Q.C., A.Z., X.X., Z.S., M.Y., S.S., L.W., Y.W., L.Z.)
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, William Harvey Research, Queen Mary University of London, UK (Q.C., A.Z., Z.S., M.Y., L.W., Q.X.)
| | - Shasha Sun
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China (Q.C., A.Z., X.X., Z.S., M.Y., S.S., L.W., Y.W., L.Z.)
| | - Leyu Wang
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China (Q.C., A.Z., X.X., Z.S., M.Y., S.S., L.W., Y.W., L.Z.)
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, William Harvey Research, Queen Mary University of London, UK (Q.C., A.Z., Z.S., M.Y., L.W., Q.X.)
| | - Yumeng Wang
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China (Q.C., A.Z., X.X., Z.S., M.Y., S.S., L.W., Y.W., L.Z.)
| | - Haige Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (H.Z.)
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, William Harvey Research, Queen Mary University of London, UK (Q.C., A.Z., Z.S., M.Y., L.W., Q.X.)
| | - Li Zhang
- Department of Cardiology, Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, China (Q.C., A.Z., X.X., Z.S., M.Y., S.S., L.W., Y.W., L.Z.)
| |
Collapse
|
3
|
Li R, Li S, Shen L, Li J, Zhang D, Yu J, Huang L, Liu N, Lu H, Xu M. LINC00618 facilitates growth and metastasis of hepatocellular carcinoma via elevating cholesterol synthesis by promoting NSUN2-mediated SREBP2 m5C modification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117064. [PMID: 39299205 DOI: 10.1016/j.ecoenv.2024.117064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Dysregulation of cholesterol metabolism is an important feature of cancer development. There are limited reports on the involvement of lncRNAs in hepatocellular carcinoma (HCC) progression via the cholesterol metabolism pathway. The present study explored the effect of LINC00618 on HCC growth and metastasis, and elucidated the underlying mechanisms involved in cholesterol metabolism. Here, we found that LINC00618 expression was upregulated in cancerous tissues from 30 patients with HCC compared to that in adjacent normal tissues. High expression of LINC00618 was detected in metastatic HCC tissues. LINC00618 is predominantly localized in the nucleus and overexpression of LINC00618 facilitated HCC cell proliferation, migration and EMT progression by promoting cholesterol biosynthesis. Mechanistically, the 1-101nt region of LINC00618 bound to NSUN2. LINC00618 inhibited ubiquitin-proteasome pathway-induced NSUN2 degradation. NSUN2 stabilized by LINC00618 increased m5C modification of SREBP2 and promoted SREBP2 mRNA stability in a YBX1-dependent manner, thereby promoting cholesterol biosynthesis in HCC cells. Moreover, mouse HCC xenograft and lung metastasis models were established by subcutaneous and tail vein injections of MHCC97 cells transfected with or without sh-LINC00618. Silencing LINC00618 impeded HCC growth and metastasis. In conclusion, LINC00618 promoted HCC growth and metastasis by elevating cholesterol synthesis by stabilizing NSUN2 to enhance SREBP2 mRNA stability in an m5C-dependent manner.
Collapse
Affiliation(s)
- Rong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Shunle Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Lin Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Junhui Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Di Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Jinmin Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China
| | - Lanxuan Huang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China.
| | - Hongwei Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China.
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, China.
| |
Collapse
|
4
|
Xiong G, Li J, Yao F, Yang F, Xiang Y. New insight into the CNC-bZIP member, NFE2L3, in human diseases. Front Cell Dev Biol 2024; 12:1430486. [PMID: 39149514 PMCID: PMC11325725 DOI: 10.3389/fcell.2024.1430486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Nuclear factor erythroid 2 (NF-E2)-related factor 3 (NFE2L3), a member of the CNC-bZIP subfamily and widely found in a variety of tissues, is an endoplasmic reticulum (ER) membrane-anchored transcription factor that can be released from the ER and moved into the nucleus to bind the promoter region to regulate a series of target genes involved in antioxidant, inflammatory responses, and cell cycle regulation in response to extracellular or intracellular stress. Recent research, particularly in the past 5 years, has shed light on NFE2L3's participation in diverse biological processes, including cell differentiation, inflammatory responses, lipid homeostasis, immune responses, and tumor growth. Notably, NFE2L3 has been identified as a key player in the development and prognosis of multiple cancers including colorectal cancer, thyroid cancer, breast cancer, hepatocellular carcinoma, gastric cancer, renal cancer, bladder cancer, esophageal squamous cell carcinoma, T cell lymphoblastic lymphoma, pancreatic cancer, and squamous cell carcinoma. Furthermore, research has linked NFE2L3 to other cancers such as lung adenocarcinoma, malignant pleural mesothelioma, ovarian cancer, glioblastoma multiforme, and laryngeal carcinoma, indicating its potential as a target for innovative cancer treatment approaches. Therefore, to gain a better understanding of the role of NFE2L3 in disease, this review offers insights into the discovery, structure, function, and recent advancements in the study of NFE2L3 to lay the groundwork for the development of NFE2L3-targeted cancer therapies.
Collapse
Affiliation(s)
- Guanghui Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Department of Children Rehabilitation, Maternal and Child Health Hospital of Jintang County, Chendu, Sichuan, China
| | - Jie Li
- Department of Anaesthesia, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Fuli Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Fang Yang
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Fernandes AC, Reverter A, Keogh K, Alexandre PA, Afonso J, Palhares JCP, Cardoso TF, Malheiros JM, Bruscadin JJ, de Oliveira PSN, Mourão GB, de Almeida Regitano LC, Coutinho LL. Transcriptional response to an alternative diet on liver, muscle, and rumen of beef cattle. Sci Rep 2024; 14:13682. [PMID: 38871745 PMCID: PMC11176196 DOI: 10.1038/s41598-024-63619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Feed cost represents a major economic determinant within cattle production, amounting to an estimated 75% of the total variable costs. Consequently, comprehensive approaches such as optimizing feed utilization through alternative feed sources, alongside the selection of feed-efficient animals, are of great significance. Here, we investigate the effect of two diets, traditional corn-grain fed and alternative by-product based, on 14 phenotypes related to feed, methane emission and production efficiency and on multi-tissue transcriptomics data from liver, muscle, and rumen wall, derived from 52 Nellore bulls, 26 on each diet. To this end, diets were contrasted at the level of phenotype, gene expression, and gene-phenotype network connectivity. As regards the phenotypic level, at a P value < 0.05, significant differences were found in favour of the alternative diet for average daily weight gain at finishing, dry matter intake at finishing, methane emission, carcass yield and subcutaneous fat thickness at the rib-eye muscle area. In terms of the transcriptional level of the 14,776 genes expressed across the examined tissues, we found 487, 484, and 499 genes differentially expressed due to diet in liver, muscle, and rumen, respectively (P value < 0.01). To explore differentially connected phenotypes across both diet-based networks, we focused on the phenotypes with the largest change in average number of connections within diets and tissues, namely methane emission and carcass yield, highlighting, in particular, gene expression changes involving SREBF2, and revealing the largest differential connectivity in rumen and muscle, respectively. Similarly, from examination of differentially connected genes across diets, the top-ranked most differentially connected regulators within each tissue were MEOX1, PTTG1, and BASP1 in liver, muscle, and rumen, respectively. Changes in gene co-expression patterns suggest activation or suppression of specific biological processes and pathways in response to dietary interventions, consequently impacting the phenotype. The identification of genes that respond differently to diets and their associated phenotypic effects serves as a crucial stepping stone for further investigations, aiming to build upon our discoveries. Ultimately, such advancements hold the promise of improving animal welfare, productivity, and sustainability in livestock farming.
Collapse
Affiliation(s)
- Anna Carolina Fernandes
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Piracicaba, São Paulo, Brazil
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, QLD, 4067, Australia
| | - Antonio Reverter
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, QLD, 4067, Australia
| | - Kate Keogh
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, QLD, 4067, Australia
- Animal and Bioscience Research Department, Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| | - Pâmela Almeida Alexandre
- CSIRO Agriculture & Food, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, QLD, 4067, Australia
| | - Juliana Afonso
- Brazilian Agricultural Research Corporation, Embrapa Pecuária Sudeste, São Carlos, São Paulo, Brazil
| | | | - Tainã Figueiredo Cardoso
- Brazilian Agricultural Research Corporation, Embrapa Pecuária Sudeste, São Carlos, São Paulo, Brazil
| | - Jessica Moraes Malheiros
- Brazilian Agricultural Research Corporation, Embrapa Pecuária Sudeste, São Carlos, São Paulo, Brazil
- Beef Cattle Research Center, Animal Science Institute (IZ), Sertãozinho, São Paulo, Brazil
| | - Jennifer Jessica Bruscadin
- Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | | | - Gerson Barreto Mourão
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Piracicaba, São Paulo, Brazil
| | | | - Luiz Lehmann Coutinho
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Piracicaba, São Paulo, Brazil.
| |
Collapse
|
6
|
Lukomska A, Frost MP, Theune WC, Xing J, Gupta M, Trakhtenberg EF. Nfe2l3 promotes neuroprotection and long-distance axon regeneration after injury in vivo. Exp Neurol 2024; 375:114741. [PMID: 38395216 PMCID: PMC10981571 DOI: 10.1016/j.expneurol.2024.114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Nuclear factor erythroid 2 like (Nfe2l) gene family members 1-3 mediate cellular response to oxidative stress, including in the central nervous system (CNS). However, neuronal functions of Nfe2l3 are unknown. Here, we comparatively evaluated expression of Nfe2l1, Nfe2l2, and Nfe2l3 in singe cell RNA-seq (scRNA-seq)-profiled cortical and retinal ganglion cell (RGC) CNS projection neurons, investigated whether Nfe2l3 regulates neuroprotection and axon regeneration after CNS injury in vivo, and characterized a gene network associated with Nfe2l3 in neurons. We showed that, Nfe2l3 expression transiently peaks in developing immature cortical and RGC projection neurons, but is nearly abolished in adult neurons and is not upregulated after injury. Furthermore, within the retina, Nfe2l3 is enriched in RGCs, primarily neonatally, and not upregulated in injured RGCs, whereas Nfe2l1 and Nfe2l2 are expressed robustly in other retinal cell types as well and are upregulated in injured RGCs. We also found that, expressing Nfe2l3 in injured RGCs through localized intralocular viral vector delivery promotes neuroprotection and long-distance axon regeneration after optic nerve injury in vivo. Moreover, Nfe2l3 provided a similar extent of neuroprotection and axon regeneration as viral vector-targeting of Pten and Klf9, which are prominent regulators of neuroprotection and long-distance axon regeneration. Finally, we bioinformatically characterized a gene network associated with Nfe2l3 in neurons, which predicted the association of Nfe2l3 with established mechanisms of neuroprotection and axon regeneration. Thus, Nfe2l3 is a novel neuroprotection and axon regeneration-promoting factor with a therapeutic potential for treating CNS injury and disease.
Collapse
Affiliation(s)
- Agnieszka Lukomska
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Matthew P Frost
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - William C Theune
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Jian Xing
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Mahit Gupta
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ephraim F Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA.
| |
Collapse
|
7
|
Gurri S, Siegenthaler B, Cangkrama M, Restivo G, Huber M, Saliba J, Dummer R, Blank V, Hohl D, Werner S. NRF3 suppresses squamous carcinogenesis, involving the unfolded protein response regulator HSPA5. EMBO Mol Med 2023; 15:e17761. [PMID: 37807968 PMCID: PMC10630885 DOI: 10.15252/emmm.202317761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
Epithelial skin cancers are extremely common, but the mechanisms underlying their malignant progression are still poorly defined. Here, we identify the NRF3 transcription factor as a tumor suppressor in the skin. NRF3 protein expression is strongly downregulated or even absent in invasively growing cancer cells of patients with basal and squamous cell carcinomas (BCC and SCC). NRF3 deficiency promoted malignant conversion of chemically induced skin tumors in immunocompetent mice, clonogenic growth and migration of human SCC cells, their invasiveness in 3D cultures, and xenograft tumor formation. Mechanistically, the tumor-suppressive effect of NRF3 involves HSPA5, a key regulator of the unfolded protein response, which we identified as a potential NRF3 interactor. HSPA5 levels increased in the absence of NRF3, thereby promoting cancer cell survival and migration. Pharmacological inhibition or knock-down of HSPA5 rescued the malignant features of NRF3-deficient SCC cells in vitro and in preclinical mouse models. Together with the strong expression of HSPA5 in NRF3-deficient cancer cells of SCC patients, these results suggest HSPA5 inhibition as a treatment strategy for these malignancies in stratified cancer patients.
Collapse
Affiliation(s)
- Selina Gurri
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Beat Siegenthaler
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Michael Cangkrama
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Marcel Huber
- Service of Dermatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - James Saliba
- Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Volker Blank
- Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | - Daniel Hohl
- Service of Dermatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Ren Y, Yang J, Ding Z, Zheng M, Qiu L, Tang A, Huang D. NFE2L3 drives hepatocellular carcinoma cell proliferation by regulating the proteasome-dependent degradation of ISGylated p53. Cancer Sci 2023; 114:3523-3536. [PMID: 37350063 PMCID: PMC10475773 DOI: 10.1111/cas.15887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Nuclear factor erythroid 2-like 3 (NFE2L3) is a member of the cap 'n' collar basic-region leucine zipper (CNC-bZIP) transcription factor family that plays a vital role in modulating oxidation-reduction steady-state and proteolysis. Accumulating evidence suggests that NFE2L3 participates in cancer development; however, little is known about the mechanism by which NFE2L3 regulates hepatocellular carcinoma (HCC) cell growth. Here, we confirmed that NFE2L3 promotes HCC cell proliferation by acting as a transcription factor, which directly induces the expression of proteasome and interferon-stimulated gene 15 (ISG15) to enhance the proteasome-dependent degradation of ISGylated p53. Post-translational ISGylation abated the stability of p53 and facilitated HCC cell growth. In summary, we uncovered the pivotal role of NFE2L3 in promoting HCC cell proliferation during proteostasis. This finding may provide a new target for the clinical treatment of HCC.
Collapse
Affiliation(s)
- Yonggang Ren
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
- Research Center of Clinical Medical SciencesAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Jing Yang
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Zhiran Ding
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Menghua Zheng
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| | - Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐Sen UniversityShenzhenChina
| | - Aifa Tang
- Shenzhen Luohu Hospital GroupThe Third Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Dandan Huang
- Institute of Basic Medicine and Forensic MedicineNorth Sichuan Medical CollegeNanchongChina
| |
Collapse
|
9
|
Yang QC, Wang S, Liu YT, Song A, Wu ZZ, Wan SC, Li HM, Sun ZJ. Targeting PCSK9 reduces cancer cell stemness and enhances antitumor immunity in head and neck cancer. iScience 2023; 26:106916. [PMID: 37305703 PMCID: PMC10250824 DOI: 10.1016/j.isci.2023.106916] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/01/2023] [Accepted: 05/14/2023] [Indexed: 06/13/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been demonstrated to play a critical role in regulating cholesterol homeostasis and T cell antitumor immunity. However, the expression, function, and therapeutic value of PCSK9 in head and neck squamous cell carcinoma (HNSCC) remain largely unexplored. Here, we found that the expression of PCSK9 was upregulated in HNSCC tissues, and higher PCSK9 expression indicated poorer prognosis in HNSCC patients. We further found that pharmacological inhibition or siRNA downregulating PCSK9 expression suppressed the stemness-like phenotype of cancer cells in an LDLR-dependent manner. Moreover, PCSK9 inhibition enhanced the infiltration of CD8+ T cells and reduced the myeloid-derived suppressor cells (MDSCs) in a 4MOSC1 syngeneic tumor-bearing mouse model, and it also enhanced the antitumor effect of anti-PD-1 immune checkpoint blockade (ICB) therapy. Together, these results indicated that PCSK9, a traditional hypercholesterolemia target, may be a novel biomarker and therapeutic target to enhance ICB therapy in HNSCC.
Collapse
Affiliation(s)
- Qi-Chao Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuan-Tong Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - An Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Zhong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shu-Cheng Wan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hui-Min Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Waku T, Nakada S, Masuda H, Sumi H, Wada A, Hirose S, Aketa I, Kobayashi A. The CNC-family transcription factor Nrf3 coordinates the melanogenesis cascade through macropinocytosis and autophagy regulation. Cell Rep 2023; 42:111906. [PMID: 36640303 DOI: 10.1016/j.celrep.2022.111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/06/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Melanin is a pigment produced from the amino acid L-tyrosine in melanosomes. The CNC-family transcription factor Nrf3 is expressed in the basal layer of the epidermis, where melanocytes reside, but its melanogenic function is unclear. Here, we show that Nrf3 regulates macropinocytosis and autophagy to coordinate melanogenesis cascade. In response to an exogenous inducer of melanin production, forskolin, Nrf3 upregulates the core melanogenic gene circuit, which includes Mitf, Tyr, Tyrp1, Pmel, and Oca2. Furthermore, Nrf3 induces the gene expression of Cln3, an autophagosome-related factor, for melanin precursor uptake by macropinocytosis. Ulk2 and Gabarapl2 are also identified as Nrf3-target autophagosome-related genes for melanosome formation. In parallel, Nrf3 prompts autolysosomal melanosome degradation for melanocyte survival. An endogenous melanogenic inducer αMSH also activates Nrf3-mediated melanin production, whereas it is suppressed by an HIV-1 protease inhibitor, nelfinavir. These findings indicate the significant role of Nrf3 in the melanogenesis and the anti-melanogenic potential of nelfinavir.
Collapse
Affiliation(s)
- Tsuyoshi Waku
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.
| | - Sota Nakada
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Haruka Masuda
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Haruna Sumi
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Ayaka Wada
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Shuuhei Hirose
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Iori Aketa
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Akira Kobayashi
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan; Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.
| |
Collapse
|
11
|
Hirose S, Waku T, Tani M, Masuda H, Endo K, Ashitani S, Aketa I, Kitano H, Nakada S, Wada A, Hatanaka A, Osawa T, Soga T, Kobayashi A. NRF3 activates mTORC1 arginine-dependently for cancer cell viability. iScience 2023; 26:106045. [PMID: 36818298 PMCID: PMC9932127 DOI: 10.1016/j.isci.2023.106045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/18/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Cancer cells coordinate the mTORC1 signals and the related metabolic pathways to robustly and rapidly grow in response to nutrient conditions. Although a CNC-family transcription factor NRF3 promotes cancer development, the biological relevance between NRF3 function and mTORC1 signals in cancer cells remains unknown. Hence, we showed that NRF3 contributes to cancer cell viability through mTORC1 activation in response to amino acids, particularly arginine. NRF3 induced SLC38A9 and RagC expression for the arginine-dependent mTORC1 recruitment onto lysosomes, and it also enhanced RAB5-mediated bulk macropinocytosis and SLC7A1-mediated selective transport for arginine loading into lysosomes. Besides, the inhibition of the NRF3-mTORC1 axis impaired mitochondrial function, leading to cancer cell apoptosis. Consistently, the aberrant upregulation of the axis caused tumor growth and poor prognosis. In conclusion, this study sheds light on the unique function of NRF3 in arginine-dependent mTORC1 activation and the pathophysiological aspects of the NRF3-mTORC1 axis in cancer development.
Collapse
Affiliation(s)
- Shuuhei Hirose
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1–3 Miyakodani, Tatara, Kyotanabe, Kyoto 610–0394, Japan,Research Fellow of Japan Society for the Promotion of Science
| | - Tsuyoshi Waku
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610–0394, Japan,Corresponding author
| | - Misato Tani
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1–3 Miyakodani, Tatara, Kyotanabe, Kyoto 610–0394, Japan
| | - Haruka Masuda
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1–3 Miyakodani, Tatara, Kyotanabe, Kyoto 610–0394, Japan
| | - Keiko Endo
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
| | - Sanae Ashitani
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
| | - Iori Aketa
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1–3 Miyakodani, Tatara, Kyotanabe, Kyoto 610–0394, Japan
| | - Hina Kitano
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610–0394, Japan
| | - Sota Nakada
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610–0394, Japan
| | - Ayaka Wada
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1–3 Miyakodani, Tatara, Kyotanabe, Kyoto 610–0394, Japan
| | - Atsushi Hatanaka
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1–3 Miyakodani, Tatara, Kyotanabe, Kyoto 610–0394, Japan
| | - Tsuyoshi Osawa
- Division of Integrative Nutriomics and Oncology, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka 997-0052, Japan
| | - Akira Kobayashi
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1–3 Miyakodani, Tatara, Kyotanabe, Kyoto 610–0394, Japan,Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610–0394, Japan,Corresponding author
| |
Collapse
|
12
|
Muehlebach ME, Holstein SA. Geranylgeranyl diphosphate synthase: Role in human health, disease and potential therapeutic target. Clin Transl Med 2023; 13:e1167. [PMID: 36650113 PMCID: PMC9845123 DOI: 10.1002/ctm2.1167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023] Open
Abstract
Geranylgeranyl diphosphate synthase (GGDPS), an enzyme in the isoprenoid biosynthesis pathway, is responsible for the production of geranylgeranyl pyrophosphate (GGPP). GGPP serves as a substrate for the post-translational modification (geranylgeranylation) of proteins, including those belonging to the Ras superfamily of small GTPases. These proteins play key roles in signalling pathways, cytoskeletal regulation and intracellular transport, and in the absence of the prenylation modification, cannot properly localise and function. Aberrant expression of GGDPS has been implicated in various human pathologies, including liver disease, type 2 diabetes, pulmonary disease and malignancy. Thus, this enzyme is of particular interest from a therapeutic perspective. Here, we review the physiological function of GGDPS as well as its role in pathophysiological processes. We discuss the current GGDPS inhibitors under development and the therapeutic implications of targeting this enzyme.
Collapse
Affiliation(s)
- Molly E. Muehlebach
- Cancer Research Doctoral ProgramUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sarah A. Holstein
- Department of Internal MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
13
|
Adaptive activation of EFNB2/EPHB4 axis promotes post-metastatic growth of colorectal cancer liver metastases by LDLR-mediated cholesterol uptake. Oncogene 2023; 42:99-112. [PMID: 36376513 PMCID: PMC9816060 DOI: 10.1038/s41388-022-02519-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022]
Abstract
The microenvironment of distant organ plays vital roles in regulating tumor metastases. However, little is known about the crosstalk between metastasized tumor cells and target organs. Herein, we found that EFNB2 expression was upregulated in liver metastases (LM) of colorectal cancer (CRC), but not in pulmonary metastases (PM) or primary CRC tumors. EFNB2 played a tumor-promoting role in CRC LM in vitro and in vivo. Through forward signaling, EFNB2-promoted CRC LM by interacting with the EPHB4 receptor. EFNB2/EPHB4 axis enhances LDLR-mediated cholesterol uptake in CRC LM. Subsequently, EFNB2/EPHB4 axis promotes LDLR transcription by regulating STAT3 phosphorylation. Blocking LDLR reversed the role of the EFNB2/EPHB4 axis in promoting CRC LM. Using clinical data, survival analysis revealed that the survival time of patients with CRC LM was decreased in patients with high EFNB2 expression, compared with low EFNB2 expression. Inhibition of the EFNB2/EPHB4 axis markedly prolonged the survival time of BALB/c nude mice with CRC LM with a high cholesterol diet. These findings revealed a key step in the regulation of cholesterol uptake by EFNB2/EPHB4 axis and its tumor-promoting role in CRC LM.
Collapse
|
14
|
Wang Z, Wang M, Zhang M, Xu K, Zhang X, Xie Y, Zhang Y, Chang C, Li X, Sun A, He F. High-affinity SOAT1 ligands remodeled cholesterol metabolism program to inhibit tumor growth. BMC Med 2022; 20:292. [PMID: 35941608 PMCID: PMC9361549 DOI: 10.1186/s12916-022-02436-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Although cholesterol metabolism is a common pathway for the development of antitumor drugs, there are no specific targets and drugs for clinical use. Here, based on our previous study of sterol O-acyltransferase 1 (SOAT1) in hepatocelluar carcinoma, we sought to screen an effective targeted drug for precise treatment of hepatocelluar carcinoma and, from the perspective of cholesterol metabolism, clarify the relationship between cholesterol regulation and tumorigenesis and development. METHODS In this study, we developed a virtual screening integrated affinity screening technology for target protein drug screening. A series of in vitro and in vivo experiments were used for drug activity verification. Multi-omics analysis and flow cytometry analysis were used to explore antitumor mechanisms. Comparative analysis of proteome and transcriptome combined with survival follow-up information of patients reveals the clinical therapeutic potential of screened drugs. RESULTS We screened three compounds, nilotinib, ABT-737, and evacetrapib, that exhibited optimal binding with SOAT1. In particular, nilotinib displayed a high affinity for SOAT1 protein and significantly inhibited tumor activity both in vitro and in vivo. Multi-omics analysis and flow cytometry analysis indicated that SOAT1-targeting compounds reprogrammed the cholesterol metabolism in tumors and enhanced CD8+ T cells and neutrophils to suppress tumor growth. CONCLUSIONS Taken together, we reported several high-affinity SOAT1 ligands and demonstrated their clinical potential in the precision therapy of liver cancer, and also reveal the potential antitumor mechanism of SOAT1-targeting compounds.
Collapse
Affiliation(s)
- Zhihua Wang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206 China
- grid.506261.60000 0001 0706 7839Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206 China
| | - Miaomiao Wang
- grid.452422.70000 0004 0604 7301Shandong First Medical University, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
| | - Mengxin Zhang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Kaikun Xu
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Xinshuai Zhang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Yi Xie
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206 China
- grid.12527.330000 0001 0662 3178Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100083 China
| | - Yiming Zhang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Cheng Chang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Xiaolu Li
- grid.452422.70000 0004 0604 7301Shandong First Medical University, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014 China
| | - Aihua Sun
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206 China
- grid.506261.60000 0001 0706 7839Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206 China
| | - Fuchu He
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206 China
- grid.506261.60000 0001 0706 7839Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206 China
| |
Collapse
|
15
|
Pisanti S, Rimondi E, Pozza E, Melloni E, Zauli E, Bifulco M, Martinelli R, Marcuzzi A. Prenylation Defects and Oxidative Stress Trigger the Main Consequences of Neuroinflammation Linked to Mevalonate Pathway Deregulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159061. [PMID: 35897423 PMCID: PMC9332440 DOI: 10.3390/ijerph19159061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022]
Abstract
The cholesterol biosynthesis represents a crucial metabolic pathway for cellular homeostasis. The end products of this pathway are sterols, such as cholesterol, which are essential components of cell membranes, precursors of steroid hormones, bile acids, and other molecules such as ubiquinone. Furthermore, some intermediates of this metabolic system perform biological activity in specific cellular compartments, such as isoprenoid molecules that can modulate different signal proteins through the prenylation process. The defects of prenylation represent one of the main causes that promote the activation of inflammation. In particular, this mechanism, in association with oxidative stress, induces a dysfunction of the mitochondrial activity. The purpose of this review is to describe the pleiotropic role of prenylation in neuroinflammation and to highlight the consequence of the defects of prenylation.
Collapse
Affiliation(s)
- Simona Pisanti
- Department of Medicine, Surgery and Dentistry ′Scuola Medica Salernitana′, University of Salerno, 84081 Baronissi, Italy; (S.P.); (R.M.)
| | - Erika Rimondi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (E.R.); (E.M.)
| | - Elena Pozza
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
| | - Elisabetta Melloni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (E.R.); (E.M.)
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Rosanna Martinelli
- Department of Medicine, Surgery and Dentistry ′Scuola Medica Salernitana′, University of Salerno, 84081 Baronissi, Italy; (S.P.); (R.M.)
| | - Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
| |
Collapse
|
16
|
Pathophysiological Potentials of NRF3-Regulated Transcriptional Axes in Protein and Lipid Homeostasis. Int J Mol Sci 2021; 22:ijms222312686. [PMID: 34884489 PMCID: PMC8657584 DOI: 10.3390/ijms222312686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
NRF3 (NFE2L3) belongs to the CNC-basic leucine zipper transcription factor family. An NRF3 homolog, NRF1 (NFE2L1), induces the expression of proteasome-related genes in response to proteasome inhibition. Another homolog, NRF2 (NFE2L2), induces the expression of genes related to antioxidant responses and encodes metabolic enzymes in response to oxidative stress. Dysfunction of each homolog causes several diseases, such as neurodegenerative diseases and cancer development. However, NRF3 target genes and their biological roles remain unknown. This review summarizes our recent reports that showed NRF3-regulated transcriptional axes for protein and lipid homeostasis. NRF3 induces the gene expression of POMP for 20S proteasome assembly and CPEB3 for NRF1 translational repression, inhibiting tumor suppression responses, including cell-cycle arrest and apoptosis, with resistance to a proteasome inhibitor anticancer agent bortezomib. NRF3 also promotes mevalonate biosynthesis by inducing SREBP2 and HMGCR gene expression, and reduces the intracellular levels of neural fatty acids by inducing GGPS1 gene expression. In parallel, NRF3 induces macropinocytosis for cholesterol uptake by inducing RAB5 gene expression. Finally, this review mentions not only the pathophysiological aspects of these NRF3-regulated axes for cancer cell growth and anti-obesity potential but also their possible role in obesity-induced cancer development.
Collapse
|