1
|
Dutta M, Dolan KA, Amiar S, Bass EJ, Sultana R, Voth GA, Brohawn SG, Stahelin RV. Direct lipid interactions control SARS-CoV-2 M protein conformational dynamics and virus assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.620124. [PMID: 39574576 PMCID: PMC11580925 DOI: 10.1101/2024.11.04.620124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
M is the most abundant structural membrane protein in coronaviruses and is essential for the formation of infectious virus particles. SARS-CoV-2 M adopts two conformations, Mshort and Mlong, and regulated transition between states is hypothesized to coordinate viral assembly and budding. However, the factors that regulate M conformation and roles for each state are unknown. Here, we discover a direct M-sphingolipid interaction that controls M conformational dynamics and virus assembly. We show M binds Golgi-enriched anionic lipids including ceramide-1-phosphate (C1P). Molecular dynamics simulations show C1P interaction promotes a long to short transition and energetically stabilizes Mshort. Cryo-EM structures show C1P specifically binds Mshort at a conserved site bridging transmembrane and cytoplasmic regions. Disrupting Mshort-C1P interaction alters M subcellular localization, reduces interaction with Spike and E, and impairs subsequent virus-like particle cell entry. Together, these results show endogenous signaling lipids regulate M structure and support a model in which Mshort is stabilized in the early endomembrane system to organize other structural proteins prior to viral budding.
Collapse
Affiliation(s)
- Mandira Dutta
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Kimberly A. Dolan
- Department of Molecular & Cell Biology, Department of Neuroscience, California Institute for Quantitative Biology (QB3), Biophysics Graduate Program, University of California Berkeley, Berkeley, California 94720, USA
| | - Souad Amiar
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907
| | - Elijah J. Bass
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907
| | - Rokaia Sultana
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907
| | - Gregory A. Voth
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
- Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637
| | - Stephen G. Brohawn
- Department of Molecular & Cell Biology, Department of Neuroscience, California Institute for Quantitative Biology (QB3), Biophysics Graduate Program, University of California Berkeley, Berkeley, California 94720, USA
| | - Robert V. Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
2
|
Li Y, Han L, Li P, Ge J, Xue Y, Chen L. Potential network markers and signaling pathways for B cells of COVID-19 based on single-cell condition-specific networks. BMC Genomics 2023; 24:619. [PMID: 37853311 PMCID: PMC10583333 DOI: 10.1186/s12864-023-09719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
To explore the potential network markers and related signaling pathways of human B cells infected by COVID-19, we performed standardized integration and analysis of single-cell sequencing data to construct conditional cell-specific networks (CCSN) for each cell. Then the peripheral blood cells were clustered and annotated based on the conditional network degree matrix (CNDM) and gene expression matrix (GEM), respectively, and B cells were selected for further analysis. Besides, based on the CNDM of B cells, the hub genes and 'dark' genes (a gene has a significant difference between case and control samples not in a gene expression level but in a conditional network degree level) closely related to COVID-19 were revealed. Interestingly, some of the 'dark' genes and differential degree genes (DDGs) encoded key proteins in the JAK-STAT pathway, which had antiviral effects. The protein p21 encoded by the 'dark' gene CDKN1A was a key regulator for the COVID-19 infection-related signaling pathway. Elevated levels of proteins encoded by some DDGs were directly related to disease severity of patients with COVID-19. In short, the proteins encoded by 'dark' genes complement some missing links in COVID-19 and these signaling pathways played an important role in the growth and activation of B cells.
Collapse
Affiliation(s)
- Ying Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471023, China
- Longmen Laboratory, Luoyang, 471003, Henan, China
| | - Liqin Han
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471023, China
- Longmen Laboratory, Luoyang, 471003, Henan, China
| | - Peiluan Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471023, China.
- Longmen Laboratory, Luoyang, 471003, Henan, China.
| | - Jing Ge
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 201100, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201100, China.
- West China Biomedical Big Data Center, Med-X Center for Informatics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Justo Arevalo S, Castillo-Chávez A, Uribe Calampa CS, Zapata Sifuentes D, Huallpa CJ, Landa Bianchi G, Garavito-Salini Casas R, Quiñones Aguilar M, Pineda Chavarría R. What do we know about the function of SARS-CoV-2 proteins? Front Immunol 2023; 14:1249607. [PMID: 37790934 PMCID: PMC10544941 DOI: 10.3389/fimmu.2023.1249607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
The COVID-19 pandemic has highlighted the importance in the understanding of the biology of SARS-CoV-2. After more than two years since the first report of COVID-19, it remains crucial to continue studying how SARS-CoV-2 proteins interact with the host metabolism to cause COVID-19. In this review, we summarize the findings regarding the functions of the 16 non-structural, 6 accessory and 4 structural SARS-CoV-2 proteins. We place less emphasis on the spike protein, which has been the subject of several recent reviews. Furthermore, comprehensive reviews about COVID-19 therapeutic have been also published. Therefore, we do not delve into details on these topics; instead we direct the readers to those other reviews. To avoid confusions with what we know about proteins from other coronaviruses, we exclusively report findings that have been experimentally confirmed in SARS-CoV-2. We have identified host mechanisms that appear to be the primary targets of SARS-CoV-2 proteins, including gene expression and immune response pathways such as ribosome translation, JAK/STAT, RIG-1/MDA5 and NF-kβ pathways. Additionally, we emphasize the multiple functions exhibited by SARS-CoV-2 proteins, along with the limited information available for some of these proteins. Our aim with this review is to assist researchers and contribute to the ongoing comprehension of SARS-CoV-2's pathogenesis.
Collapse
Affiliation(s)
- Santiago Justo Arevalo
- Facultad de Ciencias Biológicas, Universidad Ricardo Palma, Lima, Peru
- Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Daniela Zapata Sifuentes
- Facultad de Ciencias Biológicas, Universidad Ricardo Palma, Lima, Peru
- Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, Brazil
| | - César J. Huallpa
- Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | | | | | | | | |
Collapse
|
4
|
Williams DM, Hornsby HR, Shehata OM, Brown R, Gallis M, Meardon N, Newman TA, Plowright M, Zafred D, Shun-Shion AS, Hodder AJ, Bliss D, Metcalfe A, Edgar JR, Gordon DE, Sayers JR, Nicklin MJ, Carroll M, PITCH Consortium, Collini PJ, Brown S, de Silva TI, Peden AA. Establishing SARS-CoV-2 membrane protein-specific antibodies as a valuable serological target via high-content microscopy. iScience 2023; 26:107056. [PMID: 37346049 PMCID: PMC10246304 DOI: 10.1016/j.isci.2023.107056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
The prevalence and strength of serological responses mounted toward SARS-CoV-2 proteins other than nucleocapsid (N) and spike (S), which may be of use as additional serological markers, remains underexplored. Using high-content microscopy to assess antibody responses against full-length StrepTagged SARS-CoV-2 proteins, we found that 85% (166/196) of unvaccinated individuals with RT-PCR confirmed SARS-CoV-2 infections and 74% (31/42) of individuals infected after being vaccinated developed detectable IgG against the structural protein M, which is higher than previous estimates. Compared with N antibodies, M IgG displayed a shallower time-dependent decay and greater specificity. Sensitivity for SARS-CoV-2 seroprevalence was enhanced when N and M IgG detection was combined. These findings indicate that screening for M seroconversion may be a good approach for detecting additional vaccine breakthrough infections and highlight the potential to use HCM as a rapidly deployable method to identify the most immunogenic targets of newly emergent pathogens.
Collapse
Affiliation(s)
- Daniel M. Williams
- School of Bioscience, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Hailey R. Hornsby
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Ola M. Shehata
- School of Bioscience, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Rebecca Brown
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Marta Gallis
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Naomi Meardon
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield S10 2JF, UK
| | - Thomas A.H. Newman
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield S10 2JF, UK
| | - Megan Plowright
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield S10 2JF, UK
| | - Domen Zafred
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | | | - Anthony J. Hodder
- School of Bioscience, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Deepa Bliss
- School of Bioscience, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Andrew Metcalfe
- School of Bioscience, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - James R. Edgar
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - David E. Gordon
- Department of Pathology, Emory University, Whitehead Building, Atlanta, GA, USA
| | - Jon R. Sayers
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Martin J. Nicklin
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Miles Carroll
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - PITCH Consortium
- School of Bioscience, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- Department of Pathology, Emory University, Whitehead Building, Atlanta, GA, USA
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield S10 2JF, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Paul J. Collini
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield S10 2JF, UK
| | - Stephen Brown
- School of Bioscience, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Thushan I. de Silva
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield S10 2JF, UK
| | - Andrew A. Peden
- School of Bioscience, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
5
|
Kumar D, Roy SS, Rastogi R, Arora K, Undale A, Gupta R, Arora NM, Kundu PK. VLP-ELISA for the Detection of IgG Antibodies against Spike, Envelope, and Membrane Antigens of SARS-CoV-2 in Indian Population. Vaccines (Basel) 2023; 11:vaccines11040743. [PMID: 37112655 PMCID: PMC10145915 DOI: 10.3390/vaccines11040743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Serological methods to conduct epidemiological survey are often directed only against the spike protein. To overcome this limitation, we have designed PRAK-03202, a virus-like particle (VLP), by inserting three antigens (Spike, envelope and membrane) of SARS-CoV-2 into a highly characterized S. cerevisiae-based D-Crypt™ platform. Methods: Dot blot analysis was performed to confirm the presence of S, E, and M proteins in PRAK-03202. The number of particles in PRAK-03202 was measured using nanoparticle tracking analysis (NTA). The sensitivity of VLP-ELISA was evaluated in 100 COVID positive. PRAK-03202 was produced at a 5 L scale using fed-batch fermentation. Results: Dot blot confirmed the presence of S, E, and M proteins in PRAK-03202. The number of particles in PRAK-03202 was 1.21 × 109 mL−1. In samples collected >14 days after symptom onset, the sensitivity, specificity, and accuracy of VLP-ELISA were 96%. We did not observe any significant differences in sensitivity, specificity, and accuracy when post-COVID-19 samples were used as negative controls compared to pre-COVID-samples. At a scale of 5 L, the total yield of PRAK-03202 was 100–120 mg/L. Conclusion: In conclusion, we have successfully developed an in-house VLP-ELISA to detect IgG antibodies against three antigens of SARS-CoV-2 as a simple and affordable alternative test.
Collapse
Affiliation(s)
- Dilip Kumar
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
| | - Sourav Singha Roy
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
| | - Ruchir Rastogi
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
| | - Kajal Arora
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
| | - Avinash Undale
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
| | - Reeshu Gupta
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
- Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Nupur Mehrotra Arora
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
| | - Prabuddha K. Kundu
- Research and Developmental Laboratory, Premas Biotech Private Limited, Sector 4, IMT Manesar, Gurgaon 122050, India (R.G.)
- Correspondence: or
| |
Collapse
|
6
|
Dolan KA, Dutta M, Kern DM, Kotecha A, Voth GA, Brohawn SG. Structure of SARS-CoV-2 M protein in lipid nanodiscs. eLife 2022; 11:e81702. [PMID: 36264056 PMCID: PMC9642992 DOI: 10.7554/elife.81702] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
SARS-CoV-2 encodes four structural proteins incorporated into virions, spike (S), envelope (E), nucleocapsid (N), and membrane (M). M plays an essential role in viral assembly by organizing other structural proteins through physical interactions and directing them to sites of viral budding. As the most abundant protein in the viral envelope and a target of patient antibodies, M is a compelling target for vaccines and therapeutics. Still, the structure of M and molecular basis for its role in virion formation are unknown. Here, we present the cryo-EM structure of SARS-CoV-2 M in lipid nanodiscs to 3.5 Å resolution. M forms a 50 kDa homodimer that is structurally related to the SARS-CoV-2 ORF3a viroporin, suggesting a shared ancestral origin. Structural comparisons reveal how intersubunit gaps create a small, enclosed pocket in M and large open cavity in ORF3a, consistent with a structural role and ion channel activity, respectively. M displays a strikingly electropositive cytosolic surface that may be important for interactions with N, S, and viral RNA. Molecular dynamics simulations show a high degree of structural rigidity in a simple lipid bilayer and support a role for M homodimers in scaffolding viral assembly. Together, these results provide insight into roles for M in coronavirus assembly and structure.
Collapse
Affiliation(s)
- Kimberly A Dolan
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, and California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Mandira Dutta
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of ChicagoChicagoUnited States
| | - David M Kern
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, and California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Abhay Kotecha
- Materials and Structural Analysis Division, Thermo Fisher ScientificEindhovenNetherlands
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of ChicagoChicagoUnited States
| | - Stephen G Brohawn
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, and California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
7
|
Chakraborty C, Bhattacharya M, Sharma AR, Dhama K, Agoramoorthy G. A comprehensive analysis of the mutational landscape of the newly emerging Omicron (B.1.1.529) variant and comparison of mutations with VOCs and VOIs. GeroScience 2022; 44:2393-2425. [PMID: 35989365 PMCID: PMC9393103 DOI: 10.1007/s11357-022-00631-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/20/2022] [Indexed: 01/18/2023] Open
Abstract
The Omicron variant is spreading rapidly throughout several countries. Thus, we comprehensively analyzed Omicron's mutational landscape and compared mutations with VOC/VOI. We analyzed SNVs throughout the genome, and AA variants (NSP and SP) in VOC/VOI, including Omicron. We generated heat maps to illustrate the AA variants with high mutation prevalence (> 75% frequency) of Omicron, which demonstrated eight mutations with > 90% prevalence in ORF1a and 29 mutations with > 75% prevalence in S-glycoprotein. A scatter plot for Omicron and VOC/VOI's cluster evaluation was computed. We performed a risk analysis of the antibody-binding risk among four mutations (L452, F490, P681, D614) and observed three mutations (L452R, F490S, D614G) destabilized antibody interactions. Our comparative study evaluated the properties of 28 emerging mutations of the S-glycoprotein of Omicron, and the ΔΔG values. Our results showed K417N with minimum and Q954H with maximum ΔΔG value. Furthermore, six important RBD mutations (G339D, S371L, N440K, G446S, T478K, Q498R) were chosen for comprehensive analysis for stabilizing/destabilizing properties and molecular flexibility. The G339D, S371L, N440K, and T478K were noted as stable mutations with 0.019 kcal/mol, 0.127 kcal/mol, 0.064 kcal/mol, and 1.009 kcal/mol. While, G446S and Q498R mutations showed destabilizing results. Simultaneously, among six RBD mutations, G339D, G446S, and Q498R mutations increased the molecular flexibility of S-glycoprotein. This study depicts the comparative mutational pattern of Omicron and other VOC/VOI, which will help researchers to design and deploy novel vaccines and therapeutic antibodies to fight against VOC/VOI, including Omicron.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal, 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | | |
Collapse
|
8
|
Zhang W, Li D, Xu B, Xu L, Lyu Q, Liu X, Li Z, Zhang J, Sun W, Ma Q, Qiao L, Liao P. Serum peptidome profiles immune response of COVID-19 Vaccine administration. Front Immunol 2022; 13:956369. [PMID: 36091008 PMCID: PMC9450691 DOI: 10.3389/fimmu.2022.956369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCoronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused significant loss of life and property. In response to the serious pandemic, recently developed vaccines against SARS-CoV-2 have been administrated to the public. Nevertheless, the research on human immunization response against COVID-19 vaccines is insufficient. Although much information associated with vaccine efficacy, safety and immunogenicity has been reported by pharmaceutical companies based on laboratory studies and clinical trials, vaccine evaluation needs to be extended further to better understand the effect of COVID-19 vaccines on human beings.MethodsWe performed a comparative peptidome analysis on serum samples from 95 participants collected at four time points before and after receiving CoronaVac. The collected serum samples were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to profile the serum peptides, and also subjected to humoral and cellular immune response analyses to obtain typical immunogenicity information.ResultsSignificant difference in serum peptidome profiles by MALDI-TOF MS was observed after vaccination. By supervised statistical analysis, a total of 13 serum MALDI-TOF MS feature peaks were obtained on day 28 and day 42 of vaccination. The feature peaks were identified as component C1q receptor, CD59 glycoprotein, mannose-binding protein C, platelet basic protein, CD99 antigen, Leucine-rich alpha-2-glycoprotein, integral membrane protein 2B, platelet factor 4 and hemoglobin subunits. Combining with immunogenicity analysis, the study provided evidence for the humoral and cellular immune responses activated by CoronaVac. Furthermore, we found that it is possible to distinguish neutralizing antibody (NAbs)-positive from NAbs-negative individuals after complete vaccination using the serum peptidome profiles by MALDI-TOF MS together with machine learning methods, including random forest (RF), partial least squares-discriminant analysis (PLS-DA), linear support vector machine (SVM) and logistic regression (LR).ConclusionsThe study shows the promise of MALDI-TOF MS-based serum peptidome analysis for the assessment of immune responses activated by COVID-19 vaccination, and discovered a panel of serum peptides biomarkers for COVID-19 vaccination and for NAbs generation. The method developed in this study can help not only in the development of new vaccines, but also in the post-marketing evaluation of developed vaccines.
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing, China
| | - Dandan Li
- Department of Chemistry, Fudan University, Shanghai, China
| | - Bin Xu
- Bioyong Technologics, Inc., Beijing, China
| | - Lanlan Xu
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing, China
| | - Qian Lyu
- Bioyong Technologics, Inc., Beijing, China
| | - Xiangyi Liu
- Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhijie Li
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing, China
| | - Jian Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Wei Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Qingwei Ma
- Bioyong Technologics, Inc., Beijing, China
| | - Liang Qiao
- Department of Chemistry, Fudan University, Shanghai, China
- *Correspondence: Pu Liao, ; Liang Qiao,
| | - Pu Liao
- Department of Clinical Laboratory, Chongqing General Hospital, Chongqing, China
- *Correspondence: Pu Liao, ; Liang Qiao,
| |
Collapse
|
9
|
Ochola L, Ogongo P, Mungai S, Gitaka J, Suliman S. Performance Evaluation of Lateral Flow Assays for Coronavirus Disease-19 Serology. Clin Lab Med 2022; 42:31-56. [PMID: 35153047 PMCID: PMC8563367 DOI: 10.1016/j.cll.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The coronavirus disease of 2019 (COVID-19) pandemic, caused by infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has undoubtedly resulted in significant morbidities, mortalities, and economic disruptions across the globe. Affordable and scalable tools to monitor the transmission dynamics of the SARS-CoV-2 virus and the longevity of induced antibodies will be paramount to monitor and control the pandemic as multiple waves continue to rage in many countries. Serologic assays detect humoral responses to the virus, to determine seroprevalence in target populations, or induction of antibodies at the individual level following either natural infection or vaccination. With multiple vaccines rolling out globally, serologic assays to detect anti-SARS-CoV-2 antibodies will be important tools to monitor the development of herd immunity. To address this need, serologic lateral flow assays (LFAs), which can be easily implemented for both population surveillance and home use, will be vital to monitor the evolution of the pandemic and inform containment measures. Such assays are particularly important for monitoring the transmission dynamics and durability of immunity generated by natural infections and vaccination, particularly in resource-limited settings. In this review, we discuss considerations for evaluating the accuracy of these LFAs, their suitability for different use cases, and implementation opportunities.
Collapse
Affiliation(s)
- Lucy Ochola
- Department of Tropical and Infectious Diseases, Institute of Primate Research, National Museums of Kenya, PO Box 24481, Nairobi 00502, Kenya
| | - Paul Ogongo
- Department of Tropical and Infectious Diseases, Institute of Primate Research, National Museums of Kenya, PO Box 24481, Nairobi 00502, Kenya; Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Samuel Mungai
- Directorate of Research and Innovation, Mount Kenya University, PO Box 342-01000, Thika, Kenya
| | - Jesse Gitaka
- Directorate of Research and Innovation, Mount Kenya University, PO Box 342-01000, Thika, Kenya
| | - Sara Suliman
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
10
|
A cell-based system combined with flow cytometry to evaluate antibody responses against SARS-CoV-2 transmembrane proteins in patients with COVID-19. STAR Protoc 2022; 3:101229. [PMID: 35287269 PMCID: PMC8860709 DOI: 10.1016/j.xpro.2022.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Sriwilaijaroen N, Suzuki Y. Roles of Sialyl Glycans in HCoV-OC43, HCoV-HKU1, MERS-CoV and SARS-CoV-2 Infections. Methods Mol Biol 2022; 2556:243-271. [PMID: 36175638 DOI: 10.1007/978-1-0716-2635-1_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ongoing seasonal HCoV-OC43 and HCoV-HKU1 (common cold), an ongoing zoonotic infection of highly lethal MERS-CoV in humans (MERS disease), and an ongoing pandemic SARS-CoV-2 (COVID-19) with high mutability giving some variants causing severe illness and death have been reported to attach to sialyl receptors via their spike (S) glycoproteins and via additional short spikes, hemagglutinin-esterase (HE) glycoproteins, for HCoV-OC43 and HCoV-HKU1. There is lack of zoonotic viruses that are origins of HCoV-HKU1 and the first recorded pandemic CoV (SARS-CoV-2) for studies. In this chapter, we review current knowledge of the roles of sialyl glycans in infections with these viruses in distinct infection stages. Determination of the similarities and differences in roles of sialyl glycans in infections with these viruses could lead to a better understanding of the pathogenesis and transmission that is essential for combating infections with CoVs that recognize sialyl glycans.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasuo Suzuki
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|