1
|
da Silva Lima LC, Woiski TD, de Moura JF, Rosati R, Minozzo JC, da Silva EH, Lucena ACR, Antunes BC, Caldas S, Duarte MM, Santos MA, Gusso RLF, de Moura EL, Silva APS, Potzecki L, Maria Ferreira D, Fernandes ES, de Figueiredo BC, de Souza LM. Immunogenic Potential of Selected Peptides from SARS-CoV-2 Proteins and Their Ability to Block S1/ACE-2 Binding. Viruses 2025; 17:165. [PMID: 40006920 PMCID: PMC11860825 DOI: 10.3390/v17020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
The first infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes the coronavirus disease 2019 (COVID-19), occurred in December 2019. Within a single month, the disease reached other countries, spreading in a rapid and generalized manner worldwide to cause the COVID-19 pandemic. In Brazil, the number of COVID-19 cases surpassed 38 million. This study was conducted to produce antibodies against SARS-CoV-2 and investigate the immunogenic potential of synthetic peptides containing partial sequences of the main proteins (spike, membrane, and nucleocapsid proteins). In addition, we evaluated the ability of the antibodies to impair the interaction between the spike S1 protein and human ACE-2 protein, which is the main route of entry of the virus into host cells. By immunizing horses with synthetic peptides, we obtained hyperimmune sera with specific anti-SARS-CoV-2 antibodies, which were fragmented to release the F(ab')2 portion that binds to the different SARS-CoV-2 proteins as a recombinant S1-protein and proteins from a viral lysate. The other F(ab')2 samples also impaired the interaction between S1 protein and ACE-2 proteins, showing high potential to prevent viral spreading.
Collapse
Affiliation(s)
- Lara Cristina da Silva Lima
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80035-000, PR, Brazil; (L.C.d.S.L.); (T.D.W.); (R.R.); (E.H.d.S.); (D.M.F.); (B.C.d.F.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Thiago Demetrius Woiski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80035-000, PR, Brazil; (L.C.d.S.L.); (T.D.W.); (R.R.); (E.H.d.S.); (D.M.F.); (B.C.d.F.)
| | | | - Roberto Rosati
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80035-000, PR, Brazil; (L.C.d.S.L.); (T.D.W.); (R.R.); (E.H.d.S.); (D.M.F.); (B.C.d.F.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - João Carlos Minozzo
- Centro de Produção e Pesquisa de Imunobiológicos, Piraquara 83302-200, PR, Brazil; (J.C.M.); (R.L.F.G.); (E.L.d.M.); (A.P.S.S.)
| | - Emeline Huk da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80035-000, PR, Brazil; (L.C.d.S.L.); (T.D.W.); (R.R.); (E.H.d.S.); (D.M.F.); (B.C.d.F.)
| | - Aline Castro Rodrigues Lucena
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80035-000, PR, Brazil; (L.C.d.S.L.); (T.D.W.); (R.R.); (E.H.d.S.); (D.M.F.); (B.C.d.F.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Bruno Cezar Antunes
- Centro de Produção e Pesquisa de Imunobiológicos, Piraquara 83302-200, PR, Brazil; (J.C.M.); (R.L.F.G.); (E.L.d.M.); (A.P.S.S.)
| | - Sérgio Caldas
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte 30510-010, MG, Brazil; (S.C.); (M.M.D.)
| | - Myrian Morato Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte 30510-010, MG, Brazil; (S.C.); (M.M.D.)
| | - Maurício Abreu Santos
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte 30510-010, MG, Brazil; (S.C.); (M.M.D.)
| | - Rubens Luiz Ferreira Gusso
- Centro de Produção e Pesquisa de Imunobiológicos, Piraquara 83302-200, PR, Brazil; (J.C.M.); (R.L.F.G.); (E.L.d.M.); (A.P.S.S.)
| | - Erickson Luiz de Moura
- Centro de Produção e Pesquisa de Imunobiológicos, Piraquara 83302-200, PR, Brazil; (J.C.M.); (R.L.F.G.); (E.L.d.M.); (A.P.S.S.)
| | - Ana Paula Santos Silva
- Centro de Produção e Pesquisa de Imunobiológicos, Piraquara 83302-200, PR, Brazil; (J.C.M.); (R.L.F.G.); (E.L.d.M.); (A.P.S.S.)
| | - Luciana Potzecki
- Centro de Produção e Pesquisa de Imunobiológicos, Piraquara 83302-200, PR, Brazil; (J.C.M.); (R.L.F.G.); (E.L.d.M.); (A.P.S.S.)
| | - Daniele Maria Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80035-000, PR, Brazil; (L.C.d.S.L.); (T.D.W.); (R.R.); (E.H.d.S.); (D.M.F.); (B.C.d.F.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80035-000, PR, Brazil; (L.C.d.S.L.); (T.D.W.); (R.R.); (E.H.d.S.); (D.M.F.); (B.C.d.F.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Bonald Cavalcante de Figueiredo
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80035-000, PR, Brazil; (L.C.d.S.L.); (T.D.W.); (R.R.); (E.H.d.S.); (D.M.F.); (B.C.d.F.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Lauro Mera de Souza
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80035-000, PR, Brazil; (L.C.d.S.L.); (T.D.W.); (R.R.); (E.H.d.S.); (D.M.F.); (B.C.d.F.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| |
Collapse
|
2
|
Silva-Aguiar RP, Teixeira DE, Peruchetti DB, Peres RAS, Alves SAS, Calil PT, Arruda LB, Costa LJ, Silva PL, Schmaier AH, Rocco PRM, Pinheiro AAS, Caruso-Neves C. Toll like receptor 4 mediates the inhibitory effect of SARS-CoV-2 spike protein on proximal tubule albumin endocytosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167155. [PMID: 38579939 DOI: 10.1016/j.bbadis.2024.167155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Tubular proteinuria is a common feature in COVID-19 patients, even in the absence of established acute kidney injury. SARS-CoV-2 spike protein (S protein) was shown to inhibit megalin-mediated albumin endocytosis in proximal tubule epithelial cells (PTECs). Angiotensin-converting enzyme type 2 (ACE2) was not directly involved. Since Toll-like receptor 4 (TLR4) mediates S protein effects in various cell types, we hypothesized that TLR4 could be participating in the inhibition of PTECs albumin endocytosis elicited by S protein. Two different models of PTECs were used: porcine proximal tubule cells (LLC-PK1) and human embryonic kidney cells (HEK-293). S protein reduced Akt activity by specifically inhibiting of threonine 308 (Thr308) phosphorylation, a process mediated by phosphoinositide-dependent kinase 1 (PDK1). GSK2334470, a PDK1 inhibitor, decreased albumin endocytosis and megalin expression mimicking S protein effect. S protein did not change total TLR4 expression but decreased its surface expression. LPS-RS, a TLR4 antagonist, also counteracted the effects of the S protein on Akt phosphorylation at Thr308, albumin endocytosis, and megalin expression. Conversely, these effects of the S protein were replicated by LPS, an agonist of TLR4. Incubation of PTECs with a pseudovirus containing S protein inhibited albumin endocytosis. Null or VSV-G pseudovirus, used as control, had no effect. LPS-RS prevented the inhibitory impact of pseudovirus containing the S protein on albumin endocytosis but had no influence on virus internalization. Our findings demonstrate that the inhibitory effect of the S protein on albumin endocytosis in PTECs is mediated through TLR4, resulting from a reduction in megalin expression.
Collapse
Affiliation(s)
- Rodrigo P Silva-Aguiar
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo A S Peres
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sarah A S Alves
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro T Calil
- Paulo de Góes Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana B Arruda
- Paulo de Góes Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana J Costa
- Paulo de Góes Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Silva
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Alvin H Schmaier
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Patricia R M Rocco
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Poulakou G, Royer PJ, Evgeniev N, Evanno G, Shneiker F, Marcelin AG, Vanhove B, Duvaux O, Marot S, Calvez V. Anti-SARS-CoV-2 glyco-humanized polyclonal antibody XAV-19: phase II/III randomized placebo-controlled trial shows acceleration to recovery for mild to moderate patients with COVID-19. Front Immunol 2024; 15:1330178. [PMID: 38694503 PMCID: PMC11061480 DOI: 10.3389/fimmu.2024.1330178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/27/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction XAV-19 is a glyco-humanized swine polyclonal antibody targeting SARS-CoV-2 with high neutralizing activity. The safety and clinical efficacy of XAV-19 were investigated in patients with mild to moderate COVID-19. Methods This phase II/III, multicentric, randomized, double-blind, placebo-controlled clinical trial was conducted to evaluate the safety and clinical efficacy of XAV-19 in patients with a seven-point WHO score of 2 to 4 at randomization, i.e., inpatients with COVID-19 requiring or not requiring low-flow oxygen therapy, and outpatients not requiring oxygen (EUROXAV trial, NCT04928430). Adult patients presenting in specialized or emergency units with confirmed COVID-19 and giving their consent to participate in the study were randomized to receive 150 mg of XAV-19 or placebo. The primary endpoint was the proportion of patients with aggravation within 8 days after treatment, defined as a worsening of the seven-point WHO score of at least one point between day 8 and day 1 (inclusion). The neutralization activity of XAV-19 against variants circulating during the trial was tested in parallel. Results From March 2021 to October 2022, 279 patients received either XAV-19 (N = 140) or placebo (N = 139). A slow enrollment and a low rate of events forced the termination of the premature trial. XAV-19 was well tolerated. Underpowered statistics did not allow the detection of any difference in the primary endpoint between the two groups or in stratified groups. Interestingly, analysis of the time to improvement (secondary endpoint) showed that XAV-19 significantly accelerated the recovery for patients with a WHO score of 2 or 3 (median at 7 days vs. 14 days, p = 0.0159), and even more for patients with a WHO score of 2 (4 days vs. 14 days, p = 0.0003). The neutralizing activity against Omicron and BA.2, BA.2.12.1, BA.4/5, and BQ.1.1 subvariants was shown. Discussion In this randomized placebo- controlled trial with premature termination, reduction of aggravation by XAV-19 at day 8 in patients with COVID-19 was not detectable. However, a significant reduction of the time to improvement for patients not requiring oxygen was observed. XAV-19 maintained a neutralizing activity against SARS-CoV-2 variants. Altogether, these data support a possible therapeutic interest for patients with mild to moderate COVID-19 requiring anti-SARS-CoV-2 neutralizing antibodies. Clinical Trial Registration https://clinicaltrials.gov/, identifier NCT04928430; https://www.clinicaltrialsregister.eu/about.html (EudraCT), identifier 2020-005979-12.
Collapse
Affiliation(s)
- Garyfallia Poulakou
- 3rd Department of Internal Medicine, Medical School, Sotiria General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Nikolay Evgeniev
- Department of Medical Oncology, Complex Oncology Center, Russe, Bulgaria
| | | | | | - Anne-Geneviève Marcelin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, Department of Virology, Paris, France
| | | | | | - Stéphane Marot
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, Department of Virology, Paris, France
| | - Vincent Calvez
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, Department of Virology, Paris, France
| |
Collapse
|
4
|
Horbach IS, de Souza Azevedo A, Schwarcz WD, Alves NDS, de Moura Dias B, Setatino BP, da Cruz Moura L, de Souza AF, Denani CB, da Silva SA, Pimentel TG, de Oliveira Silva Ferreira V, Azamor T, Ano Bom APD, da Penha Gomes Gouvea M, Mill JG, Valim V, Polese J, Campi-Azevedo AC, Peruhype-Magalhães V, Teixeira-Carvalho A, Martins-Filho OA, de Lima SMB, de Sousa Junior IP. Plaque Reduction Neutralization Test (PRNT) Accuracy in Evaluating Humoral Immune Response to SARS-CoV-2. Diseases 2024; 12:29. [PMID: 38248380 PMCID: PMC10814169 DOI: 10.3390/diseases12010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Massive vaccination positively impacted the SARS-CoV-2 pandemic, being a strategy to increase the titers of neutralizing antibodies (NAbs) in the population. Assessing NAb levels and understanding the kinetics of NAb responses is critical for evaluating immune protection. In this study, we optimized and validated a PRNT50 assay to assess 50% virus neutralization and evaluated its accuracy to measure NAbs to the original strain or variant of SARS-CoV-2. The optimal settings were selected, such as the cell (2 × 105 cells/well) and CMC (1.5%) concentrations and the viral input (~60 PFU/well) for PRNT-SARS-CoV-2 with cut-off point = 1.64 log5 based on the ROC curve (AUC = 0.999). The validated PRNT-SARS-CoV-2 assay presented high accuracy with an intraassay precision of 100% for testing samples with different NAb levels (low, medium, and high titers). The method displays high selectivity without cross-reactivity with dengue (DENV), measles (MV), zika (ZIKV), and yellow fever (YFV) viruses. In addition, the standardized PRNT-SARS-CoV-2 assay presented robustness when submitted to controlled variations. The validated PRNT assay was employed to test over 1000 specimens from subjects with positive or negative diagnoses for SARS-CoV-2 infection. Patients with severe COVID-19 exhibited higher levels of NAbs than those presenting mild symptoms for both the Wuhan strain and Omicron. In conclusion, this study provides a detailed description of an optimized and validated PRNT50 assay to monitor immune protection and to subsidize surveillance policies applied to epidemiologic studies of COVID-19.
Collapse
Affiliation(s)
- Ingrid Siciliano Horbach
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
- Programa de Pós-Graduação em Medicina Tropical, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Adriana de Souza Azevedo
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Waleska Dias Schwarcz
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Nathalia dos Santos Alves
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Brenda de Moura Dias
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Bruno Pimenta Setatino
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Luma da Cruz Moura
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Ariane Faria de Souza
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
| | - Caio Bidueira Denani
- Laboratório de Análise Imunomolecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (I.S.H.); (A.d.S.A.); (W.D.S.); (N.d.S.A.); (B.d.M.D.); (B.P.S.); (L.d.C.M.); (A.F.d.S.); (C.B.D.)
- Programa de Pós-Graduação em Medicina Tropical, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Stephanie Almeida da Silva
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Thiago Goes Pimentel
- Núcleo de Apoio Administrativo VDINV, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Victor de Oliveira Silva Ferreira
- Seção de Validação Analítica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
| | - Tamiris Azamor
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.P.D.A.B.)
| | - Ana Paula Dinis Ano Bom
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.P.D.A.B.)
| | - Maria da Penha Gomes Gouvea
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo (HUCAM-UFES/EBSERH), Vitória 29041-295, Brazil; (M.d.P.G.G.); (J.G.M.); (V.V.)
| | - José Geraldo Mill
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo (HUCAM-UFES/EBSERH), Vitória 29041-295, Brazil; (M.d.P.G.G.); (J.G.M.); (V.V.)
| | - Valéria Valim
- Hospital Universitário Cassiano Antônio Moraes, Universidade Federal do Espírito Santo (HUCAM-UFES/EBSERH), Vitória 29041-295, Brazil; (M.d.P.G.G.); (J.G.M.); (V.V.)
| | - Jessica Polese
- Programa de Pós-Graduação em Ciências Fisiológicas da Universidade Federal do Espírito Santo, Vitória 29500-000, Brazil;
| | - Ana Carolina Campi-Azevedo
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte 30190-002, Brazil; (A.C.C.-A.); (V.P.-M.); (A.T.-C.); (O.A.M.-F.)
| | - Vanessa Peruhype-Magalhães
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte 30190-002, Brazil; (A.C.C.-A.); (V.P.-M.); (A.T.-C.); (O.A.M.-F.)
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte 30190-002, Brazil; (A.C.C.-A.); (V.P.-M.); (A.T.-C.); (O.A.M.-F.)
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte 30190-002, Brazil; (A.C.C.-A.); (V.P.-M.); (A.T.-C.); (O.A.M.-F.)
| | - Sheila Maria Barbosa de Lima
- Departamento de Desenvolvimento Experimental e Pré-clínico (DEDEP), Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | | |
Collapse
|
5
|
Rodriguez-Nuñez M, Cepeda MDV, Bello C, Lopez MA, Sulbaran Y, Loureiro CL, Liprandi F, Jaspe RC, Pujol FH, Rangel HR. Neutralization of Different Variants of SARS-CoV-2 by a F(ab')2 Preparation from Sera of Horses Immunized with the Viral Receptor Binding Domain. Antibodies (Basel) 2023; 12:80. [PMID: 38131802 PMCID: PMC10740526 DOI: 10.3390/antib12040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
The Receptor Binding Domain (RBD) of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, is the functional region of the viral Spike protein (S), which is involved in cell attachment to target cells. The virus has accumulated progressively mutations in its genome, particularly in the RBD region, many of them associated with immune evasion of the host neutralizing antibodies. Some of the viral lineages derived from this evolution have been classified as Variant of Interest (VOI) or Concern (VOC). The neutralizing capacity of a F(ab')2 preparation from sera of horses immunized with viral RBD was evaluated by lytic plaque reduction assay against different SARS-CoV-2 variants. A F(ab')2 preparation of a hyperimmune serum after nine immunizations with RBD exhibited a high titer of neutralizing antibodies against the ancestral-like strain (1/18,528). A reduction in the titer of the F(ab')2 preparation was observed against the different variants tested compared to the neutralizing activity against the ancestral-like strain. The highest reduction in the neutralization titer was observed for the Omicron VOC (4.7-fold), followed by the Mu VOI (2.6), Delta VOC (1.8-fold), and Gamma VOC (1.5). Even if a progressive reduction in the neutralizing antibodies titer against the different variants evaluated was observed, the serum still exhibited a neutralizing titer against the Mu VOI and the Omicron VOC (1/7113 and 1/3918, respectively), the evaluated strains most resistant to neutralization. Therefore, the preparation retained neutralizing activity against all the strains tested.
Collapse
Affiliation(s)
- Mariajosé Rodriguez-Nuñez
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas 1020, Venezuela; (M.R.-N.); (Y.S.); (C.L.L.); (R.C.J.)
| | - Mariana del Valle Cepeda
- Biotecfar S.A., Facultad de Farmacia, Universidad Central de Venezuela, Caracas 1050, Venezuela; (M.d.V.C.); (C.B.); (M.A.L.)
| | - Carlos Bello
- Biotecfar S.A., Facultad de Farmacia, Universidad Central de Venezuela, Caracas 1050, Venezuela; (M.d.V.C.); (C.B.); (M.A.L.)
| | - Miguel Angel Lopez
- Biotecfar S.A., Facultad de Farmacia, Universidad Central de Venezuela, Caracas 1050, Venezuela; (M.d.V.C.); (C.B.); (M.A.L.)
| | - Yoneira Sulbaran
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas 1020, Venezuela; (M.R.-N.); (Y.S.); (C.L.L.); (R.C.J.)
| | - Carmen Luisa Loureiro
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas 1020, Venezuela; (M.R.-N.); (Y.S.); (C.L.L.); (R.C.J.)
| | - Ferdinando Liprandi
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas 1020, Venezuela;
| | - Rossana Celeste Jaspe
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas 1020, Venezuela; (M.R.-N.); (Y.S.); (C.L.L.); (R.C.J.)
| | - Flor Helene Pujol
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas 1020, Venezuela; (M.R.-N.); (Y.S.); (C.L.L.); (R.C.J.)
| | - Héctor Rafael Rangel
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas 1020, Venezuela; (M.R.-N.); (Y.S.); (C.L.L.); (R.C.J.)
| |
Collapse
|
6
|
Servian CDP, Spadafora-Ferreira M, dos Anjos DCC, Guilarde AO, Gomes-Junior AR, Borges MASB, Masson LC, Silva JMM, de Lima MHA, Moraes BGN, Souza SM, Xavier LE, de Oliveira DCA, Batalha-Carvalho JV, Moro AM, Bocca AL, Pfrimer IAH, Costa NL, Feres VCDR, Fiaccadori FS, Souza M, Gardinassi LG, Durigon EL, Romão PRT, Jorge SAC, Coelho V, Botosso VF, Fonseca SG. Distinct anti-NP, anti-RBD and anti-Spike antibody profiles discriminate death from survival in COVID-19. Front Immunol 2023; 14:1206979. [PMID: 37876932 PMCID: PMC10591157 DOI: 10.3389/fimmu.2023.1206979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/04/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces rapid production of IgM, IgA, and IgG antibodies directed to multiple viral antigens that may have impact diverse clinical outcomes. Methods We evaluated IgM, IgA, and IgG antibodies directed to the nucleocapsid (NP), IgA and IgG to the Spike protein and to the receptor-binding domain (RBD), and the presence of neutralizing antibodies (nAb), in a cohort of unvaccinated SARS-CoV-2 infected individuals, in the first 30 days of post-symptom onset (PSO) (T1). Results This study included 193 coronavirus disease 2019 (COVID-19) participants classified as mild, moderate, severe, critical, and fatal and 27 uninfected controls. In T1, we identified differential antibody profiles associated with distinct clinical presentation. The mild group presented lower levels of anti-NP IgG, and IgA (vs moderate and severe), anti-NP IgM (vs severe, critical and fatal), anti-Spike IgA (vs severe and fatal), and anti-RBD IgG (vs severe). The moderate group presented higher levels of anti-RBD IgA, comparing with severe group. The severe group presented higher levels of anti-NP IgA (vs mild and fatal) and anti-RBD IgG (vs mild and moderate). The fatal group presented higher levels of anti-NP IgM and anti-Spike IgA (vs mild), but lower levels of anti-NP IgA (vs severe). The levels of nAb was lower just in mild group compared to severe, critical, and fatal groups, moreover, no difference was observed among the more severe groups. In addition, we studied 82 convalescent individuals, between 31 days to 6 months (T2) or more than 6 months (T3), PSO, those: 12 mild, 26 moderate, and 46 severe plus critical. The longitudinal analyzes, for the severe plus critical group showed lower levels of anti-NP IgG, IgA and IgM, anti-Spike IgA in relation T3. The follow-up in the fatal group, reveals that the levels of anti-spike IgG increased, while anti-NP IgM levels was decreased along the time in severe/critical and fatal as well as anti-NP IgG and IgA in several/critical groups. Discussion In summary, the anti-NP IgA and IgG lower levels and the higher levels of anti-RBD and anti-Spike IgA in fatal compared to survival group of individuals admitted to the intensive care unit (ICU). Collectively, our data discriminate death from survival, suggesting that anti-RBD IgA and anti-Spike IgA may play some deleterious effect, in contrast with the potentially protective effect of anti-NP IgA and IgG in the survival group.
Collapse
Affiliation(s)
- Carolina do Prado Servian
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Déborah Carolina Carvalho dos Anjos
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Adriana Oliveira Guilarde
- Departamento de Patologia Tropical e Dermatologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
- Hospital das Clínicas, Faculdade de Medicina, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Antonio Roberto Gomes-Junior
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Moara Alves Santa Bárbara Borges
- Departamento de Patologia Tropical e Dermatologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
- Hospital das Clínicas, Faculdade de Medicina, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Letícia Carrijo Masson
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - João Marcos Maia Silva
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | | | - Sueli Meira Souza
- Laboratório Prof Margarida Dobler Komma, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Luiz Eterno Xavier
- Hospital das Clínicas, Faculdade de Medicina, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | | | - Ana Maria Moro
- Laboratório de Biofármacos, Instituto Butantan, São Paulo, SP, Brazil
- Instituto de Investigação em Imunologia – Instituto Nacional de Ciências e Tecnologia (III-INCT), São Paulo, SP, Brazil
| | - Anamélia Lorenzetti Bocca
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Nádia Lago Costa
- Faculdade de Odontologia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Fabiola Souza Fiaccadori
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Menira Souza
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Luiz Gustavo Gardinassi
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Edison Luiz Durigon
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Pedro Roosevelt Torres Romão
- Laboratório de Imunologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Verônica Coelho
- Instituto de Investigação em Imunologia – Instituto Nacional de Ciências e Tecnologia (III-INCT), São Paulo, SP, Brazil
- Laboratório de Imunologia, Instituto do Coração (InCor), Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brazil
- Laboratório de Histocompatibilidade e Imunidade Celular, Hospital das Clínicas Hospital da Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | | | - Simone Gonçalves Fonseca
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
- Instituto de Investigação em Imunologia – Instituto Nacional de Ciências e Tecnologia (III-INCT), São Paulo, SP, Brazil
| |
Collapse
|
7
|
Findlay-Wilson S, Easterbrook L, Smith S, Pope N, Aldridge M, Humphries G, Schuhmann H, Ngabo D, Rayner E, Otter A, Coleman T, Hicks B, Halkerston R, Apostolakis K, Taylor S, Fotheringham S, Horton A, CanoCejas I, Wand M, Tree JA, Sutton M, Graham V, Hewson R, Dowall S. Refinement of an ovine-based immunoglobulin therapy against SARS-CoV-2, with comparison of whole IgG versus F(ab') 2 fragments. Sci Rep 2023; 13:13912. [PMID: 37626085 PMCID: PMC10457378 DOI: 10.1038/s41598-023-40277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The development of new therapies against SARS-CoV-2 is required to extend the toolkit of intervention strategies to combat the global pandemic. In this study, hyperimmune plasma from sheep immunised with whole spike SARS-CoV-2 recombinant protein has been used to generate candidate products. In addition to purified IgG, we have refined candidate therapies by removing non-specific IgG via affinity binding along with fragmentation to eliminate the Fc region to create F(ab')2 fragments. These preparations were evaluated for in vitro activity and demonstrated to be strongly neutralising against a range of SARS-CoV-2 strains, including Omicron B2.2. In addition, their protection against disease manifestations and viral loads were assessed using a hamster SARS-CoV-2 infection model. Results demonstrated protective effects of both IgG and F(ab')2, with the latter requiring sequential dosing to maintain in vivo activity due to rapid clearance from the circulation.
Collapse
Affiliation(s)
| | - Linda Easterbrook
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Sandra Smith
- International Therapeutic Proteins Ltd, Longford, TAS, 7301, Australia
| | - Neville Pope
- International Therapeutic Proteins Ltd, Goleigh Farm, Selborne, GU34 3SE, Hampshire, UK
| | | | - Gareth Humphries
- Native Antigen Company, Langford Locks, Kidlington, Oxford, OX5 1LH, UK
| | - Holger Schuhmann
- Native Antigen Company, Langford Locks, Kidlington, Oxford, OX5 1LH, UK
| | - Didier Ngabo
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Emma Rayner
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Ashley Otter
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Thomas Coleman
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Bethany Hicks
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Rachel Halkerston
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Kostis Apostolakis
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Stephen Taylor
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Susan Fotheringham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Amanda Horton
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Irene CanoCejas
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Matthew Wand
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Julia A Tree
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Mark Sutton
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Victoria Graham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Roger Hewson
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Stuart Dowall
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK.
| |
Collapse
|
8
|
Masson LC, Servian CDP, Jardim VH, Dos Anjos D, Dorta ML, Batalha-Carvalho JV, Moro AM, Romão PRT, Souza M, Fiaccadori FS, Fonseca SG. Heterologous Booster with BNT162b2 Induced High Specific Antibody Levels in CoronaVac Vaccinees. Vaccines (Basel) 2023; 11:1183. [PMID: 37514999 PMCID: PMC10383528 DOI: 10.3390/vaccines11071183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Immune responses after COVID-19 vaccination should be evaluated in different populations around the world. This study compared antibody responses induced by ChAdOx1 nCoV-19, CoronaVac, and BNT162b2 vaccines. Blood samples from vaccinees were collected pre- and post-vaccinations with the second and third doses. The study enrolled 78 vaccinees, of whom 62.8% were women, with the following median ages: 26 years-ChAdOx1 nCoV-19; 40 years-CoronaVac; 30 years-BNT162b2. Serum samples were quantified for anti-RBD IgG and anti-RBD IgA and anti-spike IgG by ELISA. After two vaccine doses, BNT162b2 vaccinees produced higher levels of anti-RBD IgA and IgG, and anti-spike IgG compared to ChAdOx1 nCoV-19 and CoronaVac vaccinees. The third dose booster with BNT162b2 induced higher levels of anti-RBD IgA and IgG, and anti-spike IgG in CoronaVac vaccinees. Individuals who reported a SARS-CoV-2 infection before or during the study had higher anti-RBD IgA and IgG production. In conclusion, two doses of the studied vaccines induced detectable levels of anti-RBD IgA and IgG and anti-spike IgG in vaccinees. The heterologous booster with BNT162b2 increased anti-RBD IgA and IgG and anti-spike IgG levels in CoronaVac vaccinees and anti-RBD IgA levels in ChAdOx1 nCoV-19 vaccinees. Furthermore, SARS-CoV-2 infection induced higher anti-RBD IgA and IgG levels in CoronaVac vaccinees.
Collapse
Affiliation(s)
- Letícia Carrijo Masson
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil
| | - Carolina do Prado Servian
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil
| | - Vitor Hugo Jardim
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil
| | - Déborah Dos Anjos
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil
| | - Miriam Leandro Dorta
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil
| | | | - Ana Maria Moro
- Laboratório de Biofármacos, Instituto Butantan, São Paulo 05503-900, SP, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (iii-INCT), Goiânia 74605-050, GO, Brazil
| | - Pedro Roosevelt Torres Romão
- Laboratório de Imunologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, RS, Brazil
| | - Menira Souza
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil
| | - Fabiola Souza Fiaccadori
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil
| | - Simone Gonçalves Fonseca
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, GO, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (iii-INCT), Goiânia 74605-050, GO, Brazil
| |
Collapse
|
9
|
PEGylation Prolongs the Half-Life of Equine Anti-SARS-CoV-2 Specific F(ab') 2. Int J Mol Sci 2023; 24:ijms24043387. [PMID: 36834803 PMCID: PMC9963672 DOI: 10.3390/ijms24043387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Therapeutic antibodies-F(ab')2 obtained from hyperimmune equine plasma could treat emerging infectious diseases rapidly because of their high neutralization activity and high output. However, the small-sized F(ab')2 is rapidly eliminated by blood circulation. This study explored PEGylation strategies to maximize the half-life of equine anti-SARS-CoV-2 specific F(ab')2. Equine anti-SARS-CoV-2 specific F(ab')2 were combined with 10 KDa MAL-PEG-MAL in optimum conditions. Specifically, there were two strategies: Fab-PEG and Fab-PEG-Fab, F(ab')2 bind to a PEG or two PEG, respectively. A single ion exchange chromatography step accomplished the purification of the products. Finally, the affinity and neutralizing activity was evaluated by ELISA and pseudovirus neutralization assay, and ELISA detected the pharmacokinetic parameters. The results displayed that equine anti-SARS-CoV-2 specific F(ab')2 has high specificity. Furthermore, PEGylation F(ab')2-Fab-PEG-Fab had a longer half-life than specific F(ab')2. The serum half-life of Fab-PEG-Fab, Fab-PEG, and specific F(ab')2 were 71.41 h, 26.73 h, and 38.32 h, respectively. The half-life of Fab-PEG-Fab was approximately two times as long as the specific F(ab')2. Thus far, PEGylated F(ab')2 has been prepared with high safety, high specificity, and a longer half-life, which could be used as a potential treatment for COVID-19.
Collapse
|
10
|
Alves VS, Santos SACS, Leite-Aguiar R, Paiva-Pereira E, dos Reis RR, Calazans ML, Fernandes GG, Antônio LS, de Lima EV, Kurtenbach E, Silva JL, Fontes-Dantas FL, Passos GF, Figueiredo CP, Coutinho-Silva R, Savio LEB. SARS-CoV-2 Spike protein alters microglial purinergic signaling. Front Immunol 2023; 14:1158460. [PMID: 37114062 PMCID: PMC10126242 DOI: 10.3389/fimmu.2023.1158460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Despite long-term sequelae of COVID-19 are emerging as a substantial public health concern, the mechanism underlying these processes still unclear. Evidence demonstrates that SARS-CoV-2 Spike protein can reach different brain regions, irrespective of viral brain replication resulting in activation of pattern recognition receptors (PRRs) and neuroinflammation. Considering that microglia dysfunction, which is regulated by a whole array of purinergic receptors, may be a central event in COVID-19 neuropathology, we investigated the impact of SARS-CoV-2 Spike protein on microglial purinergic signaling. Here, we demonstrate that cultured microglial cells (BV2 line) exposed to Spike protein induce ATP secretion and upregulation of P2Y6, P2Y12, NTPDase2 and NTPDase3 transcripts. Also, immunocytochemistry analysis shows that spike protein increases the expression of P2X7, P2Y1, P2Y6, and P2Y12 in BV2 cells. Additional, hippocampal tissue of Spike infused animals (6,5ug/site, i.c.v.) presents increased mRNA levels of P2X7, P2Y1, P2Y6, P2Y12, NTPDase1, and NTPDase2. Immunohistochemistry experiments confirmed high expression of the P2X7 receptor in microglial cells in CA3/DG hippocampal regions after spike infusion. These findings suggest that SARS-CoV-2 Spike protein modulates microglial purinergic signaling and opens new avenues for investigating the potential of purinergic receptors to mitigate COVID-19 consequences.
Collapse
Affiliation(s)
- Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Raíssa Leite-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elaine Paiva-Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Rodrigues dos Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana L. Calazans
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Leticia Silva Antônio
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emanuelle V. de Lima
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson Lima Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fabricia Lima Fontes-Dantas
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcântara Gomes Institute Biology (IBRAG), Universidade Estadual do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | | | | | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Luiz Eduardo Baggio Savio,
| |
Collapse
|
11
|
Li E, Han Q, Bi J, Wei S, Wang S, Zhang Y, Liu J, Feng N, Wang T, Wu J, Yang S, Zhao Y, Liu B, Yan F, Xia X. Therapeutic equine hyperimmune antibodies with high and broad-spectrum neutralizing activity protect rodents against SARS-CoV-2 infection. Front Immunol 2023; 14:1066730. [PMID: 36875106 PMCID: PMC9981790 DOI: 10.3389/fimmu.2023.1066730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
The emergence of SARS-CoV-2 variants stresses the continued need for broad-spectrum therapeutic antibodies. Several therapeutic monoclonal antibodies or cocktails have been introduced for clinical use. However, unremitting emerging SARS-CoV-2 variants showed reduced neutralizing efficacy by vaccine induced polyclonal antibodies or therapeutic monoclonal antibodies. In our study, polyclonal antibodies and F(ab')2 fragments with strong affinity produced after equine immunization with RBD proteins produced strong affinity. Notably, specific equine IgG and F(ab')2 have broad and high neutralizing activity against parental virus, all SARS-CoV-2 variants of concern (VOCs), including B.1.1,7, B.1.351, B.1.617.2, P.1, B.1.1.529 and BA.2, and all variants of interest (VOIs) including B.1.429, P.2, B.1.525, P.3, B.1.526, B.1.617.1, C.37 and B.1.621. Although some variants weaken the neutralizing ability of equine IgG and F(ab')2 fragments, they still exhibited superior neutralization ability against mutants compared to some reported monoclonal antibodies. Furthermore, we tested the pre-exposure and post-exposure protective efficacy of the equine immunoglobulin IgG and F(ab')2 fragments in lethal mouse and susceptible golden hamster models. Equine immunoglobulin IgG and F(ab')2 fragments effectively neutralized SARS-CoV-2 in vitro, fully protected BALB/c mice from the lethal challenge, and reduced golden hamster's lung pathological change. Therefore, equine pAbs are an adequate, broad coverage, affordable and scalable potential clinical immunotherapy for COVID-19, particularly for SARS-CoV-2 VOCs or VOIs.
Collapse
Affiliation(s)
- Entao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Qiuxue Han
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Veterinary Medicine, Jilin Agriculture University, Changchun, China
| | - Jinhao Bi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Institute of Laboratory Animal Science, Chinese Academy of Medical Science and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Shimeng Wei
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Institute of Laboratory Animal Science, Chinese Academy of Medical Science and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Shen Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ying Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jun Wu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Liu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
12
|
The major role of junctional diversity in the horse antibody repertoire. Mol Immunol 2022; 151:231-241. [PMID: 36179605 DOI: 10.1016/j.molimm.2022.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022]
Abstract
The antibody repertoire (Rep-seq) sequencing revolutionized the diversity of antigen B cell receptor studies, allowing deep and quantitative analysis to decipher the role of adaptive immunity in health and disease. Particularly, horse (Equus caballus) polyclonal antibodies have been produced and used since the century XIX to treat and prophylaxis diphtheria, tuberculosis, tetanus, pneumonia, and, more recently, COVID-19. However, our knowledge about the horse B cell receptors repertories is minimal. We present a deep horse antibody heavy chain repertoire (IGH) characterization of non-infected horses using NGS (Next generation sequencing). This study obtained a mean of 248,169 unique IgM clones and 66,141 unique IgG clones from four domestic adult horses. Rarefaction analysis showed sequence coverage was between 52 % and 82 % in IgM and IgG isotypes. We observed that besides horses antibody can use all functional IGHV genes, around 80 % of their antibodies use only three IGHV gene segments, and around 55 % use only one IGHJ gene segment. This limited VJ diversity seems to be compensated by the junctional diversity of these antibodies. We observed that the junctional diversity in horse antibodies is widespread, present in more than 90 % of horse antibodies. Besides this, the length of this region seems to be higher in horse antibodies than in other species. N1 and N2 nucleotides addition range from 0 to 111 nucleotides. In addition, around 45 % of the antibody clones have more than ten nucleotides in both the N1 and N2 junction regions. This diversity mechanism may be one of the most important in providing variability to the equine antibody repertoire. This study provides new insights regarding horse antibody composition, diversity generation, and particularities compared to other species, such as the frequency and length of N nucleotide addition. This study also points out the urgent need to better characterize TdT in horses and other species to better understand antibody repertoire characteristics.
Collapse
|
13
|
da Costa CBP, Carvalho VRD, Ferreira LLC, Mattos JLC, Garcia LDM, Antunes MDS, Martins FJ, Ratcliffe NA, Cisne R, Castro HC. Production of hyperimmune sera: a study of digestion and fractionation methodologies for the purification process of heterologous immunoglobulins. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2124421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Camila Braz Pereira da Costa
- Instituto Vital Brazil, Niterói, Brazil
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | | | | | | | | | | | - Francislene Juliana Martins
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Brazil
| | - Norman A. Ratcliffe
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Department of Biosciences, Swansea University, Swansea, UK
| | - Rafael Cisne
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Helena C. Castro
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
14
|
Ligiero CBP, Fernandes TS, D'Amato DL, Gaspar FV, Duarte PS, Strauch MA, Fonseca JG, Meirelles LGR, Bento da Silva P, Azevedo RB, Aparecida de Souza Martins G, Archanjo BS, Buarque CD, Machado G, Percebom AM, Ronconi CM. Influence of particle size on the SARS-CoV-2 spike protein detection using IgG-capped gold nanoparticles and dynamic light scattering. MATERIALS TODAY. CHEMISTRY 2022; 25:100924. [PMID: 35475288 PMCID: PMC9023328 DOI: 10.1016/j.mtchem.2022.100924] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 05/03/2023]
Abstract
Due to the unprecedented and ongoing nature of the coronavirus outbreak, the development of rapid immunoassays to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its highly contagious variants is an important and challenging task. Here, we report the development of polyclonal antibody-functionalized spherical gold nanoparticle biosensors as well as the influence of the nanoparticle sizes on the immunoassay response to detect the SARS-CoV-2 spike protein by dynamic light scattering. By monitoring the increment in the hydrodynamic diameter (ΔDH) by dynamic light scattering measurements in the antigen-antibody interaction, SARS-CoV-2 S-protein can be detected in only 5 min. The larger the nanoparticles, the larger ΔDH in the presence of spike protein. From adsorption isotherm, the calculated binding constant (K D ) was 83 nM and the estimated limit of detection was 13 ng/mL (30 pM). The biosensor was stable up to 90 days at 4 °C. Therefore, the biosensor developed in this work could be potentially applied as a fast and sensible immunoassay to detect SARS-CoV-2 infection in patient samples.
Collapse
Affiliation(s)
- C B P Ligiero
- Departamento de Química Inorgânica, Universidade Federal Fluminense (UFF), Campus Do Valonguinho, Outeiro de São João Batista, S/n, 24020-141, Niterói, RJ, Brazil
| | - T S Fernandes
- Departamento de Química Inorgânica, Universidade Federal Fluminense (UFF), Campus Do Valonguinho, Outeiro de São João Batista, S/n, 24020-141, Niterói, RJ, Brazil
| | - D L D'Amato
- Departamento de Química Inorgânica, Universidade Federal Fluminense (UFF), Campus Do Valonguinho, Outeiro de São João Batista, S/n, 24020-141, Niterói, RJ, Brazil
| | - F V Gaspar
- Departamento de Química Inorgânica, Universidade Federal Fluminense (UFF), Campus Do Valonguinho, Outeiro de São João Batista, S/n, 24020-141, Niterói, RJ, Brazil
- Departamento de Química, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, 22451-900, Brazil
| | - P S Duarte
- Departamento de Química, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, 22451-900, Brazil
| | - M A Strauch
- Gerência de Desenvolvimento Tecnológico, Instituto Vital Brazil, Niterói, RJ, 24230-410, Brazil
| | - J G Fonseca
- Gerência de Desenvolvimento Tecnológico, Instituto Vital Brazil, Niterói, RJ, 24230-410, Brazil
| | - L G R Meirelles
- Fazenda Instituto Vital Brazil, Niterói, RJ, 24230-410, Brazil
| | - P Bento da Silva
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - R B Azevedo
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - G Aparecida de Souza Martins
- Programa de Pós-graduação Em Ciência e Tecnologia de Alimentos, Universidade Federal Do Tocantins, 77001-090, Brazil
| | - B S Archanjo
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, RJ, 25250-020, Brazil
| | - C D Buarque
- Departamento de Química, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, 22451-900, Brazil
| | - G Machado
- Centro de Tecnologias Estratégicas Do Nordeste, Av. Prof. Luiz Freire 01, Recife, Pernambuco, 50740-540, Brazil
| | - A M Percebom
- Departamento de Química, Pontifícia Universidade Católica Do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, 22451-900, Brazil
| | - C M Ronconi
- Departamento de Química Inorgânica, Universidade Federal Fluminense (UFF), Campus Do Valonguinho, Outeiro de São João Batista, S/n, 24020-141, Niterói, RJ, Brazil
| |
Collapse
|
15
|
Parcial ALN, Salomão NG, Portari EA, Arruda LV, de Carvalho JJ, de Matos Guedes HL, Conde TC, Moreira ME, Batista MM, Paes MV, Rabelo K, Gomes-Silva A. SARS-CoV-2 Is Persistent in Placenta and Causes Macroscopic, Histopathological, and Ultrastructural Changes. Viruses 2022; 14:1885. [PMID: 36146692 PMCID: PMC9500736 DOI: 10.3390/v14091885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 is a virus that belongs to the Betacoronavirus genus of the Coronaviridae family. Other coronaviruses, such as SARS-CoV and MERS-CoV, were associated with complications in pregnant women. Therefore, this study aimed to report the clinical history of five pregnant women infected with SARS-CoV-2 (four symptomatic and one asymptomatic who gave birth to a stillborn child) during the COVID-19 pandemic. They gave birth between August 2020 to January 2021, a period in which there was still no vaccination for COVID-19 in Brazil. In addition, their placental alterations were later investigated, focusing on macroscopic, histopathological, and ultrastructural aspects compared to a prepandemic sample. Three of five placentas presented SARS-CoV-2 RNA detected by RT-PCRq at least two to twenty weeks after primary pregnancy infection symptoms, and SARS-CoV-2 spike protein was detected in all placentas by immunoperoxidase assay. The macroscopic evaluation of the placentas presented congested vascular trunks, massive deposition of fibrin, areas of infarctions, and calcifications. Histopathological analysis showed fibrin deposition, inflammatory infiltrate, necrosis, and blood vessel thrombosis. Ultrastructural aspects of the infected placentas showed a similar pattern of alterations between the samples, with predominant characteristics of apoptosis and detection of virus-like particles. These findings contribute to a better understanding of the consequences of SARS-CoV-2 infection in placental tissue, vertical transmission.
Collapse
Affiliation(s)
- André Luiz N. Parcial
- Interdisciplinary Laboratory of Medical Research, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro 21040900, Brazil
| | - Natália Gedeão Salomão
- Interdisciplinary Laboratory of Medical Research, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro 21040900, Brazil
| | - Elyzabeth Avvad Portari
- Pathological Anatomy, Fernandes Figueira Institute, Oswaldo Cruz Foundation, Rio de Janeiro 22250020, Brazil
| | - Laíza Vianna Arruda
- Interdisciplinary Laboratory of Medical Research, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro 21040900, Brazil
| | - Jorge José de Carvalho
- Laboratory of Ultrastructure and Tissue Biology, Rio de Janeiro State University, Rio de Janeiro 20551030, Brazil
| | - Herbert Leonel de Matos Guedes
- Interdisciplinary Laboratory of Medical Research, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro 21040900, Brazil
| | | | - Maria Elizabeth Moreira
- Pathological Anatomy, Fernandes Figueira Institute, Oswaldo Cruz Foundation, Rio de Janeiro 22250020, Brazil
| | - Marcelo Meuser Batista
- Pathological Anatomy, Fernandes Figueira Institute, Oswaldo Cruz Foundation, Rio de Janeiro 22250020, Brazil
| | - Marciano Viana Paes
- Interdisciplinary Laboratory of Medical Research, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro 21040900, Brazil
| | - Kíssila Rabelo
- Laboratory of Ultrastructure and Tissue Biology, Rio de Janeiro State University, Rio de Janeiro 20551030, Brazil
| | - Adriano Gomes-Silva
- Interdisciplinary Laboratory of Medical Research, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro 21040900, Brazil
- Mycobacteriosis Clinical Research Laboratory, National Institute of Infectious Diseases Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro 21040900, Brazil
| |
Collapse
|
16
|
Barbier M, Lee KS, Vikharankar MS, Rajpathak SN, Kadam N, Wong TY, Russ BP, Cyphert HA, Miller OA, Rader NA, Cooper M, Kang J, Sen-Kilic E, Wong ZY, Winters MT, Bevere JR, Martinez I, Devarumath R, Shaligram US, Damron FH. Passive immunization with equine RBD-specific Fab protects K18-hACE2-mice against Alpha or Beta variants of SARS-CoV-2. Front Immunol 2022; 13:948431. [PMID: 36091051 PMCID: PMC9450042 DOI: 10.3389/fimmu.2022.948431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Emergence of variants of concern (VOC) during the COVID-19 pandemic has contributed to the decreased efficacy of therapeutic monoclonal antibody treatments for severe cases of SARS-CoV-2 infection. In addition, the cost of creating these therapeutic treatments is high, making their implementation in low- to middle-income countries devastated by the pandemic very difficult. Here, we explored the use of polyclonal EpF(ab’)2 antibodies generated through the immunization of horses with SARS-CoV-2 WA-1 RBD conjugated to HBsAg nanoparticles as a low-cost therapeutic treatment for severe cases of disease. We determined that the equine EpF(ab’)2 bind RBD and neutralize ACE2 receptor binding by virus for all VOC strains tested except Omicron. Despite its relatively quick clearance from peripheral circulation, a 100μg dose of EpF(ab’)2 was able to fully protect mice against severe disease phenotypes following intranasal SARS-CoV-2 challenge with Alpha and Beta variants. EpF(ab’)2 administration increased survival while subsequently lowering disease scores and viral RNA burden in disease-relevant tissues. No significant improvement in survival outcomes or disease scores was observed in EpF(ab’)2-treated mice challenged using the Delta variant at 10μg or 100µg doses. Overall, the data presented here provide a proof of concept for the use of EpF(ab’)2 in the prevention of severe SARS-CoV-2 infections and underscore the need for either variant-specific treatments or variant-independent therapeutics for COVID-19.
Collapse
Affiliation(s)
- Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Katherine S. Lee
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Mayur S. Vikharankar
- Research and Development Department, Serum Institute of India Pvt. Ltd., Pune, India
- Savitribai Phule Pune University, Pune, India
| | - Shriram N. Rajpathak
- Research and Development Department, Serum Institute of India Pvt. Ltd., Pune, India
| | - Nandkumar Kadam
- Research and Development Department, Isera Biological Pvt. Ltd., Pune, India
| | - Ting Y. Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Brynnan P. Russ
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Holly A. Cyphert
- Department of Biological Sciences, Marshall University, Huntington, WV, United States
| | - Olivia A. Miller
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Nathaniel A. Rader
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Melissa Cooper
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Jason Kang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Zeriel Y. Wong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Michael T. Winters
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Department of Biological Sciences, Marshall University, Huntington, WV, United States
| | - Justin R. Bevere
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Ivan Martinez
- School of Medicine, West Virginia University Cancer Institute, Morgantown, WV, United States
| | - Rachayya Devarumath
- Savitribai Phule Pune University, Pune, India
- Department of Molecular Biology and Genetic Engineering, Vasantdada Sugar Institute, Pune, India
- *Correspondence: F. Heath Damron, ; Umesh S. Shaligram, ; Rachayya Devarumath,
| | - Umesh S. Shaligram
- Research and Development Department, Serum Institute of India Pvt. Ltd., Pune, India
- *Correspondence: F. Heath Damron, ; Umesh S. Shaligram, ; Rachayya Devarumath,
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, United States
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, United States
- *Correspondence: F. Heath Damron, ; Umesh S. Shaligram, ; Rachayya Devarumath,
| |
Collapse
|
17
|
Silva-Aguiar RP, Teixeira DE, Peruchetti DB, Florentino LS, Peres RAS, Gomes CP, Paz-Marzolo M, Rocco PMR, Pinheiro AAS, Caruso-Neves C. SARS-CoV-2 spike protein inhibits megalin-mediated albumin endocytosis in proximal tubule epithelial cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166496. [PMID: 35863591 PMCID: PMC9290338 DOI: 10.1016/j.bbadis.2022.166496] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 01/06/2023]
Abstract
Patients with COVID-19 have high prevalence of albuminuria which is used as a marker of progression of renal disease and is associated with severe COVID-19. We hypothesized that SARS-CoV-2 spike protein (S protein) could modulate albumin handling in proximal tubule epithelial cells (PTECs) and, consequently contribute to the albuminuria observed in patients with COVID-19. In this context, the possible effect of S protein on albumin endocytosis in PTECs was investigated. Two PTEC lines were used: HEK-293A and LLC-PK1. Incubation of both cell types with S protein for 16 h inhibited albumin uptake at the same magnitude. This effect was associated with canonical megalin-mediated albumin endocytosis because: (1) DQ-albumin uptake, a marker of the lysosomal degradation pathway, was reduced at a similar level compared with fluorescein isothiocyanate (FITC)-albumin uptake; (2) dextran-FITC uptake, a marker of fluid-phase endocytosis, was not changed; (3) cell viability and proliferation were not changed. The inhibitory effect of S protein on albumin uptake was only observed when it was added at the luminal membrane, and it did not involve the ACE2/Ang II/AT1R axis. Although both cells uptake S protein, it does not seem to be required for modulation of albumin endocytosis. The mechanism underlying the inhibition of albumin uptake by S protein encompasses a decrease in megalin expression without changes in megalin trafficking and stability. These results reveal a possible mechanism to explain the albuminuria observed in patients with COVID-19.
Collapse
Affiliation(s)
- Rodrigo P Silva-Aguiar
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas S Florentino
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo A S Peres
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos P Gomes
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; School of Medicine and Surgery, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Paz-Marzolo
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia M R Rocco
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Celso Caruso-Neves
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
Andrade SA, Batalha-Carvalho JV, Curi R, Wen FH, Covas DT, Chudzinski-Tavassi AM, Moro AM. Equine Anti-SARS-CoV-2 Serum (ECIG) Binds to Mutated RBDs and N Proteins of Variants of Concern and Inhibits the Binding of RBDs to ACE-2 Receptor. Front Immunol 2022; 13:871874. [PMID: 35898497 PMCID: PMC9310548 DOI: 10.3389/fimmu.2022.871874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic caused by the severe acute syndrome virus 2 (SARS-CoV-2) has been around since November 2019. As of early June 2022, more than 527 million cases were diagnosed, with more than 6.0 million deaths due to this disease. Coronaviruses accumulate mutations and generate greater diversity through recombination when variants with different mutations infect the same host. Consequently, this virus is predisposed to constant and diverse mutations. The SARS-CoV-2 variants of concern/interest (VOCs/VOIs) such as Alpha (B.1.1.7), Beta (B.1.351), Gamma (B.1.1.28/P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) have quickly spread across the world. These VOCs and VOIs have accumulated mutations within the spike protein receptor-binding domain (RBD) which interacts with the angiotensin-2 converting enzyme (ACE-2) receptor, increasing cell entry and infection. The RBD region is the main target for neutralizing antibodies; however, other notable mutations have been reported to enhance COVID-19 infectivity and lethality. Considering the urgent need for alternative therapies against this virus, an anti-SARS-CoV-2 equine immunoglobulin F(ab’)2, called ECIG, was developed by the Butantan Institute using the whole gamma-irradiated SARS-CoV-2 virus. Surface plasmon resonance experiments revealed that ECIG binds to wild-type and mutated RBD, S1+S2 domains, and nucleocapsid proteins of known VOCs, including Alpha, Gamma, Beta, Delta, Delta Plus, and Omicron. Additionally, it was observed that ECIG attenuates the binding of RBD (wild-type, Beta, and Omicron) to human ACE-2, suggesting that it could prevent viral entry into the host cell. Furthermore, the ability to concomitantly bind to the wild-type and mutated nucleocapsid protein likely enhances its neutralizing activity of SARS-CoV-2. We postulate that ECIG benefits COVID-19 patients by reducing the infectivity of the original virus and existing variants and may be effective against future ones. Impacting the course of the disease, mainly in the more vulnerable, reduces infection time and limits the appearance of new variants by new recombination.
Collapse
Affiliation(s)
| | | | - Rui Curi
- Cruzeiro do Sul University, São Paulo, Brazil
- Immunobiological Production Section, Bioindustrial Center, Butantan Institute, São Paulo, Brazil
| | - Fan Hui Wen
- Immunobiological Production Section, Bioindustrial Center, Butantan Institute, São Paulo, Brazil
| | | | - Ana Marisa Chudzinski-Tavassi
- Center of Excellence in New Target Discovery (CENTD), Instituto Butantan, São Paulo, Brazil
- Innovation and Development Laboratory, Instituto Butantan, São Paulo, Brazil
- *Correspondence: Ana Marisa Chudzinski-Tavassi, ; Ana Maria Moro,
| | - Ana Maria Moro
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo, Brazil
- Center for Research and Development in Immunobiologicals (CeRDI), Instituto Butantan, São Paulo, Brazil
- *Correspondence: Ana Marisa Chudzinski-Tavassi, ; Ana Maria Moro,
| |
Collapse
|
19
|
dos-Santos JS, Firmino-Cruz L, da Fonseca-Martins AM, Oliveira-Maciel D, Perez GG, Roncaglia-Pereira VA, Dumard CH, Guedes-da-Silva FH, Santos ACV, Leandro MDS, Ferreira JRM, Guimarães-Pinto K, Conde L, Rodrigues DAS, Silva MVDM, Alvim RGF, Lima TM, Marsili FF, Abreu DPB, Ferreira Jr. OC, Mohana Borges RDS, Tanuri A, Souza TML, Rossi-Bergmann B, Vale AM, Silva JL, de Oliveira AC, Filardy AD, Gomes AMO, de Matos Guedes HL. Immunogenicity of SARS-CoV-2 Trimeric Spike Protein Associated to Poly(I:C) Plus Alum. Front Immunol 2022; 13:884760. [PMID: 35844561 PMCID: PMC9281395 DOI: 10.3389/fimmu.2022.884760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022] Open
Abstract
The SARS-CoV-2 pandemic has had a social and economic impact worldwide, and vaccination is an efficient strategy for diminishing those damages. New adjuvant formulations are required for the high vaccine demands, especially adjuvant formulations that induce a Th1 phenotype. Herein we assess a vaccination strategy using a combination of Alum and polyinosinic:polycytidylic acid [Poly(I:C)] adjuvants plus the SARS-CoV-2 spike protein in a prefusion trimeric conformation by an intradermal (ID) route. We found high levels of IgG anti-spike antibodies in the serum by enzyme linked immunosorbent assay (ELISA) and high neutralizing titers against SARS-CoV-2 in vitro by neutralization assay, after two or three immunizations. By evaluating the production of IgG subtypes, as expected, we found that formulations containing Poly(I:C) induced IgG2a whereas Alum did not. The combination of these two adjuvants induced high levels of both IgG1 and IgG2a. In addition, cellular immune responses of CD4+ and CD8+ T cells producing interferon-gamma were equivalent, demonstrating that the Alum + Poly(I:C) combination supported a Th1 profile. Based on the high neutralizing titers, we evaluated B cells in the germinal centers, which are specific for receptor-binding domain (RBD) and spike, and observed that more positive B cells were induced upon the Alum + Poly(I:C) combination. Moreover, these B cells produced antibodies against both RBD and non-RBD sites. We also studied the impact of this vaccination preparation [spike protein with Alum + Poly(I:C)] in the lungs of mice challenged with inactivated SARS-CoV-2 virus. We found a production of IgG, but not IgA, and a reduction in neutrophil recruitment in the bronchoalveolar lavage fluid (BALF) of mice, suggesting that our immunization scheme reduced lung inflammation. Altogether, our data suggest that Alum and Poly(I:C) together is a possible adjuvant combination for vaccines against SARS-CoV-2 by the intradermal route.
Collapse
Affiliation(s)
- Júlio Souza dos-Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luan Firmino-Cruz
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Alessandra Marcia da Fonseca-Martins
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo Oliveira-Maciel
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gustavo Guadagnini Perez
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Victor A. Roncaglia-Pereira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos H. Dumard
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Francisca H. Guedes-da-Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ana C. Vicente Santos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Monique dos Santos Leandro
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Kamila Guimarães-Pinto
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luciana Conde
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Danielle A. S. Rodrigues
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Renata G. F. Alvim
- Cell Culture Engineering Lab., Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Tulio M. Lima
- Cell Culture Engineering Lab., Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Federico F. Marsili
- Cell Culture Engineering Lab., Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Daniel P. B. Abreu
- Cell Culture Engineering Lab., Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | | | - Amilcar Tanuri
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Thiago Moreno L. Souza
- Immunopharmacology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Bartira Rossi-Bergmann
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - André M. Vale
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Jerson Lima Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Andréa Cheble de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Andre M. O. Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Herbert Leonel de Matos Guedes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Interdisciplinary Medical Research Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Gupta D, Ahmed F, Tandel D, Parthasarathy H, Vedagiri D, Sah V, Krishna Mohan B, Khan RA, Kondiparthi C, Savari P, Jain S, Reddy S, Kumar JM, Khan N, Harshan KH. Equine immunoglobulin fragment F(ab') 2 displays high neutralizing capability against multiple SARS-CoV-2 variants. Clin Immunol 2022; 237:108981. [PMID: 35306171 PMCID: PMC8926440 DOI: 10.1016/j.clim.2022.108981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 03/12/2022] [Indexed: 01/04/2023]
Abstract
Neutralizing antibody-based passive immunotherapy could be an important therapeutic option against COVID-19. Herein, we demonstrate that equines hyper-immunized with chemically inactivated SARS-CoV-2 elicited high antibody titers with a strong virus-neutralizing potential, and F(ab')2 fragments purified from them displayed strong neutralization potential against five different SARS-CoV-2 variants. F(ab')2 fragments purified from the plasma of hyperimmunized horses showed high antigen-specific affinity. Experiments in rabbits suggested that the F(ab')2 displays a linear pharmacokinetics with approximate plasma half-life of 47 h. In vitro microneutralization assays using the purified F(ab')2 displayed high neutralization titers against five different variants of SARS-CoV-2 including the Delta variant, demonstrating its potential efficacy against the emerging viral variants. In conclusion, this study demonstrates that F(ab')2 generated against SARS-CoV-2 in equines have high neutralization titers and have broad target-range against the evolving variants, making passive immunotherapy a potential regimen against the existing and evolving SARS-CoV-2 variants in combating COVID-19.
Collapse
Affiliation(s)
- Divya Gupta
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Farhan Ahmed
- School of Life Sciences, Department of Animal Biology, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Dixit Tandel
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India,Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Dhiviya Vedagiri
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India,Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal Sah
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India,Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Rafiq Ahmad Khan
- School of Life Sciences, Department of Animal Biology, University of Hyderabad, Hyderabad 500046, Telangana, India
| | | | | | - Sandesh Jain
- VINS Bio Products Limited, Hyderabad 500034, Telangana, India
| | - Shashikala Reddy
- Department of Microbiology, Osmania Medical College, Koti, Hyderabad 500096, Telangana, India
| | - Jerald Mahesh Kumar
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | - Nooruddin Khan
- School of Life Sciences, Department of Animal Biology, University of Hyderabad, Hyderabad 500046, Telangana, India,Corresponding authors
| | - Krishnan Harinivas Harshan
- Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India,Academy for Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India,Corresponding authors
| |
Collapse
|
21
|
Simões RSDQ, Rodríguez-Lázaro D. Classical and Next-Generation Vaccine Platforms to SARS-CoV-2: Biotechnological Strategies and Genomic Variants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2392. [PMID: 35206580 PMCID: PMC8877900 DOI: 10.3390/ijerph19042392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/28/2022]
Abstract
Several coronaviruses (CoVs) have been identified as human pathogens, including the α-CoVs strains HCoV-229E and HCoV-NL63 and the β-CoVs strains HCoV-HKU1 and HCoV-OC43. SARS-CoV, MERS-CoV, and SARS-CoV-2 are also classified as β-coronavirus. New SARS-CoV-2 spike genomic variants are responsible for human-to-human and interspecies transmissibility, consequences of adaptations of strains from animals to humans. The receptor-binding domain (RBD) of SARS-CoV-2 binds to receptor ACE2 in humans and animal species with high affinity, suggesting there have been adaptive genomic variants. New genomic variants including the incorporation, replacement, or deletion of the amino acids at a variety of positions in the S protein have been documented and are associated with the emergence of new strains adapted to different hosts. Interactions between mutated residues and RBD have been demonstrated by structural modelling of variants including D614G, B.1.1.7, B1.351, P.1, P2; other genomic variants allow escape from antibodies generated by vaccines. Epidemiological and molecular tools are being used for real-time tracking of pathogen evolution and particularly new SARS-CoV-2 variants. COVID-19 vaccines obtained from classical and next-generation vaccine production platforms have entered clinicals trials. Biotechnology strategies of the first generation (attenuated and inactivated virus-CoronaVac, CoVaxin; BBIBP-CorV), second generation (replicating-incompetent vector vaccines-ChAdOx-1; Ad5-nCoV; Sputnik V; JNJ-78436735 vaccine-replicating-competent vector, protein subunits, virus-like particles-NVX-CoV2373 vaccine), and third generation (nucleic-acid vaccines-INO-4800 (DNA); mRNA-1273 and BNT 162b (RNA vaccines) have been used. Additionally, dendritic cells (LV-SMENP-DC) and artificial antigen-presenting (aAPC) cells modified with lentiviral vector have also been developed to inhibit viral activity. Recombinant vaccines against COVID-19 are continuously being applied, and new clinical trials have been tested by interchangeability studies of viral vaccines developed by classical and next-generation platforms.
Collapse
Affiliation(s)
- Rachel Siqueira de Queiroz Simões
- Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil;
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - David Rodríguez-Lázaro
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| |
Collapse
|