1
|
Zhang X, Wang J, Zhang J, Jiang C, Liu X, Wang S, Zhang Z, Rastegar-Kashkooli Y, Dialameh F, Peng Q, Tao J, Ding R, Wang J, Cheng N, Wang M, Wang F, Li N, Xing N, Chen X, Fan X, Wang J, Wang J. Humanized rodent models of neurodegenerative diseases and other brain disorders. Neurosci Biobehav Rev 2025; 172:106112. [PMID: 40120962 DOI: 10.1016/j.neubiorev.2025.106112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/26/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Central Nervous System (CNS) diseases significantly affect human health. However, replicating the onset, progression, and pathology of these diseases in rodents is challenging. To address this issue, researchers have developed humanized animal models. These models introduce human genes or cells into rodents. As a result, rodents become more suitable for studying human CNS diseases and their therapies in vivo. This review explores the preparation protocols, pathological and behavioral characteristics, benefits, significance, and limitations of humanized rodent models in researching various CNS diseases, particularly Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, glial cells-related CNS diseases, N-methyl-D-aspartic acid receptor encephalitis, and others. Humanized rodent models have expanded the opportunities for in vivo exploration of human neurodegenerative diseases, other brain disorders, and their treatments. We can enhance translational research on CNS disorders by developing, investigating, and utilizing these models.
Collapse
Affiliation(s)
- Xinru Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianxiang Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450000, China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450000, China
| | - Xuezhong Liu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuaijiang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhenhua Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Fatemeh Dialameh
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qinfeng Peng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jin Tao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ruoqi Ding
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Nannan Cheng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Fushun Wang
- Department of Psychology, Sichuan Normal University, Chengdu, Sichuan 610060, China
| | - Nan Li
- Department of Neurology, The 2nd Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
2
|
Armas JMB, Taoro-González L, Fisher EMC, Acevedo-Arozena A. Challenges of modelling TDP-43 pathology in mice. Mamm Genome 2025:10.1007/s00335-025-10131-1. [PMID: 40301152 DOI: 10.1007/s00335-025-10131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/17/2025] [Indexed: 05/01/2025]
Abstract
TDP-43 is a normally nuclear RNA binding protein that under pathological conditions may be excluded from the nucleus and deposited in the cytoplasm in the form of insoluble polyubiquitinated and polyphosphorylated inclusions. This nuclear exclusion coupled with cytoplasmic accumulation is called TDP-43 pathology and contributes to a range of disorders collectively known as TDP-43 proteinopathies. These include the great majority of amyotrophic lateral sclerosis (ALS) cases, all limbic-predominant age-related TDP-43 encephalopathy (LATE), as well as up to 50% of frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD) cases. Thus, TDP-43 pathology is a common feature underlying a wide range of neurodegenerative conditions. However, modelling it has proven to be challenging, particularly generating models with concomitant TDP-43 loss of nuclear function and cytoplasmic inclusions. Here, focussing exclusively on mice, we discuss TDP-43 genetic models in terms of the presence of TDP-43 pathology, and we consider other models with TDP-43 pathology due to mutations in disparate genes. We also consider manipulations aimed at producing TDP-43 pathology, and we look at potential strategies to develop new, much needed models to address the many outstanding questions regarding how and why TDP-43 protein leaves the nucleus and accumulates in the cytoplasm, causing downstream dysfunction and devastating disease.
Collapse
Affiliation(s)
- José Miguel Brito Armas
- Unidad de Investigación Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias, CIBERNED and ITB-ULL, Tenerife, Spain
| | - Lucas Taoro-González
- Unidad de Investigación Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias, CIBERNED and ITB-ULL, Tenerife, Spain
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases and Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, London, UK.
| | - Abraham Acevedo-Arozena
- Unidad de Investigación Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias, CIBERNED and ITB-ULL, Tenerife, Spain.
| |
Collapse
|
3
|
Carroll E, Scaber J, Huber KVM, Brennan PE, Thompson AG, Turner MR, Talbot K. Drug repurposing in amyotrophic lateral sclerosis (ALS). Expert Opin Drug Discov 2025; 20:447-464. [PMID: 40029669 PMCID: PMC11974926 DOI: 10.1080/17460441.2025.2474661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Identifying treatments that can alter the natural history of amyotrophic lateral sclerosis (ALS) is challenging. For years, drug discovery in ALS has relied upon traditional approaches with limited success. Drug repurposing, where clinically approved drugs are reevaluated for other indications, offers an alternative strategy that overcomes some of the challenges associated with de novo drug discovery. AREAS COVERED In this review, the authors discuss the challenge of drug discovery in ALS and examine the potential of drug repurposing for the identification of new effective treatments. The authors consider a range of approaches, from screening in experimental models to computational approaches, and outline some general principles for preclinical and clinical research to help bridge the translational gap. Literature was reviewed from original publications, press releases and clinical trials. EXPERT OPINION Despite remaining challenges, drug repurposing offers the opportunity to improve therapeutic options for ALS patients. Nevertheless, stringent preclinical research will be necessary to identify the most promising compounds together with innovative experimental medicine studies to bridge the translational gap. The authors further highlight the importance of combining expertise across academia, industry and wider stakeholders, which will be key in the successful delivery of repurposed therapies to the clinic.
Collapse
Affiliation(s)
- Emily Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jakub Scaber
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Kilian V. M. Huber
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul E. Brennan
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Martin R. Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Twigg SRF, Greene NDE, Henderson DJ, Mill P, Liu KJ. The power of mouse models in the diagnostic odyssey of patients with rare congenital anomalies. Mamm Genome 2025:10.1007/s00335-025-10114-2. [PMID: 40100426 DOI: 10.1007/s00335-025-10114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/13/2025] [Indexed: 03/20/2025]
Abstract
Congenital anomalies are structural or functional abnormalities present at birth, which can be caused by genetic or environmental influences. The availability of genome sequencing has significantly increased our understanding of congenital anomalies, but linking variant identification to functional relevance and definitive diagnosis remains challenging. Many genes have unknown or poorly understood functions, and with a lack of clear genotype-to-phenotype correlations, it can be difficult to move from variant discovery to diagnosis. Thus, for most congenital anomalies, there still exists a "diagnostic odyssey" which presents a significant burden to patients, families and society. Animal models are essential in the gene discovery process because they allow researchers to validate candidate gene function and disease progression within intact organisms. However, use of advanced model systems continues to be limited due to the complexity of efficiently generating clinically relevant animals. Here we focus on the use of precisely engineered mice in variant-to-function studies for resolving molecular diagnoses and creating powerful preclinical models for congenital anomalies, covering advances in genomics, genome editing and phenotyping approaches as well as the necessity for future initiatives aligning animal modelling to deep patient multimodal datasets.
Collapse
Affiliation(s)
- Stephen R F Twigg
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Mary Lyon Centre at MRC Harwell, UK.
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Nicholas D E Greene
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Mary Lyon Centre at MRC Harwell, UK.
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Deborah J Henderson
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Mary Lyon Centre at MRC Harwell, UK.
- Biosciences Institute, Centre for Life, Newcastle University, Newcastle upon Tyne, UK.
| | - Pleasantine Mill
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Mary Lyon Centre at MRC Harwell, UK.
- MRC Human Genetics Unit, MRC Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK.
| | - Karen J Liu
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Mary Lyon Centre at MRC Harwell, UK.
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK.
| |
Collapse
|
5
|
Theme 4 In Vivo Experimental Models. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:136-157. [PMID: 39508665 DOI: 10.1080/21678421.2024.2403301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
|
6
|
Crombie EM, Korecki AJ, Cleverley K, Adair BA, Cunningham TJ, Lee WC, Lengyell TC, Maduro C, Mo V, Slade LM, Zouhair I, Fisher EMC, Simpson EM. Taf1 knockout is lethal in embryonic male mice and heterozygous females show weight and movement disorders. Dis Model Mech 2024; 17:dmm050741. [PMID: 38804708 PMCID: PMC11261634 DOI: 10.1242/dmm.050741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
The TATA box-binding protein-associated factor 1 (TAF1) is a ubiquitously expressed protein and the largest subunit of the basal transcription factor TFIID, which plays a key role in initiation of RNA polymerase II-dependent transcription. TAF1 missense variants in human males cause X-linked intellectual disability, a neurodevelopmental disorder, and TAF1 is dysregulated in X-linked dystonia-parkinsonism, a neurodegenerative disorder. However, this field has lacked a genetic mouse model of TAF1 disease to explore its mechanism in mammals and treatments. Here, we generated and validated a conditional cre-lox allele and the first ubiquitous Taf1 knockout mouse. We discovered that Taf1 deletion in male mice was embryonically lethal, which may explain why no null variants have been identified in humans. In the brains of Taf1 heterozygous female mice, no differences were found in gross structure, overall expression and protein localisation, suggesting extreme skewed X inactivation towards the non-mutant chromosome. Nevertheless, these female mice exhibited a significant increase in weight, weight with age, and reduced movement, suggesting that a small subset of neurons was negatively impacted by Taf1 loss. Finally, this new mouse model may be a future platform for the development of TAF1 disease therapeutics.
Collapse
Affiliation(s)
- Elisa M. Crombie
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Andrea J. Korecki
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Bethany A. Adair
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z3, Canada
| | | | - Weaverly Colleen Lee
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Tess C. Lengyell
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Cheryl Maduro
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Victor Mo
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Liam M. Slade
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Ines Zouhair
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Elizabeth M. C. Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
7
|
Bolduc V, Guirguis F, Lubben B, Trank L, Silverstein S, Brull A, Nalls M, Cheng J, Garrett L, Bönnemann CG. A humanized knock-in Col6a1 mouse recapitulates a deep-intronic splice-activating variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.581572. [PMID: 38585878 PMCID: PMC10996637 DOI: 10.1101/2024.03.21.581572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Antisense therapeutics such as splice-modulating antisense oligonucleotides (ASOs) are promising tools to treat diseases caused by splice-altering intronic variants. However, their testing in animal models is hampered by the generally poor sequence conservation of the intervening sequences between human and other species. Here we aimed to model in the mouse a recurrent, deep-intronic, splice-activating, COL6A1 variant, associated with a severe form of Collagen VI-related muscular dystrophies (COL6-RDs), for the purpose of testing human-ready antisense therapeutics in vivo. The variant, c.930+189C>T, creates a donor splice site and inserts a 72-nt-long pseudoexon, which, when translated, acts in a dominant-negative manner, but which can be skipped with ASOs. We created a unique humanized mouse allele (designated as "h"), in which a 1.9 kb of the mouse genomic region encoding the amino-terminus (N-) of the triple helical (TH) domain of collagen a1(VI) was swapped for the human orthologous sequence. In addition, we also created an allele that carries the c.930+189C>T variant on the same humanized knock-in sequence (designated as "h+189T"). We show that in both models, the human exons are spliced seamlessly with the mouse exons to generate a chimeric mouse-human collagen a1(VI) protein. In homozygous Col6a1 h+189T/h+189T mice, the pseudoexon is expressed at levels comparable to those observed in heterozygous patients' muscle biopsies. While Col6a1h/h mice do not show any phenotype compared to wildtype animals, Col6a1 h/h+189T and Col6a1 h+189T/h+189T mice have smaller muscle masses and display grip strength deficits detectable as early as 4 weeks of age. The pathogenic h+189T humanized knock-in mouse allele thus recapitulates the pathogenic splicing defects seen in patients' biopsies and allows testing of human-ready precision antisense therapeutics aimed at skipping the pseudoexon. Given that the COL6A1 N-TH region is a hot-spot for COL6-RD variants, the humanized knock-in mouse model can be utilized as a template to introduce other COL6A1 pathogenic variants. This unique humanized mouse model thus represents a valuable tool for the development of antisense therapeutics for COL6-RDs.
Collapse
Affiliation(s)
- Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Fady Guirguis
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Berit Lubben
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Lindsey Trank
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Sarah Silverstein
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Astrid Brull
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Matthew Nalls
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Jun Cheng
- NHGRI Transgenic and Gene Editing Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Lisa Garrett
- NHGRI Transgenic and Gene Editing Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
8
|
Fisher EM, Greensmith L, Malaspina A, Fratta P, Hanna MG, Schiavo G, Isaacs AM, Orrell RW, Cunningham TJ, Arozena AA. Opinion: more mouse models and more translation needed for ALS. Mol Neurodegener 2023; 18:30. [PMID: 37143081 PMCID: PMC10161557 DOI: 10.1186/s13024-023-00619-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/11/2023] [Indexed: 05/06/2023] Open
Abstract
Amyotrophic lateral sclerosis is a complex disorder most of which is 'sporadic' of unknown origin but approximately 10% is familial, arising from single mutations in any of more than 30 genes. Thus, there are more than 30 familial ALS subtypes, with different, often unknown, molecular pathologies leading to a complex constellation of clinical phenotypes. We have mouse models for many genetic forms of the disorder, but these do not, on their own, necessarily show us the key pathological pathways at work in human patients. To date, we have no models for the 90% of ALS that is 'sporadic'. Potential therapies have been developed mainly using a limited set of mouse models, and through lack of alternatives, in the past these have been tested on patients regardless of aetiology. Cancer researchers have undertaken therapy development with similar challenges; they have responded by producing complex mouse models that have transformed understanding of pathological processes, and they have implemented patient stratification in multi-centre trials, leading to the effective translation of basic research findings to the clinic. ALS researchers have successfully adopted this combined approach, and now to increase our understanding of key disease pathologies, and our rate of progress for moving from mouse models to mechanism to ALS therapies we need more, innovative, complex mouse models to address specific questions.
Collapse
Affiliation(s)
- Elizabeth M.C. Fisher
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Linda Greensmith
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Andrea Malaspina
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Michael G. Hanna
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Giampietro Schiavo
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT UK
| | - Adrian M. Isaacs
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Richard W. Orrell
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Thomas J. Cunningham
- MRC Prion Unit at UCL, Courtauld Building, 33 Cleveland Street, London, W1W 7FF UK
| | - Abraham Acevedo Arozena
- Research Unit, Hospital Universitario de Canarias, ITB-ULL and CIBERNED, La Laguna, 38320 Spain
| |
Collapse
|
9
|
Monteiro CJ, Heery DM, Whitchurch JB. Modern Approaches to Mouse Genome Editing Using the CRISPR-Cas Toolbox and Their Applications in Functional Genomics and Translational Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:13-40. [PMID: 37486514 DOI: 10.1007/978-3-031-33325-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Mice have been used in biological research for over a century, and their immense contribution to scientific breakthroughs can be seen across all research disciplines, with some of the main beneficiaries being the fields of medicine and life sciences. Genetically engineered mouse models (GEMMs), along with other model organisms, are fundamentally important research tools frequently utilised to enhance our understanding of pathophysiology and biological mechanisms behind disease. In the 1980s, it became possible to precisely edit the mouse genome to create gene knockout and knock-in mice, although with low efficacy. Recent advances utilising CRISPR-Cas technologies have considerably improved our ability to do this with ease and precision, while also allowing the generation of desired genetic variants from single nucleotide substitutions to large insertions/deletions. It is now quick and relatively easy to genetically edit somatic cells which were previously more recalcitrant to traditional approaches. Further refinements have created a 'CRISPR toolkit' that has expanded the use of CRISPR-Cas beyond gene knock-ins and knockouts. In this chapter, we review some of the latest applications of CRISPR-Cas technologies in GEMMs, including nuclease-dead Cas9 systems for activation or repression of gene expression, base editing and prime editing. We also discuss improvements in Cas9 specificity, targeting efficacy and delivery methods in mice. Throughout, we provide examples wherein CRISPR-Cas technologies have been applied to target clinically relevant genes in preclinical GEMMs, both to generate humanised models and for experimental gene therapy research.
Collapse
Affiliation(s)
- Cintia J Monteiro
- Department of Genetics, Molecular Immunogenetics Group, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
10
|
Sleigh JN. Editorial: Peripheral nerve anatomy in health and disease. J Anat 2022; 241:1083-1088. [PMID: 36226698 PMCID: PMC9558158 DOI: 10.1111/joa.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease CentreUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- UK Dementia Research InstituteUniversity College LondonLondonUK
| |
Collapse
|
11
|
Austin A, Beresford L, Price G, Cunningham T, Kalmar B, Yon M. Sectioning and Counting of Motor Neurons in the L3 to L6 Region of the Adult Mouse Spinal Cord. Curr Protoc 2022; 2:e428. [PMID: 35617451 DOI: 10.1002/cpz1.428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Histology is the study of the microscopic structure of tissues. This protocol permits the generation of frozen transverse sections of lumbar spinal cord regions L3 to L6. It enables counting of murine ventral horn lumbar motor neurons in a reproducible manner. Methods include spinal column dissection, hydraulic extrusion, and histological processing. The preparation for cryo-sectioning includes embedding lumbar spinal cord in optimal cutting temperature (OCT) medium. The correct orientation of the tissue is critical as calculating the amount of tissue to discard saved time overall. Specific details regarding section thickness and mounting are described. These requirements not only allow optimum coverage of specific regions but also ensure that no individual motor neuron was counted twice. The Nissl bodies of the motor neurons were stained using gallocyanin. The sections obtained are all of a comparable area and quality assurance is consistent. The specificity of the staining enables the scientist to identify and reliably quantify lumbar motor neurons. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Euthanasia of mouse and isolation of spinal cord Basic Protocol 2: Hydraulic extrusion of the spinal cord Basic Protocol 3: Identification of the lumbar region Basic Protocol 4: Embedding cord in OCT Basic Protocol 5: Collection of frozen sections onto slides Basic Protocol 6: Gallocyanin staining Basic Protocol 7: Motor neuron counting.
Collapse
Affiliation(s)
- Adele Austin
- Pathology Department, Mary Lyon Centre, Medical Research Council, Harwell, United Kingdom
| | - Lynn Beresford
- Pathology Department, Mary Lyon Centre, Medical Research Council, Harwell, United Kingdom
| | - Georgia Price
- Mouse Models of Neurodegeneration, Mammalian Genetics Unit, Medical Research Council, Harwell, United Kingdom
| | - Tom Cunningham
- Mouse Models of Neurodegeneration, Mammalian Genetics Unit, Medical Research Council, Harwell, United Kingdom
| | | | - Marianne Yon
- Pathology Department, Mary Lyon Centre, Medical Research Council, Harwell, United Kingdom
| |
Collapse
|