1
|
Zhang D, Zhang Q, Peng C, Long Z, Zhuang G, Kramer D, Komarneni S, Zhi C, Xue D. Recent advances in developing multiscale descriptor approach for the design of oxygen redox electrocatalysts. iScience 2023; 26:106624. [PMID: 37138778 PMCID: PMC10149376 DOI: 10.1016/j.isci.2023.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Oxygen redox electrocatalysis is the crucial electrode reaction among new-era energy sources. The prerequisite to rationally design an ideal electrocatalyst is accurately identifying the structure-activity relationship based on the so-called descriptors which link the catalytic performance with structural properties. However, the quick discovery of those descriptors remains challenging. In recent, the high-throughput computing and machine learning methods were identified to present great prospects for accelerating the screening of descriptors. That new research paradigm improves cognition in the way of oxygen evolution reaction/oxygen reduction reaction activity descriptor and reinforces the understanding of intrinsic physical and chemical features in the electrocatalytic process from a multiscale perspective. This review summarizes those new research paradigms for screening multiscale descriptors, especially from atomic scale to cluster mesoscale and bulk macroscale. The development of descriptors from traditional intermediate to eigen feature parameters has been addressed which provides guidance for the intelligent design of new energy materials.
Collapse
Affiliation(s)
- Dantong Zhang
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qi Zhang
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Peng
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding author
| | - Zhi Long
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guilin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, Zhejiang Province 310032, China
| | - Denis Kramer
- Helmut-Schmidt-University, University of the Armed Forces, Hamburg 22043, Germany
| | - Sridhar Komarneni
- Materials Research Institute, Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Corresponding author
| | - Dongfeng Xue
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding author
| |
Collapse
|
2
|
Ungerer MJ, de Leeuw NH. A DFT Study of Ruthenium fcc Nano-Dots: Size-Dependent Induced Magnetic Moments. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1118. [PMID: 36986012 PMCID: PMC10058763 DOI: 10.3390/nano13061118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Many areas of electronics, engineering and manufacturing rely on ferromagnetic materials, including iron, nickel and cobalt. Very few other materials have an innate magnetic moment rather than induced magnetic properties, which are more common. However, in a previous study of ruthenium nanoparticles, the smallest nano-dots showed significant magnetic moments. Furthermore, ruthenium nanoparticles with a face-centred cubic (fcc) packing structure exhibit high catalytic activity towards several reactions and such catalysts are of special interest for the electrocatalytic production of hydrogen. Previous calculations have shown that the energy per atom resembles that of the bulk energy per atom when the surface-to-bulk ratio < 1, but in its smallest form, nano-dots exhibit a range of other properties. Therefore, in this study, we have carried out calculations based on the density functional theory (DFT) with long-range dispersion corrections DFT-D3 and DFT-D3-(BJ) to systematically investigate the magnetic moments of two different morphologies and various sizes of Ru nano-dots in the fcc phase. To confirm the results obtained by the plane-wave DFT methodologies, additional atom-centred DFT calculations were carried out on the smallest nano-dots to establish accurate spin-splitting energetics. Surprisingly, we found that in most cases, the high spin electronic structures had the most favourable energies and were hence the most stable.
Collapse
Affiliation(s)
| | - Nora H. de Leeuw
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
3
|
Zhang P, Wang K, Zuo Y, Wei M, Wang H, Chen Z, Shang N, Pei P. Enhanced Copolymer Gel Modified by Dual Surfactants for Flexible Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49109-49118. [PMID: 36272149 DOI: 10.1021/acsami.2c13625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Zinc-air batteries using gels as carriers for electrolyte absorption have attracted extensive attention due to their flexibility, deformability, and high specific capacity. However, traditional mono-polymer gel electrolytes display poor mechanical properties and low ionic conductivity at wide-window temperatures. Here, the enhanced gel polymer (PAM-F/G) modified by dual surfactants is present by way of pluronic F127 and layered graphene oxide introduced into the polyacrylamide (PAM) matrix. The gel electrolyte procured by absorbing 6 M KOH exhibits improved mechanical characteristics, temperature adaptability, and a satisfactory ionic conductivity (276 mS cm-1). The results demonstrate that a flexible zinc-air battery assembled by PAM-F/G electrolyte outputs a high power density (155 mW cm-2) and can even operate reliably (>40 h) at -20 °C. These findings are available for promoting the research and popularization of flexible zinc-air batteries with high performance.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Keliang Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- State Key Lab. of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
| | - Yayu Zuo
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Manhui Wei
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hengwei Wang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhuo Chen
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Nuo Shang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Pucheng Pei
- State Key Lab. of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Chai L, Pan J, Zhu X, Sun Y, Liu X, Li W, Qian J, Li X, Sun X. Ion Motor as a New Universal Strategy for the Boosting the Performance of Zn-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30839-30846. [PMID: 35763593 DOI: 10.1021/acsami.2c06146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The quiescent electrolyte causes serious concentration polarization and dendrite problems during the charging and discharging of the battery, which restricts the development of metal secondary batteries and flow batteries. Herein, we report a new concept of ion motors, with which the directional driving and uniformity of the electrolyte are realized to eliminate the concentration polarization and dendritic phenomenon for secondary metal batteries and flow batteries without additional external energy. In this study, a dendrite-free secondary metal battery with ion motors is constructed to eliminate a considerable concentration polarization voltage by a tiny induced counter electromotive force generated by Lorentz force, significantly improving the output power and energy efficiency of the battery. An actual pump-free flow battery with an ion motor is also assembled, which overcomes the problems of low energy efficiency and the complex structure caused by the traditional flow battery requiring 1-2 pumps to drive the electrolyte. The efficiency of ion motors to drive the electrolyte is hundreds of times higher than that of the mechanical pump. Therefore, the ion motor provides a universal strategy for designing more pump-free flow batteries and metal secondary batteries without the risk of dendrites in the future.
Collapse
Affiliation(s)
- Lulu Chai
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junqing Pan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanzhi Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoguang Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Li
- Department of Engineering Technology and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204, United States
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
| | - Xifei Li
- Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shanxi 710048, China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5 B9, Canada
| |
Collapse
|