1
|
Kang HW, Nguyen L, An S, Kyoung M. Mechanistic insights into condensate formation of human liver-type phosphofructokinase by stochastic modeling approaches. Sci Rep 2024; 14:19011. [PMID: 39152221 PMCID: PMC11329711 DOI: 10.1038/s41598-024-69534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Human liver-type phosphofructokinase 1 (PFKL) has been shown to regulate glucose flux as a scaffolder arranging glycolytic and gluconeogenic enzymes into a multienzyme metabolic condensate, the glucosome. However, it has remained elusive of how phase separation of PFKL is governed and initiates glucosome formation in living cells, thus hampering to understand a mechanism of glucosome formation and its functional contribution to human cells. In this work, we developed a stochastic model in silico using the principle of Langevin dynamics to investigate how biological properties of PFKL contribute to the condensate formation. The significance of an intermolecular interaction between PFKLs, an effective concentration of PFKL at a region of interest, and its own self-assembled filaments in formation of PFKL condensates and control of their sizes were demonstrated by molecular dynamics simulation using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). Such biological properties that define intracellular dynamics of PFKL appear to be essential for phase separation of PFKL, which may represent an initiation step for the formation of glucosome condensates. Collectively, our computational study provides mechanistic insights of glucosome formation, particularly an initial stage through the formation of PFKL condensates in living human cells.
Collapse
Affiliation(s)
- Hye-Won Kang
- Department of Mathematics and Statistics, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
| | - Luan Nguyen
- Department of Mathematics and Statistics, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Songon An
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
- Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | - Minjoung Kyoung
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
- Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
2
|
Zhou HX, Kota D, Qin S, Prasad R. Fundamental Aspects of Phase-Separated Biomolecular Condensates. Chem Rev 2024; 124:8550-8595. [PMID: 38885177 PMCID: PMC11260227 DOI: 10.1021/acs.chemrev.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Biomolecular condensates, formed through phase separation, are upending our understanding in much of molecular, cell, and developmental biology. There is an urgent need to elucidate the physicochemical foundations of the behaviors and properties of biomolecular condensates. Here we aim to fill this need by writing a comprehensive, critical, and accessible review on the fundamental aspects of phase-separated biomolecular condensates. We introduce the relevant theoretical background, present the theoretical basis for the computation and experimental measurement of condensate properties, and give mechanistic interpretations of condensate behaviors and properties in terms of interactions at the molecular and residue levels.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Divya Kota
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Sanbo Qin
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
3
|
Rana U, Xu K, Narayanan A, Walls MT, Panagiotopoulos AZ, Avalos JL, Brangwynne CP. Asymmetric oligomerization state and sequence patterning can tune multiphase condensate miscibility. Nat Chem 2024; 16:1073-1082. [PMID: 38383656 PMCID: PMC11230906 DOI: 10.1038/s41557-024-01456-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Endogenous biomolecular condensates, composed of a multitude of proteins and RNAs, can organize into multiphasic structures with compositionally distinct phases. This multiphasic organization is generally understood to be critical for facilitating their proper biological function. However, the biophysical principles driving multiphase formation are not completely understood. Here we use in vivo condensate reconstitution experiments and coarse-grained molecular simulations to investigate how oligomerization and sequence interactions modulate multiphase organization in biomolecular condensates. We demonstrate that increasing the oligomerization state of an intrinsically disordered protein results in enhanced immiscibility and multiphase formation. Interestingly, we find that oligomerization tunes the miscibility of intrinsically disordered proteins in an asymmetric manner, with the effect being more pronounced when the intrinsically disordered protein, exhibiting stronger homotypic interactions, is oligomerized. Our findings suggest that oligomerization is a flexible biophysical mechanism that cells can exploit to tune the internal organization of biomolecular condensates and their associated biological functions.
Collapse
Affiliation(s)
- Ushnish Rana
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Ke Xu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Amal Narayanan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA
| | - Mackenzie T Walls
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | | | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, USA.
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA.
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
4
|
Lin Z, Beneyton T, Baret JC, Martin N. Coacervate Droplets for Synthetic Cells. SMALL METHODS 2023; 7:e2300496. [PMID: 37462244 DOI: 10.1002/smtd.202300496] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Indexed: 12/24/2023]
Abstract
The design and construction of synthetic cells - human-made microcompartments that mimic features of living cells - have experienced a real boom in the past decade. While many efforts have been geared toward assembling membrane-bounded compartments, coacervate droplets produced by liquid-liquid phase separation have emerged as an alternative membrane-free compartmentalization paradigm. Here, the dual role of coacervate droplets in synthetic cell research is discussed: encapsulated within membrane-enclosed compartments, coacervates act as surrogates of membraneless organelles ubiquitously found in living cells; alternatively, they can be viewed as crowded cytosol-like chassis for constructing integrated synthetic cells. After introducing key concepts of coacervation and illustrating the chemical diversity of coacervate systems, their physicochemical properties and resulting bioinspired functions are emphasized. Moving from suspensions of free floating coacervates, the two nascent roles of these droplets in synthetic cell research are highlighted: organelle-like modules and cytosol-like templates. Building the discussion on recent studies from the literature, the potential of coacervate droplets to assemble integrated synthetic cells capable of multiple life-inspired functions is showcased. Future challenges that are still to be tackled in the field are finally discussed.
Collapse
Affiliation(s)
- Zi Lin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Thomas Beneyton
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Jean-Christophe Baret
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Nicolas Martin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| |
Collapse
|
5
|
GrandPre T, Zhang Y, Pyo AGT, Weiner B, Li JL, Jonikas MC, Wingreen NS. Effects of linker length on phase separation: lessons from the Rubisco-EPYC1 system of the algal pyrenoid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.11.544494. [PMID: 37333342 PMCID: PMC10274861 DOI: 10.1101/2023.06.11.544494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Biomolecular condensates are membraneless organelles formed via phase separation of macromolecules, typically consisting of bond-forming "stickers" connected by flexible "linkers". Linkers have diverse roles, such as occupying space and facilitating interactions. To understand how linker length relative to other lengths affects condensation, we focus on the pyrenoid, which enhances photosynthesis in green algae. Specifically, we apply coarse-grained simulations and analytical theory to the pyrenoid proteins of Chlamydomonas reinhardtii: the rigid holoenzyme Rubisco and its flexible partner EPYC1. Remarkably, halving EPYC1 linker lengths decreases critical concentrations by ten-fold. We attribute this difference to the molecular "fit" between EPYC1 and Rubisco. Varying Rubisco sticker locations reveals that the native sites yield the poorest fit, thus optimizing phase separation. Surprisingly, shorter linkers mediate a transition to a gas of rods as Rubisco stickers approach the poles. These findings illustrate how intrinsically disordered proteins affect phase separation through the interplay of molecular length scales.
Collapse
Affiliation(s)
- Trevor GrandPre
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ 08544, USA
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA
| | - Yaojun Zhang
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ 08544, USA
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew G. T. Pyo
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ 08544, USA
| | - Benjamin Weiner
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ 08544, USA
| | - Je-Luen Li
- D. E. Shaw Research, LLC, New York, NY 10036, USA
| | - Martin C. Jonikas
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ned S. Wingreen
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ 08544, USA
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
6
|
Shillcock JC, Thomas DB, Ipsen JH, Brown AD. Macromolecular Crowding Is Surprisingly Unable to Deform the Structure of a Model Biomolecular Condensate. BIOLOGY 2023; 12:181. [PMID: 36829460 PMCID: PMC9952705 DOI: 10.3390/biology12020181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
The crowded interior of a living cell makes performing experiments on simpler in vitro systems attractive. Although these reveal interesting phenomena, their biological relevance can be questionable. A topical example is the phase separation of intrinsically disordered proteins into biomolecular condensates, which is proposed to underlie the membrane-less compartmentalization of many cellular functions. How a cell reliably controls biochemical reactions in compartments open to the compositionally-varying cytoplasm is an important question for understanding cellular homeostasis. Computer simulations are often used to study the phase behavior of model biomolecular condensates, but the number of relevant parameters increases as the number of protein components increases. It is unfeasible to exhaustively simulate such models for all parameter combinations, although interesting phenomena are almost certainly hidden in their high-dimensional parameter space. Here, we have studied the phase behavior of a model biomolecular condensate in the presence of a polymeric crowding agent. We used a novel compute framework to execute dozens of simultaneous simulations spanning the protein/crowder concentration space. We then combined the results into a graphical representation for human interpretation, which provided an efficient way to search the model's high-dimensional parameter space. We found that steric repulsion from the crowder drives a near-critical system across the phase boundary, but the molecular arrangement within the resulting biomolecular condensate is rather insensitive to the crowder concentration and molecular weight. We propose that a cell may use the local cytoplasmic concentration to assist the formation of biomolecular condensates, while relying on the dense phase to reliably provide a stable, structured, fluid milieu for cellular biochemistry despite being open to its changing environment.
Collapse
Affiliation(s)
- Julian C. Shillcock
- Blue Brain Project and Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - David B. Thomas
- Department of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - John H. Ipsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Andrew D. Brown
- Department of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| |
Collapse
|
7
|
Latham AP, Zhang B. Molecular Determinants for the Layering and Coarsening of Biological Condensates. AGGREGATE (HOBOKEN, N.J.) 2022; 3:e306. [PMID: 37065433 PMCID: PMC10101022 DOI: 10.1002/agt2.306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Many membraneless organelles, or biological condensates, form through phase separation, and play key roles in signal sensing and transcriptional regulation. While the functional importance of these condensates has inspired many studies to characterize their stability and spatial organization, the underlying principles that dictate these emergent properties are still being uncovered. In this review, we examine recent work on biological condensates, especially multicomponent systems. We focus on connecting molecular factors such as binding energy, valency, and stoichiometry with the interfacial tension, explaining the nontrivial interior organization in many condensates. We further discuss mechanisms that arrest condensate coalescence by lowering the surface tension or introducing kinetic barriers to stabilize the multidroplet state.
Collapse
Affiliation(s)
- Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA 94143
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139
| |
Collapse
|
8
|
Alemasova EE, Lavrik OI. Poly(ADP-ribose) in Condensates: The PARtnership of Phase Separation and Site-Specific Interactions. Int J Mol Sci 2022; 23:14075. [PMID: 36430551 PMCID: PMC9694962 DOI: 10.3390/ijms232214075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Biomolecular condensates are nonmembrane cellular compartments whose formation in many cases involves phase separation (PS). Despite much research interest in this mechanism of macromolecular self-organization, the concept of PS as applied to a live cell faces certain challenges. In this review, we discuss a basic model of PS and the role of site-specific interactions and percolation in cellular PS-related events. Using a multivalent poly(ADP-ribose) molecule as an example, which has high PS-driving potential due to its structural features, we consider how site-specific interactions and network formation are involved in the formation of phase-separated cellular condensates.
Collapse
Affiliation(s)
- Elizaveta E. Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
9
|
Alemasova EE, Lavrik OI. A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates. Nucleic Acids Res 2022; 50:10817-10838. [PMID: 36243979 PMCID: PMC9638928 DOI: 10.1093/nar/gkac866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022] Open
Abstract
Condensates are biomolecular assemblies that concentrate biomolecules without the help of membranes. They are morphologically highly versatile and may emerge via distinct mechanisms. Nucleic acids-DNA, RNA and poly(ADP-ribose) (PAR) play special roles in the process of condensate organization. These polymeric scaffolds provide multiple specific and nonspecific interactions during nucleation and 'development' of macromolecular assemblages. In this review, we focus on condensates formed with PAR. We discuss to what extent the literature supports the phase separation origin of these structures. Special attention is paid to similarities and differences between PAR and RNA in the process of dynamic restructuring of condensates during their functioning.
Collapse
Affiliation(s)
- Elizaveta E Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|