1
|
Loix M, Vanherle S, Turri M, Kemp S, Fernandes KJL, Hendriks JJA, Bogie JFJ. Stearoyl-CoA desaturase-1: a potential therapeutic target for neurological disorders. Mol Neurodegener 2024; 19:85. [PMID: 39563397 PMCID: PMC11575020 DOI: 10.1186/s13024-024-00778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
Disturbances in the fatty acid lipidome are increasingly recognized as key drivers in the progression of various brain disorders. In this review article, we delve into the impact of Δ9 fatty acid desaturases, with a particular focus on stearoyl-CoA desaturase-1 (SCD1), within the setting of neuroinflammation, neurodegeneration, and brain repair. Over the past years, it was established that inhibition or deficiency of SCD1 not only suppresses neuroinflammation but also protects against neurodegeneration in conditions such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. This protective effect is achieved through different mechanisms including enhanced remyelination, reversal of synaptic and cognitive impairments, and mitigation of α-synuclein toxicity. Intriguingly, metabolic rerouting of fatty acids via SCD1 improves the pathology associated with X-linked adrenoleukodystrophy, suggesting context-dependent benign and harmful effects of SCD1 inhibition in the brain. Here, we summarize and discuss the cellular and molecular mechanisms underlying both the beneficial and detrimental effects of SCD1 in these neurological disorders. We explore commonalities and distinctions, shedding light on potential therapeutic challenges. Additionally, we touch upon future research directions that promise to deepen our understanding of SCD1 biology in brain disorders and potentially enhance the clinical utility of SCD1 inhibitors.
Collapse
Affiliation(s)
- Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Marta Turri
- Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, NH, Netherlands
| | - Karl J L Fernandes
- Research Center on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke, Canada
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
- University MS Center Hasselt, Pelt, Belgium.
| |
Collapse
|
2
|
Wang J, Zhang L, Gao X, Sun Y, Zhao C, Gao X, Wu C. Molecular Cloning of the scd1 Gene and Its Expression in Response to Feeding Artificial Diets to Mandarin Fish ( Siniperca chuatsi). Genes (Basel) 2024; 15:1211. [PMID: 39336802 PMCID: PMC11431013 DOI: 10.3390/genes15091211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Stearoyl-coenzyme A desaturase 1 (SCD1) plays a crucial role in fatty acid metabolism. However, its roles in the feeding habit transformation of mandarin fish (Siniperca chuatsi) remain largely unknown. Methods: Juvenile mandarin fish (10.37 ± 0.54)g were trained to feed on an artificial diet and then divided into artificial diet feeders and nonfeeders according to their feed preference. Afterwards, the scd1 gene of mandarin fish (Sc-scd1) was identified and characterized, and its transcription difference was determined between S. chuatsi fed live artificial diets and those fed prey fish. Results: Our results show that Sc-scd1 coding sequence is 1002 bp long, encoding 333 amino acids. The assumed Sc-SCD1 protein lacks a signal peptide, and it contains 1 N-linked glycosylation site, 24 phosphorylation sites, 4 transmembrane structures, and 3 conserved histidine elements. We found that Sc-SCD1 exhibits a high similarity with its counterparts in other fish by multiple alignments and phylogenetic analysis. The expression level of Sc-scd1 was detected with different expression levels in all tested tissues between male and female individuals fed either live prey fish or artificial diets. Conclusions: In particular, the Sc-scd1 expression level was the highest in the liver of both male and female mandarin fish fed artificial diets, indicating that scd1 genes may be associated with feed adaption of mandarin fish. Taken together, our findings offer novel perspectives on the potential roles of scd1 in specific domestication, and they provide valuable genetic information on feeding habits for the domestication of mandarin fish.
Collapse
Affiliation(s)
- Jiangjiang Wang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; (J.W.); (L.Z.); (X.G.); (Y.S.)
| | - Lihan Zhang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; (J.W.); (L.Z.); (X.G.); (Y.S.)
- Hebei Key Laboratory of Aquaculture Nutritional Regulation and Disease Control, Qinhuangdao 066003, China
| | - Xiaowei Gao
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; (J.W.); (L.Z.); (X.G.); (Y.S.)
- Hebei Key Laboratory of Aquaculture Nutritional Regulation and Disease Control, Qinhuangdao 066003, China
| | - Yanfeng Sun
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; (J.W.); (L.Z.); (X.G.); (Y.S.)
- Hebei Key Laboratory of Aquaculture Nutritional Regulation and Disease Control, Qinhuangdao 066003, China
| | - Chunlong Zhao
- Hebei Academy of Ocean and Fishery Sciences, Qinhuangdao 066200, China;
| | - Xiaotian Gao
- Hebei Academy of Ocean and Fishery Sciences, Qinhuangdao 066200, China;
| | - Chengbin Wu
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China; (J.W.); (L.Z.); (X.G.); (Y.S.)
- Hebei Key Laboratory of Aquaculture Nutritional Regulation and Disease Control, Qinhuangdao 066003, China
| |
Collapse
|
3
|
Wu C, Hu B, Wang L, Wu X, Gu H, Dong H, Yan J, Qi Z, Zhang Q, Chen H, Yu B, Hu S, Qian Y, Dong S, Li Q, Wang X, Long J. Assessment of stromal SCD-induced drug resistance of PDAC using 3D-printed zPDX model chips. iScience 2022; 26:105723. [PMID: 36590169 PMCID: PMC9794976 DOI: 10.1016/j.isci.2022.105723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/11/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Lipid metabolism is extensively reprogrammed in pancreatic ductal adenocarcinoma (PDAC). Stearoyl-coenzyme A desaturase (SCD) is a critical lipid regulator that was unexplored in PDAC. Here, we characterized the existence of cancer-associated fibroblasts (CAFs) with high SCD expression, and revealed them as an unfavorable prognostic factor. Therefore, primary CAFs and pancreatic cancer cells were harvested and genetically labeled. The mixture of CAFs and cancer cells were co-injected into scd-/-; prkdc-/-, or hIGF1/INS-expressing zebrafish to generate patient-derived xenograft models (zPDX). The models were aligned in 3D-printed chips for semi-automatic drug administration and high-throughput scanning. The results showed that chaperoning of the SCD-high CAFs significantly improved the drug resistance of pancreatic cancer cells against gemcitabine and cisplatin, while the administration of SCD inhibitors neutralized the protective effect. Our studies revealed the prognostic and therapeutic value of stromal SCD in PDAC, and proposed the application of zPDX model chips for drug testing.
Collapse
Affiliation(s)
- Chuntao Wu
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Beiyuan Hu
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lei Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China,School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xia Wu
- Department of General Practice, Jing’an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing’an Branch), Shanghai 200040, China
| | - Haitao Gu
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hanguang Dong
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jiuliang Yan
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zihao Qi
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qi Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Huan Chen
- National Human Genetic Resources Sharing Service Platform (2005DKA21300), Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Bo Yu
- Department of Pharmacy, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200336, China
| | - Sheng Hu
- Department of Thoracic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Yu Qian
- Department of Thoracic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Shuang Dong
- Department of Thoracic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children’s Hospital of Fudan University, Shanghai 201102, China,Corresponding author
| | - Xu Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China,School of Basic Medical Sciences, Fudan University, Shanghai 200032, China,Corresponding author
| | - Jiang Long
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China,Corresponding author
| |
Collapse
|
4
|
Zámbó V, Orosz G, Szabó L, Tibori K, Sipeki S, Molnár K, Csala M, Kereszturi É. A Single Nucleotide Polymorphism (rs3811792) Affecting Human SCD5 Promoter Activity Is Associated with Diabetes Mellitus. Genes (Basel) 2022; 13:genes13101784. [PMID: 36292669 PMCID: PMC9601412 DOI: 10.3390/genes13101784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
The combined prevalence of type 1 (T1DM) and type 2 (T2DM) diabetes mellitus is 10.5% worldwide and this is constantly increasing. The pathophysiology of the diseases include disturbances of the lipid metabolism, in which acyl-CoA desaturases play a central role as they synthesize unsaturated fatty acids, thereby providing protection against lipotoxicity. The stearoyl-CoA desaturase-5 (SCD5) isoform has received little scientific attention. We aimed to investigate the SCD5 promoter and its polymorphisms in vitro, in silico and in a case-control study. The SCD5 promoter region was determined by a luciferase reporter system in HepG2, HEK293T and SK-N-FI cells and it was proved to be cell type-specific, but it was insensitive to different fatty acids. The effect of the SCD5 promoter polymorphisms rs6841081 and rs3811792 was tested in the transfected cells. The T allele of rs3811792 single nucleotide polymorphism (SNP) significantly reduced the activity of the SCD5 promoter in vitro and modified several transcription factor binding sites in silico. A statistically significant association of rs3811792 SNP with T1DM and T2DM was also found, thus supporting the medical relevance of this variation and the complexity of the molecular mechanisms in the development of metabolic disorders. In conclusion, the minor allele of rs3811792 polymorphism might contribute to the development of diabetes by influencing the SCD5 promoter activity.
Collapse
|