1
|
Fu L, Yong JM, Yeh R, Bartlett F, Whitelock JM, Lord MS. Functionalized Cerium Oxide Nanoparticles Enhance Penetration into Melanoma Spheroids In Vivo through Angiogenesis. Adv Healthc Mater 2025:e2405129. [PMID: 40109098 DOI: 10.1002/adhm.202405129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/27/2025] [Indexed: 03/22/2025]
Abstract
Angiogenesis is a crucial step in tumor progression, including melanoma, making anti-angiogenic strategies a widely explored treatment approach. However, both innate and acquired resistance to these therapies suggest that this approach may need re-evaluation. Nanoparticles have gained attention for their potential to enhance drug delivery and retention within tumors via the bloodstream. However, the in vitro screening of nanoparticles is limited by the inability of preclinical models to replicate the complex tumor microenvironment, especially the blood supply. Here, it is demonstrated that melanoma cells embedded in Matrigel spheroids can engraft in and be vascularized by the chorioallantoic membrane (CAM) of fertilized chicken eggs. This model allows for the assessment of nanoparticle toxicity and accumulation in tumor spheroids, as well as functional effects such as angiogenesis. Cerium oxide nanoparticles (nanoceria) and their surface functionalized derivatives are widely explored for biomedical applications due to their ability to modulate oxidative stress and angiogenesis. Here, it is observed that heparin functionalized nanoceria penetrate melanoma spheroids in the CAM and promote spheroid vascularization to a greater extent than nanoceria alone. This study aids in the development of preclinical cancer models for nanoparticle screening and provides new insight into the interplay between nanoparticle surface coatings and biological effects.
Collapse
Affiliation(s)
- Lu Fu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joel M Yong
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Robyn Yeh
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Florence Bartlett
- Katherina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Becker AS, Oehmcke-Hecht S, Dargel E, Kaps P, Freitag T, Kreikemeyer B, Junghanss C, Maletzki C. Preclinical in vitro models of HNSCC and their role in drug discovery - an emphasis on the cancer microenvironment and microbiota. Expert Opin Drug Discov 2025; 20:81-101. [PMID: 39676285 DOI: 10.1080/17460441.2024.2439456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide. Treatment options and patient outcomes have not improved significantly over the past decades, increasing the need for better preclinical models. Holistic approaches that include an intact and functional immune compartment along with the patient's individual tumor microbiome will help improve the predictive value of novel drug efficacy. AREAS COVERED In this review, we describe the challenges of modeling the complex and heterogeneous tumor landscape in HNSCC and the importance of sophisticated patient-specific 3D in vitro models to pave the way for clinical trials with novel immunomodulatory drugs. We also discuss the impact of the tumor microbiome and the potential implications for prospective drug screening and validation trials. EXPERT OPINION The repertoire of well-characterized preclinical 3D in vitro models continues to grow. With the increasing attention to the complex cellular, immunological, molecular, and spatio-temporal characteristics of tumors, well-designed proof-of-concept studies to test novel drug efficacy are on the verge of providing valuable, practice-changing insights for clinical trials. Bringing together expertise and improving collaboration between clinicians, academics, and regulatory agencies will facilitate the translation of preclinical findings into clinically meaningful outcomes.
Collapse
Affiliation(s)
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Erik Dargel
- Hematology, Oncology, Palliative Medicine, Department of Medicine, Clinic III, University of Rostock, Rostock, Germany
| | - Philipp Kaps
- Hematology, Oncology, Palliative Medicine, Department of Medicine, Clinic III, University of Rostock, Rostock, Germany
| | - Thomas Freitag
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Care, University of Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Christian Junghanss
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Care, University of Rostock, Rostock, Germany
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Care, University of Rostock, Rostock, Germany
| |
Collapse
|
3
|
Gonnelli A, Sarogni P, Giannini N, Linsalata S, Di Martino F, Zamborlin A, Frusca V, Ermini ML, Puccini P, Voliani V, Paiar F. A bioconvergence study on platinum-free concurrent chemoradiotherapy for the treatment of HPV-negative head and neck carcinoma. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:122-129. [PMID: 38315518 DOI: 10.1080/21691401.2024.2309233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024]
Abstract
Locally advanced head and neck squamous cell carcinoma (LA-HNSCC) is characterized by high rate of recurrence, resulting in a poor survival. Standard treatments are associated with significant toxicities that impact the patient's quality of life, highlighting the urgent need for novel therapies to improve patient outcomes. On this regard, noble metal nanoparticles (NPs) are emerging as promising agents as both drug carriers and radiosensitizers. On the other hand, co-treatments based on NPs are still at the preclinical stage because of the associated metal-persistence.In this bioconvergence study, we introduce a novel strategy to exploit tumour chorioallantoic membrane models (CAMs) in radio-investigations within clinical equipment and evaluate the performance of non-persistent nanoarchitectures (NAs) in combination with radiotherapy with respect to the standard concurrent chemoradiotherapy for the treatment of HPV-negative HNSCCs. A comparable effect has been observed between the tested approaches, suggesting NAs as a potential platinum-free agent in concurrent chemoradiotherapy for HNSCCs. On a broader basis, our bioconvergence approach provides an advance for the translation of Pt-free radiosensitizer to the clinical practice, positively shifting the therapeutic vs. side effects equilibrium for the management of HNSCCs.
Collapse
Affiliation(s)
- Alessandra Gonnelli
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | - Noemi Giannini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Stefania Linsalata
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Fabio Di Martino
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Agata Zamborlin
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
- NEST-Scuola Normale Superiore, Pisa, Italy
| | - Valentina Frusca
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
- Scuola Superiore Sant'Anna, Pisa, Italy
| | - Maria Laura Ermini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | - Paola Puccini
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Fabiola Paiar
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| |
Collapse
|
4
|
Sarogni P, Frusca V, Zamborlin A, Giannini N, Menicagli M, Brancato L, Linsalata S, Di Martino F, Gonnelli A, Paiar F, Van den Bossche J, Bogers J, Voliani V. Neoadjuvant Hyperthermia Combined with Hybrid Nanoarchitectures Enhances Chemoradiotherapy Efficacy in Head and Neck Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43272-43282. [PMID: 39126693 DOI: 10.1021/acsami.4c07393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Head and neck squamous cell carcinomas are characterized by a high incidence of recurrence, especially in patients with locally advanced disease. Standard treatment strategies can be associated with severe side effects to healthy tissues that can negatively impact the patient's quality of life. Hyperthermia (HT) is a noninvasive treatment modality that has improved the effectiveness of chemotherapy (CT) and/or radiotherapy (RT) for the management of some solid neoplasms. In this context, the association of this approach with rationally designed nanomaterials may further enhance the treatment outcome. In this study, we demonstrate the enhanced effect of neoadjuvant HT in combination with hybrid nanoarchitectures enclosing a cisplatin prodrug (NAs-CisPt) and RT. All the treatments and their combinations have been fully evaluated by employing standardized chorioallantoic membrane tumor models of HPV-negative head and neck carcinoma. An improved tumor-shrinking effect was observed by the administration of the trimodal treatment (HT/NAs-CisPt/RT), which also highlighted a significant increase in apoptosis. Our findings demonstrate that the combination of HT with nanotechnology-based CT and RT in a certain order enhances the in vivo treatment outcome. On a broader basis, this study paves the way for the next exploration of noninvasive treatment approaches for the clinical management of oral cancer based on innovative strategies.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Valentina Frusca
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Agata Zamborlin
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST-Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Noemi Giannini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | - Michele Menicagli
- Fondazione Pisana per la Scienza ONLUS, via Ferruccio Giovannini 13, S. Giuliano Terme, 56017 Pisa, Italy
| | | | - Stefania Linsalata
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | - Fabio Di Martino
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | - Alessandra Gonnelli
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | - Fabiola Paiar
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | | | - Johannes Bogers
- ElmediX NV, Esperantolaan 4, 3001 Heverlee, Belgium
- Laboratory of Cell Biology and Histology, University of Antwerp, 2610 Antwerp, Belgium
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| |
Collapse
|
5
|
Sarogni P, Brindani N, Zamborlin A, Gonnelli A, Menicagli M, Mapanao AK, Munafò F, De Vivo M, Voliani V. Tumor growth-arrest effect of tetrahydroquinazoline-derivative human topoisomerase II-alpha inhibitor in HPV-negative head and neck squamous cell carcinoma. Sci Rep 2024; 14:9150. [PMID: 38644364 PMCID: PMC11033276 DOI: 10.1038/s41598-024-59592-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/12/2024] [Indexed: 04/23/2024] Open
Abstract
Oral malignancies continue to have severe morbidity with less than 50% long-term survival despite the advancement in the available therapies. There is a persisting demand for new approaches to establish more efficient strategies for their treatment. In this regard, the human topoisomerase II (topoII) enzyme is a validated chemotherapeutics target, as topoII regulates vital cellular processes such as DNA replication, transcription, recombination, and chromosome segregation in cells. TopoII inhibitors are currently used to treat some neoplasms such as breast and small cells lung carcinomas. Additionally, topoII inhibitors are under investigation for the treatment of other cancer types, including oral cancer. Here, we report the therapeutic effect of a tetrahydroquinazoline derivative (named ARN21934) that preferentially inhibits the alpha isoform of human topoII. The treatment efficacy of ARN21934 has been evaluated in 2D cell cultures, 3D in vitro systems, and in chick chorioallantoic membrane cancer models. Overall, this work paves the way for further preclinical developments of ARN21934 and possibly other topoII alpha inhibitors of this promising chemical class as a new chemotherapeutic approach for the treatment of oral neoplasms.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56126, Pisa, Italy
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genoa, Italy
| | - Nicoletta Brindani
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genoa, Italy
| | - Agata Zamborlin
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56126, Pisa, Italy
- NEST - Scuola Normale Superiore, Piazza San Silvestro, 12, 56126, Pisa, Italy
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Alessandra Gonnelli
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56126, Pisa, Italy
- Department of Translational Medicine, University of Pisa, 56126, Pisa, Italy
| | - Michele Menicagli
- Fondazione Pisana per la Scienza ONLUS, via Ferruccio Giovannini, 13, 56017, S. Giuliano Terme, Italy
| | - Ana Katrina Mapanao
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
| | - Federico Munafò
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genoa, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genoa, Italy.
| | - Valerio Voliani
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56126, Pisa, Italy.
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.
| |
Collapse
|
6
|
Allison SJ, Ashton GP, Lynch HJ, Shire BR, Phillips RM, Parkes GMB, Pinder E, Rice CR, Teixeira AAM, Volleman T, Wordsworth DA. Preclinical Evaluation of Zn(II) Self-Assemblies with Selective Cytotoxic Activity Against Cancer Cells In Vitro and In Ovo. Chemistry 2024; 30:e202302803. [PMID: 37874745 PMCID: PMC10952438 DOI: 10.1002/chem.202302803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Dipodal pyridylthiazole amine ligands L1 and L2 both form different metallo-supramolecular self-assemblies with Zn2+ and Cu2+ and these are shown to be toxic and selective towards cancer cell lines in vitro. Furthermore, potency and selectivity are highly dependent upon the metal ions, ligand system and bound anion, with significant changes in chemosensitivity and selectivity dependent upon which species are employed. Importantly, significant anti-tumor activity was observed in ovo at doses that are non-toxic.
Collapse
Affiliation(s)
- Simon J. Allison
- School of Applied SciencesUniversity of HuddersfieldHD1 3DHHuddersfieldUK
| | - Gage P. Ashton
- School of Applied SciencesUniversity of HuddersfieldHD1 3DHHuddersfieldUK
| | - Hannah J. Lynch
- School of Applied SciencesUniversity of HuddersfieldHD1 3DHHuddersfieldUK
| | - Bethany R. Shire
- School of Applied SciencesUniversity of HuddersfieldHD1 3DHHuddersfieldUK
| | - Roger M. Phillips
- School of Applied SciencesUniversity of HuddersfieldHD1 3DHHuddersfieldUK
| | | | - Emma Pinder
- School of Applied SciencesUniversity of HuddersfieldHD1 3DHHuddersfieldUK
| | - Craig R. Rice
- School of Applied SciencesUniversity of HuddersfieldHD1 3DHHuddersfieldUK
| | - Ana A. M. Teixeira
- School of Applied SciencesUniversity of HuddersfieldHD1 3DHHuddersfieldUK
| | - Tibo Volleman
- Axion BioSystemsVrijstraat 9B5611 ATEindhovenThe Netherlands
| | | |
Collapse
|
7
|
Mesas C, Chico MA, Doello K, Lara P, Moreno J, Melguizo C, Perazzoli G, Prados J. Experimental Tumor Induction and Evaluation of Its Treatment in the Chicken Embryo Chorioallantoic Membrane Model: A Systematic Review. Int J Mol Sci 2024; 25:837. [PMID: 38255911 PMCID: PMC10815318 DOI: 10.3390/ijms25020837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The chorioallantoic membrane (CAM) model, generated during avian development, can be used in cancer research as an alternative in vivo model to perform tumorigenesis in ovo due to advantages such as simplicity, low cost, rapid growth, and being naturally immunodeficient. The aim of this systematic review has been to compile and analyze all studies that use the CAM assay as a tumor induction model. For that, a systematic search was carried out in four different databases: PubMed, Scopus, Cochrane, and WOS. After eliminating duplicates and following the established inclusion and exclusion criteria, a total of 74 articles were included. Of these, 62% use the in ovo technique, 13% use the ex ovo technique, 9% study the formation of metastasis, and 16% induce tumors from patient biopsies. Regarding the methodology followed, the main species used is chicken (95%), although some studies use quail eggs (4%), and one article uses ostrich eggs. Therefore, the CAM assay is a revolutionary technique that allows a simple and effective way to induce tumors, test the effectiveness of treatments, carry out metastasis studies, perform biopsy grafts of patients, and carry out personalized medicine. However, unification of the methodology used is necessary.
Collapse
Affiliation(s)
- Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
| | - Maria Angeles Chico
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Kevin Doello
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Service of Medical Oncology, Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Patricia Lara
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
| | - Javier Moreno
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
8
|
Noè R, Inglese N, Romani P, Serafini T, Paoli C, Calciolari B, Fantuz M, Zamborlin A, Surdo NC, Spada V, Spacci M, Volta S, Ermini ML, Di Benedetto G, Frusca V, Santi C, Lefkimmiatis K, Dupont S, Voliani V, Sancineto L, Carrer A. Organic Selenium induces ferroptosis in pancreatic cancer cells. Redox Biol 2023; 68:102962. [PMID: 38029455 PMCID: PMC10698006 DOI: 10.1016/j.redox.2023.102962] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) cells reprogram both mitochondrial and lysosomal functions to support growth. At the same time, this causes significant dishomeostasis of free radicals. While this is compensated by the upregulation of detoxification mechanisms, it also represents a potential vulnerability. Here we demonstrate that PDA cells are sensitive to the inhibition of the mevalonate pathway (MVP), which supports the biosynthesis of critical antioxidant intermediates and protect from ferroptosis. We attacked the susceptibility of PDA cells to ferroptotic death with selenorganic compounds, including dibenzyl diselenide (DBDS) that exhibits potent pro-oxidant properties and inhibits tumor growth in vitro and in vivo. DBDS treatment induces the mobilization of iron from mitochondria enabling uncontrolled lipid peroxidation. Finally, we showed that DBDS and statins act synergistically to promote ferroptosis and provide evidence that combined treatment is a viable strategy to combat PDA.
Collapse
Affiliation(s)
- Roberta Noè
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy
| | - Noemi Inglese
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy
| | - Patrizia Romani
- Department of Molecular Medicine, University of Padova, 35126, Padova, Italy
| | - Thauan Serafini
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy
| | - Carlotta Paoli
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy
| | - Beatrice Calciolari
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy
| | - Marco Fantuz
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy
| | - Agata Zamborlin
- NEST-Scuola Normale Superiore, 56127, Pisa, Italy; Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, 56127, Pisa, Italy
| | - Nicoletta C Surdo
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Neuroscience Institute, National Research Council (CNR), 35121, Padova, Italy
| | - Vittoria Spada
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy
| | - Martina Spacci
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy
| | - Sara Volta
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy
| | - Maria Laura Ermini
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, 56127, Pisa, Italy
| | - Giulietta Di Benedetto
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Neuroscience Institute, National Research Council (CNR), 35121, Padova, Italy
| | - Valentina Frusca
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, 56127, Pisa, Italy; Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Claudio Santi
- Group of Catalysis and Green Organic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, 06122, Perugia, PG, Italy
| | - Konstantinos Lefkimmiatis
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padova, 35126, Padova, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation, Istituto Italiano di Tecnologia, 56127, Pisa, Italy; Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genova, 16148, Genoa, Italy.
| | - Luca Sancineto
- Group of Catalysis and Green Organic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, 06122, Perugia, PG, Italy.
| | - Alessandro Carrer
- Veneto Institute of Molecular Medicine (VIMM), 35129, Padova, Italy; Department of Biology, University of Padova, 35126, Padova, Italy.
| |
Collapse
|
9
|
Sarogni P, Zamborlin A, Mapanao AK, Logghe T, Brancato L, van Zwol E, Menicagli M, Giannini N, Gonnelli A, Linsalata S, Colenbier R, Van den Bossche J, Paiar F, Bogers J, Voliani V. Hyperthermia Reduces Irradiation-Induced Tumor Repopulation in an In Vivo Pancreatic Carcinoma Model. Adv Biol (Weinh) 2023; 7:e2200229. [PMID: 36861331 DOI: 10.1002/adbi.202200229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/19/2022] [Indexed: 03/03/2023]
Abstract
Pancreatic cancer has a poor prognosis due to its aggressive nature and ability to metastasize at an early stage. Currently, its management is still a challenge because this neoplasm is resistant to conventional treatment approaches, among which is chemo-radiotherapy (CRT), due to the abundant stromal compartment involved in the mechanism of hypoxia. Hyperthermia, among other effects, counteracts hypoxia by promoting blood perfusion and thereby can enhance the therapeutic effect of radiotherapy (RT). Therefore, the establishment of integrated treatments would be a promising strategy for the management of pancreatic carcinoma. Here, the effects of joint radiotherapy/hyperthermia (RT/HT) on optimized chick embryo chorioallantoic membrane (CAM) pancreatic tumor models are investigated. This model enables a thorough assessment of the tumor-arresting effect of the combined approach as well as the quantitative evaluation of hypoxia and cell cycle-associated mechanisms by both gene expression analysis and histology. The analysis of the lower CAM allows to investigate the variation of the metastatic behaviors of the cancer cells associated with the treatments. Overall, this study provides a potentially effective combined strategy for the non-invasive management of pancreatic carcinoma.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Agata Zamborlin
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- NEST-Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Ana Katrina Mapanao
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen-PSI, Forschungsstrasse, Switzerland
| | - Tine Logghe
- ElmediX NV, Dellingstraat 34-1, Mechelen, 2800, Belgium
| | | | - Eke van Zwol
- ElmediX NV, Dellingstraat 34-1, Mechelen, 2800, Belgium
| | - Michele Menicagli
- Fondazione Pisana per la Scienza ONLUS, via Ferruccio Giovannini 13, S. Giuliano Terme, Pisa, 56017, Italy
| | - Noemi Giannini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126, Pisa, Italy
| | - Alessandra Gonnelli
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126, Pisa, Italy
| | - Stefania Linsalata
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, 56126, Italy
| | - Robin Colenbier
- University of Antwerp, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerpen, 2610, Belgium
| | | | - Fabiola Paiar
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126, Pisa, Italy
| | - Johannes Bogers
- ElmediX NV, Dellingstraat 34-1, Mechelen, 2800, Belgium
- University of Antwerp, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerpen, 2610, Belgium
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4, Genoa, 16148, Italy
| |
Collapse
|
10
|
Leventi AA, Braddick HJ, Billimoria K, Wallace GQ, Goenaga-Infante H, Tomkinson NCO, Faulds K, Graham D. Synthesis, characterisation and multi-modal intracellular mapping of cisplatin nano-conjugates. Chem Commun (Camb) 2023; 59:6395-6398. [PMID: 37157999 DOI: 10.1039/d3cc00925d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The synthesis of nanocarriers for the delivery of the antitumor drug cisplatin is reported. Multimodal-imaging consisting of surface enhanced Raman scattering and laser ablation inductively coupled plasma time of flight mass spectrometry was used to visualise the intracellular uptake of both the nanocarrier and drug.
Collapse
Affiliation(s)
- Aristea Anna Leventi
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
- National Measurement Laboratory, LGC, Teddington, Middlesex, TW11 0LY, UK
| | - Henry J Braddick
- Department of Pure and Applied Chemistry, WestCHEM, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Kharmen Billimoria
- National Measurement Laboratory, LGC, Teddington, Middlesex, TW11 0LY, UK
| | - Gregory Q Wallace
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | | | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, WestCHEM, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
11
|
Ermini ML, Summa M, Zamborlin A, Frusca V, Mapanao AK, Mugnaioli E, Bertorelli R, Voliani V. Copper nano-architecture topical cream for the accelerated recovery of burnt skin. NANOSCALE ADVANCES 2023; 5:1212-1219. [PMID: 36798506 PMCID: PMC9926901 DOI: 10.1039/d2na00786j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Skin burns are debilitating injuries with significant morbidity and mortality associated with infections and sepsis, particularly in immunocompromised patients. In this context, nanotechnology can provide pioneering approaches for the topical treatment of burnt skin. Herein, the significant recovery of radiation-damaged skin by exploiting copper ultrasmall-in-nano architectures (CuNAs) dispersed in a home-made cosmetic cream is described and compared to other noble metals (such as gold). Owing to their peculiar design and components, CuNAs elicit a substantial recovery from burned skin in in vivo models after one topical application, and a significant anti-inflammatory effect is highlighted by reducing cytokine expression. The treatment exhibited neither significant toxicity nor the alteration of copper metabolism in the target organs because of the CuNA biocompatibility. This study may open new horizons in the treatment of radiation dermatitis and skin burns caused by other external events.
Collapse
Affiliation(s)
- Maria Laura Ermini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
| | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia Via Morego 30 - 16163 Genoa Italy
| | - Agata Zamborlin
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
- NEST-Scuola Normale Superiore Piazza San Silvestro 12 - 56127 Pisa Italy
| | - Valentina Frusca
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna Piazza Martiri della Libertà 33 56127 Pisa Italy
| | - Ana Katrina Mapanao
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute 5232 Villigen-PSI Switzerland
| | - Enrico Mugnaioli
- Department of Earth Sciences, University of Pisa Via S. Maria 53 56126 Pisa Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia Via Morego 30 - 16163 Genoa Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia Piazza San Silvestro 12 - 56127 Pisa Italy
- Department of Pharmacy, University of Genoa Viale Cembrano 4 - 16148 Genoa Italy
| |
Collapse
|
12
|
Mitrevska K, Merlos Rodrigo MA, Cernei N, Michalkova H, Splichal Z, Hynek D, Zitka O, Heger Z, Kopel P, Adam V, Milosavljevic V. Chick chorioallantoic membrane (CAM) assay for the evaluation of the antitumor and antimetastatic activity of platinum-based drugs in association with the impact on the amino acid metabolism. Mater Today Bio 2023; 19:100570. [PMID: 36824411 PMCID: PMC9941372 DOI: 10.1016/j.mtbio.2023.100570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/08/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
The combination of in ovo and ex ovo chorioallantoic membrane (CAM) assay provides an excellent platform which extends its relevance in studying carcinogenesis to the field of screening of anticancer activity of platinum nanoparticles (PtNPs) and further study of the amino acids' fluctuations in liver and brain. PtNPs are promising candidates for replacing cisplatin (CDDP); however, insufficient data of their antitumor efficiency and activity on the cancer-related amino acid metabolism are available, and the assessment of the in vivo performance has barely scratched the surface. Herein, we used CAM assay as in vivo model for screening of novel therapeutic modalities, and we conducted a comparative study of the effects of CDDP and polyvinylpyrrolidone coated PtNPs on MDA-MB-231 breast cancer xenograft. PtNPs showed a higher efficiency to inhibit the tumor growth and metastasis compared to CDDP. The amino acids profiling in the MDA-MB-231 cells revealed that the PtNPs had an overall depleting effect on the amino acids content. Noteworthy, more side effects to amino acid metabolism were deduced from the depletion of the amino acids in tumor, brain, and liver upon CDDP treatment. Different sets of enzymes of the tricarboxylic acid (TCA) cycle were targeted by PtNPs and CDDP, and while mRNA encoding multiple enzymes was downregulated by PtNPs, the treatment with CDDP affected only two TCA enzymes, indicating a different mechanism of action. Taken together, CAM assay represents and invaluable model, demonstrating the PtNPs capability of repressing angiogenesis, decrease amino acid contents and disrupt the TCA cycle.
Collapse
Affiliation(s)
- Katerina Mitrevska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Zbynek Splichal
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, CZ-779 00, Olomouc, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic,Corresponding author. Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| |
Collapse
|
13
|
Santi M, Frusca V, Ermini ML, Mapanao AK, Sarogni P, Gonnelli A, Giannini N, Zamborlin A, Biancalana L, Marchetti F, Voliani V. Hybrid nano-architectures loaded with metal complexes for the co-chemotherapy of head and neck carcinomas. J Mater Chem B 2023; 11:325-334. [PMID: 36484416 DOI: 10.1039/d2tb01930b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are a complex group of malignancies that affect different body sites pertaining to the oral cavity, pharynx and larynx. Current chemotherapy relies on platinum complexes, the major exponent being cisplatin, which exert severe side effects that can negatively affect prognosis. For this reason, other metal complexes with less severe side effects are being investigated as alternatives or adjuvants to platinum complexes. In this context, exploiting (supra)additive effects by the concurrent administration of cisplatin and emerging metal complexes is a promising research strategy that may lead to effective cancer management with reduced adverse reactions. Here, the combined action of cisplatin and a ruthenium(II) η6-arene compound (RuCy), both as free molecules and loaded into hybrid nano-architectures (NAs), has been assessed on HPV-negative HNSCC models of increasing complexity: 2D cell cultures, 3D multicellular tumor spheroids, and chorioallantoic membranes (CAMs). Two new NAs have been established to explore all the delivery combinations and compare their ability to enhance the efficacy of cisplatin in the treatment of HNSCCs. A significant supra-additive effect has been observed in both 2D and 3D models by one combination of treatments, suggesting that cisplatin is particularly effective when loaded on NAs, whereas RuCy performs better when administered as a free compound. Overall, this work paves the way for the establishment of the next co-chemotherapeutic approaches for the management of HNSCCs.
Collapse
Affiliation(s)
- Melissa Santi
- NEST Istituto Nanoscienze-CNR and Scuola Normale Superiore, 56127, Pisa, Italy
| | - Valentina Frusca
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Maria Laura Ermini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Ana Katrina Mapanao
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Alessandra Gonnelli
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy.,Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, Pisa, Italy
| | - Noemi Giannini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy.,Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, Pisa, Italy
| | - Agata Zamborlin
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy.,NEST-Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Lorenzo Biancalana
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy.,Department of Pharmacy, University of Genoa, Viale Cembrano, 4-16148, Genoa, Italy.
| |
Collapse
|
14
|
Villanueva H, Wells GA, Miller MT, Villanueva M, Pathak R, Castro P, Ittmann MM, Sikora AG, Lerner SP. Characterizing treatment resistance in muscle invasive bladder cancer using the chicken egg chorioallantoic membrane patient-derived xenograft model. Heliyon 2022; 8:e12570. [PMID: 36643309 PMCID: PMC9834740 DOI: 10.1016/j.heliyon.2022.e12570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/20/2022] [Accepted: 12/15/2022] [Indexed: 12/26/2022] Open
Abstract
Background Non-metastatic muscle invasive urothelial bladder cancer (MIBC) has a poor prognosis and standard of care (SOC) includes neoadjuvant cisplatin-based chemotherapy (NAC) combined with cystectomy. Patients receiving NAC have at best <10% improvement in five-year overall survival compared to cystectomy alone. This major clinical problem underscores gaps in our understanding of resistance mechanisms and a need for reliable pre-clinical models. The chicken embryo chorioallantoic membrane (CAM) represents a rapid, scalable, and cost-effective alternative to immunocompromised mice for establishing patient-derived xenografts (PDX) in vivo. CAM-PDX leverages an easily accessible engraftment scaffold and vascular-rich, immunosuppressed environment for the engraftment of PDX tumors and subsequent functional studies. Methods We optimized engraftment conditions for primary MIBC tumors using the CAM-PDX model and tested concordance between cisplatin-based chemotherapy response of patients to matching PDX tumors using tumor growth coupled with immunohistochemistry markers of proliferation and apoptosis. We also tested select kinase inhibitor response on chemotherapy-resistant bladder cancers on the CAM-PDX using tumor growth measurements and immuno-detection of proliferation marker, Ki-67. Results Our results show primary, NAC-resistant, MIBC tumors grown on the CAM share histological characteristics along with cisplatin-based chemotherapy resistance observed in the clinic for matched parent human tumor specimens. Patient tumor specimens acquired after chemotherapy treatment (post-NAC) and exhibiting NAC resistance were engrafted successfully on the CAM and displayed decreased tumor growth size and proliferation in response to treatment with a dual EGFR and HER2 inhibitor, but had no significant response to either CDK4/6 or FGFR inhibition. Conclusions Our data suggests concordance between cisplatin-based chemotherapy resistance phenotypes in primary patient tumors and CAM-PDX models. Further, proteogenomic informed kinase inhibitor use on MIBC CAM-PDX models suggests a benefit from integration of rapid in vivo testing of novel therapeutics to inform more complex, pre-clinical mouse PDX experiments for more effective clinical trial design aimed at achieving optimal precision medicine for patients with limited treatment options.
Collapse
Affiliation(s)
- Hugo Villanueva
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, 77030, USA,Advanced Technology Core Facilities, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gabrielle A. Wells
- Advanced Technology Core Facilities, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Malachi T. Miller
- Advanced Technology Core Facilities, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mariana Villanueva
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ravi Pathak
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Patricia Castro
- Advanced Technology Core Facilities, Baylor College of Medicine, Houston, TX, 77030, USA,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael M. Ittmann
- Advanced Technology Core Facilities, Baylor College of Medicine, Houston, TX, 77030, USA,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew G. Sikora
- Department of Head and Neck Surgery, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seth P. Lerner
- Scott Department of Urology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA,Corresponding author.
| |
Collapse
|
15
|
Zamborlin A, Ermini ML, Summa M, Giannone G, Frusca V, Mapanao AK, Debellis D, Bertorelli R, Voliani V. The Fate of Intranasally Instilled Silver Nanoarchitectures. NANO LETTERS 2022; 22:5269-5276. [PMID: 35770505 PMCID: PMC9284613 DOI: 10.1021/acs.nanolett.2c01180] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The intranasal administration of drugs allows an effective and noninvasive therapeutic action on the respiratory tract. In an era of rapidly increasing antimicrobial resistance, new approaches to the treatment of communicable diseases, especially lung infections, are urgently needed. Metal nanoparticles are recognized as a potential last-line defense, but limited data on the biosafety and nano/biointeractions preclude their use. Here, we quantitatively and qualitatively assess the fate and the potential risks associated with the exposure to a silver nanomaterial model (i.e., silver ultrasmall-in-nano architectures, AgNAs) after a single dose instillation. Our results highlight that the biodistribution profile and the nano/biointeractions are critically influenced by both the design of the nanomaterial and the chemical nature of the metal. Overall, our data suggest that the instillation of rationally engineered nanomaterials might be exploited to develop future treatments for (non)communicable diseases of the respiratory tract.
Collapse
Affiliation(s)
- Agata Zamborlin
- Center
for Nanotechnology Innovation@ NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro, 12−56127, Pisa, Italy
- NEST-Scuola
Normale Superiore, Piazza San Silvestro, 12−56127, Pisa, Italy
| | - Maria Laura Ermini
- Center
for Nanotechnology Innovation@ NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro, 12−56127, Pisa, Italy
| | - Maria Summa
- Translational
Pharmacology, Istituto Italiano di Tecnologia, Via Morego, 30−16163, Genoa, Italy
| | - Giulia Giannone
- Center
for Nanotechnology Innovation@ NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro, 12−56127, Pisa, Italy
- NEST-Scuola
Normale Superiore, Piazza San Silvestro, 12−56127, Pisa, Italy
| | - Valentina Frusca
- Center
for Nanotechnology Innovation@ NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro, 12−56127, Pisa, Italy
| | - Ana Katrina Mapanao
- Center
for Nanotechnology Innovation@ NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro, 12−56127, Pisa, Italy
| | - Doriana Debellis
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego, 30−16163, Genoa, Italy
| | - Rosalia Bertorelli
- Translational
Pharmacology, Istituto Italiano di Tecnologia, Via Morego, 30−16163, Genoa, Italy
| | - Valerio Voliani
- Center
for Nanotechnology Innovation@ NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro, 12−56127, Pisa, Italy
| |
Collapse
|
16
|
Biodegradable Ultrasmall-in-Nano Architectures Loaded with Cisplatin Prodrug in Combination with Ionizing Radiation Induces DNA Damage and Apoptosis in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14123034. [PMID: 35740699 PMCID: PMC9221262 DOI: 10.3390/cancers14123034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Considering the dismal survival rate, novel therapeutic strategies are warranted to improve the outcome of pancreatic ductal adenocarcinoma (PDAC). Combining nanotechnology for delivery of chemotherapeutics-preferably radiosensitizing agents-is a promising approach to enhance the therapeutic efficacy of chemoradiation. We assessed the effect of biodegradable ultrasmall-in-nano architectures (NAs) containing gold ultra-small nanoparticles (USNPs) enclosed in silica shells loaded with cisplatin prodrug (NAs-cisPt) combined with ionizing radiation (IR). The cytotoxic effects and DNA damage induction were evaluated in PDAC cell lines (MIA PaCa2, SUIT2-028) and primary culture (PDAC3) in vitro and in the chorioallantoic membrane (CAM) in ovo model. Unlike NAs, NAs-cisPt affected the cell viability in MIA PaCa2 and SUIT2-028 cells. Furthermore, NAs-cisPt showed increased γH2AX expression up to 24 h post-IR and reduced β-globin amplifications resulting in apoptosis induction at DNA and protein levels. Similarly, combined treatment of NAs-cisPt + IR in PDAC3 and SUIT2-028 CAM models showed enhanced DNA damage and apoptosis leading to tumor growth delay. Our results demonstrate an increased cytotoxic effect of NAs-cisPt, particularly through its release of the cisplatin prodrug. As cisplatin is a well-known radiosensitizer, administration of cisplatin prodrug in a controlled fashion through encapsulation is a promising new treatment approach which merits further investigation in combination with other radiosensitizing agents.
Collapse
|
17
|
Mapanao AK, Sarogni P, Santi M, Menicagli M, Gonnelli A, Zamborlin A, Ermini ML, Voliani V. Pro-apoptotic and size-reducing effects of protein corona-modulating nano-architectures enclosing platinum prodrug in in vivo oral carcinoma. Biomater Sci 2022; 10:6135-6145. [DOI: 10.1039/d2bm00994c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective and localized delivery of active agents to neoplasms is crucial to enhance the chemotherapeutic efficacy while reducing the associated side effects. The encapsulation of chemotherapeutics in nanoparticles decorated...
Collapse
|