1
|
Yao S, Kendrick KM. How does oxytocin modulate human behavior? Mol Psychiatry 2025; 30:1639-1651. [PMID: 39827220 DOI: 10.1038/s41380-025-02898-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
While the highly evolutionarily conserved hypothalamic neuropeptide, oxytocin (OT) can influence cognitive, emotional and social functions, and may have therapeutic potential in disorders with social dysfunction, it is still unclear how it acts. Here, we review the most established findings in both animal model and human studies regarding stimuli which evoke OT release, its primary functional effects and the mechanisms whereby exogenous administration influences brain and behavior. We also review progress on whether OT administration can improve social symptoms in autism spectrum disorder and schizophrenia and consider possible impediments to translational success. Importantly, we emphasize that OT acting via its extensive central or peripheral receptors primarily influences behavior indirectly through neuromodulatory interactions with classical transmitters and other peptides which themselves can independently influence behavior. We also emphasize that exogenous administration studies increasingly demonstrate peripheral effects of OT may be of greater importance than originally thought, especially involving the vagus. Overall, we propose a hierarchical model whereby OT's neuromodulatory actions influence behavior across interconnected functional domains and ultimately help to promote survival, security and sociability. Initially, OT potently facilitates attention to salient social and other important stimuli and additionally modulates cognitive, emotional and reward processing in a person- and context-dependent manner to promote interpersonal social understanding, attraction and bonds on the one hand and social group cohesion through increased conformity, altruistic punishment and moral emotions on the other. OT also increases co-operation and protection across both social domains. We hope this review and model will promote further research and help aid future translation success.
Collapse
Affiliation(s)
- Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
2
|
Liu S, Huang J, Chen S, Platt ML, Yang Y. Multi-dimensional social relationships shape social attention in monkeys. eLife 2025; 14:RP104460. [PMID: 40052871 PMCID: PMC11888598 DOI: 10.7554/elife.104460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Social relationships guide individual behavior and ultimately shape the fabric of society. Primates exhibit particularly complex, differentiated, and multidimensional social relationships, which form interwoven social networks, reflecting both individual social tendencies and specific dyadic interactions. How the patterns of behavior that underlie these social relationships emerge from moment-to-moment patterns of social information processing remains unclear. Here, we assess social relationships among a group of four monkeys, focusing on aggression, grooming, and proximity. We show that individual differences in social attention vary with individual differences in patterns of general social tendencies and patterns of individual engagement with specific partners. Oxytocin administration altered social attention and its relationship to both social tendencies and dyadic relationships, particularly grooming and aggression. Our findings link the dynamics of visual information sampling to the dynamics of primate social networks.
Collapse
Affiliation(s)
- Sainan Liu
- Division of Life Sciences and Medicine, University of Science and Technology of ChinaHeifeiChina
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Jiepin Huang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Suhao Chen
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- Institute of Artificial Intelligence, Hefei Comprehensive National Science CenterHefeiChina
- Institute of Advanced Technology, University of Science and Technology of ChinaHefeiChina
| | - Michael L Platt
- Department of Psychology, School of Arts and Sciences, University of PennsylvaniaPhiladelphiaUnited States
- Marketing Department, the Wharton School of Business, University of PennsylvaniaPhiladelphiaUnited States
- Department of Neuroscience, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yan Yang
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Sekulovski B, Miller N. Mechanisms of social behaviour in the anti-social blind cavefish ( Astyanax mexicanus). Proc Biol Sci 2025; 292:20250052. [PMID: 40132632 PMCID: PMC11936682 DOI: 10.1098/rspb.2025.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
The evolution of social behaviour in Astyanax mexicanus, which exists as a sighted, surface-dwelling morph and a blind, cave-dwelling morph, provides a model for understanding how environmental pressures shape social behaviours. We compared the shoaling behaviour of blind and surface A. mexicanus to that of zebrafish (Danio rerio), and examined the effects of nutritional state and the neuropeptides isotocin (IT) and arginine vasotocin (AVT) on their social behaviour. Blind cavefish not only fail to form shoals, but actively avoid conspecifics, with hunger further diminishing their social cohesion. Administration of low doses of AVT and an IT antagonist partially restored social behaviour in blind cavefish, reducing distances between individuals, whereas surface fish exhibited minimal or opposite responses to these hormonal manipulations. Our findings suggest that the loss of shoaling behaviour in blind cavefish is not a consequence of visual impairment alone, as they remain capable of detecting and responding to others. Instead, this behaviour probably reflects an adaptive response to their resource-poor, predator-free cave environment, where shoaling may be disadvantageous. The differing responses to nonapeptides between the morphs indicate that blind cavefish may have lost the motivation to shoal rather than the ability, highlighting how ecological pressures can shape social behaviour.
Collapse
Affiliation(s)
- Britney Sekulovski
- Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Noam Miller
- Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Gnanadesikan GE, Bray EE, Cook EN, Levy KM, Douglas LELC, Kennedy BS, Tecot SR, MacLean EL. Basal plasma oxytocin & fecal cortisol concentrations are highly heritable and associated with individual differences in behavior & cognition in dog puppies. Horm Behav 2024; 165:105612. [PMID: 39116461 DOI: 10.1016/j.yhbeh.2024.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Oxytocin and cortisol are hormones that can influence cognition and behavior, but the relationships between endogenous concentrations and individual differences in cognitive and behavioral phenotypes remain poorly understood. Across mammals, oxytocin has important roles in diverse social behaviors, and in dogs, it has been implicated in human-oriented behaviors such as social gaze and point-following. Cortisol, an end-product of the hypothalamic-pituitary-adrenal (HPA) axis, is often studied in relation to temperament and emotional reactivity, but it is also known to modulate executive functions. In this study, we measured basal fecal cortisol (n = 247) and plasma oxytocin (n = 249) in dog puppies from a pedigreed population (Canine Companions ®). We collected cognitive and behavioral data from these subjects (n = 247), including measures of human-oriented social cognition, memory, inhibitory control, perceptual discriminations, and temperament. Oxytocin concentrations were estimated to be very highly heritable (h2 = 0.90-0.99) and cortisol concentrations were estimated to be moderately-highly heritable (h2 = 0.43-0.47). Bayesian mixed models controlling for relatedness revealed that oxytocin concentrations were positively associated with spatial working memory and displayed a negative quadratic relationship with behavioral laterality, but no credible associations were seen for social measures. Cortisol concentrations exhibited a negative linear relationship with performance on an inhibitory control task and a negative quadratic relationship with bold behavioral reactions to a novel object. Collectively, our results suggest that individual differences in oxytocin and cortisol concentrations are under strong genetic control in dogs and are associated with phenotypic variation in aspects of temperament, behavioral laterality, and executive function.
Collapse
Affiliation(s)
- Gitanjali E Gnanadesikan
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA; Department of Anthropology, Emory University, Atlanta, GA 30322, USA.
| | - Emily E Bray
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Canine Companions for Independence, Santa Rosa, CA 95402, USA; College of Veterinary Medicine, University of Arizona, Tucson, AZ 85721, USA; Psychology Department, University of Arizona, Tucson, AZ 85721, USA
| | - Erica N Cook
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA
| | - Kerinne M Levy
- Canine Companions for Independence, Santa Rosa, CA 95402, USA
| | | | | | - Stacey R Tecot
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Laboratory for the Evolutionary Endocrinology of Primates, University of Arizona, Tucson, AZ 85721, USA
| | - Evan L MacLean
- School of Anthropology, University of Arizona, Tucson, AZ 85721, USA; Cognitive Science Program, University of Arizona, Tucson, AZ 85721, USA; College of Veterinary Medicine, University of Arizona, Tucson, AZ 85721, USA; Psychology Department, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
5
|
Brooks J, Maeda T, Ringhofer M, Yamamoto S. Oxytocin homogenizes horse group organization. iScience 2024; 27:110356. [PMID: 39071893 PMCID: PMC11277748 DOI: 10.1016/j.isci.2024.110356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/17/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
The oxytocinergic system has been suggested to make up an important part of the endocrine basis of group cohesion. However, controlled studies in open-group settings have not been performed. We here investigated the impact of exogenous intranasal oxytocin on the group-level social organization of 5 groups of horses (N = 58; 12 mares and 46 geldings) through GPS tracking and social network analysis. We find oxytocin flattened social differentiation across levels. Most strikingly, oxytocin did not simply reinforce existing bonds but selectively shifted social preferences toward homogenization - individuals and pairs who otherwise rarely associated spent more time close together, while individuals and pairs with the highest baseline association instead spent more time further apart. This resulted in a more distributed structure and lower clustering coefficient at the network level. These effects reinforce and extend oxytocin's role in collective behavior, social organization, and the evolution of group-based sociality across taxa.
Collapse
Affiliation(s)
- James Brooks
- Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - Tamao Maeda
- Wildlife Research Center, Kyoto University, Kyoto, Japan
- Research Center for Integrative Evolutionary Science, The Graduate University of Advanced Science (SOKENDAI), Hayama, Japan
| | - Monamie Ringhofer
- Department of Animal Sciences, Teikyo University of Science, Tokyo, Japan
| | - Shinya Yamamoto
- Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Hattori M, Kinoshita K, Saito A, Yamamoto S. Exogenous oxytocin increases gaze to humans in male cats. Sci Rep 2024; 14:8953. [PMID: 38637547 PMCID: PMC11026458 DOI: 10.1038/s41598-024-59161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Although oxytocin (OT) plays a role in bonding between heterospecifics and conspecifics, the effects of OT on the formation of such interspecific social behavior have only been investigated between humans and dogs (Canis familiaris). In this study, for comparative evaluation of the effects of OT between dog-human and cat-human social interaction, we investigated the effects of exogenous OT on the behavior of domestic cats (Felis silvestris catus) toward humans. We intranasally administered OT or saline to 30 cats using a nebulizer and recorded their behavior (gaze, touch, vocalization, and proximity). The results showed an interaction between the administration condition and sex for gaze duration. Post hoc analyses revealed a significant increase in gaze in the OT condition in male cats but not in females. There were no significant differences in gaze toward owners and strangers in any condition or sex. The male-specific OT-mediated increase in gaze toward humans observed in this study differs from previous research on dogs wherein such effects were observed only in females. These findings suggest an overall effect of exogenous OT on cats' social relationship with humans as well as the possibility of different mechanisms between cat-human and dog-human relationships.
Collapse
Affiliation(s)
- Madoka Hattori
- Wildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo-ku, Kyoto, 606-8203, Japan.
| | - Kodzue Kinoshita
- Graduate School of Asian and African Area Studies, Kyoto University, Research Bldg. No 2 Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Atsuko Saito
- Department of Psychology, Faculty of Human Sciences, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Shinya Yamamoto
- Wildlife Research Center, Kyoto University, 2-24 Tanaka-Sekiden-cho, Sakyo-ku, Kyoto, 606-8203, Japan.
- Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
7
|
Boender AJ, Boon M, Albers HE, Eck SR, Fricker BA, Kelly AM, LeDoux JE, Motta SC, Shrestha P, Taylor JH, Trainor BC, Triana-Del Rio R, Young LJ. An AAV-CRISPR/Cas9 strategy for gene editing across divergent rodent species: Targeting neural oxytocin receptors as a proof of concept. SCIENCE ADVANCES 2023; 9:eadf4950. [PMID: 37256960 PMCID: PMC10413677 DOI: 10.1126/sciadv.adf4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
A major issue in neuroscience is the poor translatability of research results from preclinical studies in animals to clinical outcomes. Comparative neuroscience can overcome this barrier by studying multiple species to differentiate between species-specific and general mechanisms of neural circuit functioning. Targeted manipulation of neural circuits often depends on genetic dissection, and use of this technique has been restricted to only a few model species, limiting its application in comparative research. However, ongoing advances in genomics make genetic dissection attainable in a growing number of species. To demonstrate the potential of comparative gene editing approaches, we developed a viral-mediated CRISPR/Cas9 strategy that is predicted to target the oxytocin receptor (Oxtr) gene in >80 rodent species. This strategy specifically reduced OXTR levels in all evaluated species (n = 6) without causing gross neuronal toxicity. Thus, we show that CRISPR/Cas9-based tools can function in multiple species simultaneously. Thereby, we hope to encourage comparative gene editing and improve the translatability of neuroscientific research.
Collapse
Affiliation(s)
- Arjen J. Boender
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Marina Boon
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - H. Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Samantha R. Eck
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | | | - Aubrey M. Kelly
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Joseph E. LeDoux
- Center for Neural Science, New York University, New York, NY, USA
- Department of Psychiatry and Department of Child and Adolescent Psychiatry, New York University Langone Medical School, New York, NY, USA
| | - Simone C. Motta
- Institute of Biomedical Sciences, Department of Anatomy, University of São Paulo, São Paulo, SP, Brazil
| | - Prerana Shrestha
- Department of Neurobiology and Behavior, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jack H. Taylor
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Brian C. Trainor
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | | | - Larry J. Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|