1
|
Contador-Álvarez L, Rojas-Rocco T, Rodríguez-Gómez T, Rubio-Meléndez ME, Riedelsberger J, Michard E, Dreyer I. Dynamics of homeostats: the basis of electrical, chemical, hydraulic, pH and calcium signaling in plants. QUANTITATIVE PLANT BIOLOGY 2025; 6:e8. [PMID: 40160509 PMCID: PMC11950792 DOI: 10.1017/qpb.2025.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/24/2024] [Accepted: 02/13/2025] [Indexed: 04/02/2025]
Abstract
Homeostats are important to control homeostatic conditions. Here, we have analyzed the theoretical basis of their dynamic properties by bringing the K homeostat out of steady state (i) by an electrical stimulus, (ii) by an external imbalance in the K+ or H+ gradient or (iii) by a readjustment of transporter activities. The reactions to such changes can be divided into (i) a short-term response (tens of milliseconds), where the membrane voltage changed along with the concentrations of ions that are not very abundant in the cytosol (H+ and Ca2+), and (ii) a long-term response (minutes and longer) caused by the slow changes in K+ concentrations. The mechanistic insights into its dynamics are not limited to the K homeostat but can be generalized, providing a new perspective on electrical, chemical, hydraulic, pH and Ca2+ signaling in plants. The results presented here also provide a theoretical background for optogenetic experiments in plants.
Collapse
Affiliation(s)
- Leslie Contador-Álvarez
- Programa de Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Universidad de Talca, Talca, Chile
| | - Tamara Rojas-Rocco
- Programa de Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Universidad de Talca, Talca, Chile
| | - Talía Rodríguez-Gómez
- Programa de Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Universidad de Talca, Talca, Chile
| | - María Eugenia Rubio-Meléndez
- Electrical Signaling in Plants (ESP) Laboratory–Center of Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| | - Janin Riedelsberger
- Electrical Signaling in Plants (ESP) Laboratory–Center of Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| | - Erwan Michard
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Ingo Dreyer
- Electrical Signaling in Plants (ESP) Laboratory–Center of Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| |
Collapse
|
2
|
Bharath P, Gahir S, Raghavendra AS. Cytosolic alkalinization in guard cells: an intriguing but interesting event during stomatal closure that merits further validation of its importance. FRONTIERS IN PLANT SCIENCE 2024; 15:1491428. [PMID: 39559765 PMCID: PMC11570284 DOI: 10.3389/fpls.2024.1491428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
Stomatal closure is essential to conserve water and prevent microbial entry into leaves. Alkalinization of guard cells is common during closure by factors such as abscisic acid, methyl jasmonate, and even darkness. Despite reports pointing at the role of cytosolic pH, there have been doubts about whether the guard cell pH change is a cause for stomatal closure or an associated event, as changes in membrane potential or ion flux can modulate the pH. However, the importance of cytosolic alkalinization is strongly supported by the ability of externally added weak acids to restrict stomatal closure. Using genetically encoded pH sensors has confirmed the rise in pH to precede the elevation of Ca2+ levels. Yet some reports claim that the rise in pH follows the increase in ROS or Ca2+. We propose a feedback interaction among the rise in pH or ROS or Ca2+ to explain the contrasting opinions on the positioning of pH rise. Stomatal closure and guard cell pH changes are compromised in mutants deficient in vacuolar H+-ATPase (V-ATPase), indicating the importance of V-ATPase in promoting stomatal closure. Thus, cytosolic pH change in guard cells can be related to the rise in ROS and Ca2+, leading to stomatal closure. We emphasize that cytosolic pH in stomatal guard cells deserves further attention and evaluation.
Collapse
Affiliation(s)
| | | | - Agepati S. Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
3
|
Geisler M, Dreyer I. An auxin homeostat allows plant cells to establish and control defined transmembrane auxin gradients. THE NEW PHYTOLOGIST 2024; 244:1422-1436. [PMID: 39279032 DOI: 10.1111/nph.20120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/25/2024] [Indexed: 09/18/2024]
Abstract
Extracellular auxin maxima and minima are important to control plant developmental programs. Auxin gradients are provided by the concerted action of proteins from the three major plasma membrane (PM) auxin transporter classes AUX1/LAX, PIN and ATP-BINDING CASSETTE subfamily B (ABCB) transporters. But neither genetic nor biochemical nor modeling approaches have been able to reliably assign the individual roles and interplay of these transporter types. Based on the thermodynamic properties of the transporters, we show here by mathematical modeling and computational simulations that the concerted action of different auxin transporter types allows the adjustment of specific transmembrane auxin gradients. The dynamic flexibility of the 'auxin homeostat' comes at the cost of an energy-consuming 'auxin cycling' across the membrane. An unexpected finding was that potential functional ABCB-PIN synchronization appears to allow an optimization of the trade-off between the speed of PM auxin gradient adjustment on the one hand and ATP consumption and disturbance of general anion homeostasis on the other. In conclusion, our analyses provide fundamental insights into the thermodynamic constraints and flexibility of transmembrane auxin transport in plants.
Collapse
Affiliation(s)
- Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Ingo Dreyer
- Faculty of Engineering, Electrical Signaling in Plants (ESP) Laboratory - Center of Bioinformatics, Simulation and Modeling (CBSM), University of Talca, Talca, CL-3460000, Chile
| |
Collapse
|
4
|
Maierhofer T, Scherzer S, Carpaneto A, Müller TD, Pardo JM, Hänelt I, Geiger D, Hedrich R. Arabidopsis HAK5 under low K + availability operates as PMF powered high-affinity K + transporter. Nat Commun 2024; 15:8558. [PMID: 39362862 PMCID: PMC11450230 DOI: 10.1038/s41467-024-52963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Plants can survive in soils of low micromolar potassium (K+) concentrations. Root K+ intake is accomplished by the K+ channel AKT1 and KUP/HAK/KT type high-affinity K+ transporters. Arabidopsis HAK5 mutants impaired in low K+ acquisition have been identified already more than two decades ago, the molecular mechanism, however, is still a matter of debate also because of lack of direct measurements of HAK5-mediated K+ currents. When we expressed AtHAK5 in Xenopus oocytes together with CBL1/CIPK23, no inward currents were elicited in sufficient K+ media. Under low K+ and inward-directed proton motive force (PMF), the inward K+ current increased indicating that HAK5 energetically couples the uphill transport of K+ to the downhill flux of H+. At extracellular K+ concentrations above 25 μM, the initial rise in current was followed by a concentration-graded inactivation. When we replaced Tyr450 in AtHAK5 to Ala the K+ affinity strongly decreased, indicating that AtHAK5 position Y450 holds a key for K+ sensing and transport. When the soil K+ concentration drops toward the range that thermodynamically cannot be covered by AKT1, the AtHAK5 K+/H+ symporter progressively takes over K+ nutrition. Therefore, optimizing K+ use efficiency of crops, HAK5 could be key for low K+ tolerant agriculture.
Collapse
Affiliation(s)
- Tobias Maierhofer
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany.
| | - Sönke Scherzer
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
- Institute of Education and Student Affairs, University of Münster, Münster, Germany
| | - Armando Carpaneto
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy.
- Institute of Biophysics, National Research Council, Genova, Italy.
| | - Thomas D Müller
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | - Jose M Pardo
- Instituto de Bioquimica Vegetal y Fotosintesis (IBVF), CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Dietmar Geiger
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| |
Collapse
|
5
|
Dreyer I, Hernández-Rojas N, Bolua-Hernández Y, Tapia-Castillo VDLA, Astola-Mariscal SZ, Díaz-Pico E, Mérida-Quesada F, Vergara-Valladares F, Arrey-Salas O, Rubio-Meléndez ME, Riedelsberger J, Michard E. Homeostats: The hidden rulers of ion homeostasis in plants. QUANTITATIVE PLANT BIOLOGY 2024; 5:e8. [PMID: 39777030 PMCID: PMC11706688 DOI: 10.1017/qpb.2024.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 01/11/2025]
Abstract
Ion homeostasis is a crucial process in plants that is closely linked to the efficiency of nutrient uptake, stress tolerance and overall plant growth and development. Nevertheless, our understanding of the fundamental processes of ion homeostasis is still incomplete and highly fragmented. Especially at the mechanistic level, we are still in the process of dissecting physiological systems to analyse the different parts in isolation. However, modelling approaches have shown that it is not individual transporters but rather transporter networks (homeostats) that control membrane transport and associated homeostatic processes in plant cells. To facilitate access to such theoretical approaches, the modelling of the potassium homeostat is explained here in detail to serve as a blueprint for other homeostats. The unbiased approach provided strong arguments for the abundant existence of electroneutral H+/K+ antiporters in plants.
Collapse
Affiliation(s)
- Ingo Dreyer
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Naomí Hernández-Rojas
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Yasnaya Bolua-Hernández
- Programa de Doctorado en Ciencias mención Biología Vegetal y Biotecnología, Universidad de Talca, Talca, Chile
| | | | | | - Erbio Díaz-Pico
- Programa de Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Universidad de Talca, Talca, Chile
| | - Franko Mérida-Quesada
- Programa de Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Universidad de Talca, Talca, Chile
| | - Fernando Vergara-Valladares
- Programa de Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Universidad de Talca, Talca, Chile
| | - Oscar Arrey-Salas
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - María E. Rubio-Meléndez
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Janin Riedelsberger
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Erwan Michard
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
6
|
Ding M, Zhou Y, Becker D, Yang S, Krischke M, Scherzer S, Yu-Strzelczyk J, Mueller MJ, Hedrich R, Nagel G, Gao S, Konrad KR. Probing plant signal processing optogenetically by two channelrhodopsins. Nature 2024; 633:872-877. [PMID: 39198644 PMCID: PMC11424491 DOI: 10.1038/s41586-024-07884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Early plant responses to different stress situations often encompass cytosolic Ca2+ increases, plasma membrane depolarization and the generation of reactive oxygen species1-3. However, the mechanisms by which these signalling elements are translated into defined physiological outcomes are poorly understood. Here, to study the basis for encoding of specificity in plant signal processing, we used light-gated ion channels (channelrhodopsins). We developed a genetically engineered channelrhodopsin variant called XXM 2.0 with high Ca2+ conductance that enabled triggering cytosolic Ca2+ elevations in planta. Plant responses to light-induced Ca2+ influx through XXM 2.0 were studied side by side with effects caused by an anion efflux through the light-gated anion channelrhodopsin ACR1 2.04. Although both tools triggered membrane depolarizations, their activation led to distinct plant stress responses: XXM 2.0-induced Ca2+ signals stimulated production of reactive oxygen species and defence mechanisms; ACR1 2.0-mediated anion efflux triggered drought stress responses. Our findings imply that discrete Ca2+ signals and anion efflux serve as triggers for specific metabolic and transcriptional reprogramming enabling plants to adapt to particular stress situations. Our optogenetics approach unveiled that within plant leaves, distinct physiological responses are triggered by specific ion fluxes, which are accompanied by similar electrical signals.
Collapse
Affiliation(s)
- Meiqi Ding
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Yang Zhou
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Dirk Becker
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Shang Yang
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany
| | - Markus Krischke
- Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Sönke Scherzer
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Jing Yu-Strzelczyk
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany
| | - Martin J Mueller
- Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany.
| | - Georg Nagel
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany.
| | - Shiqiang Gao
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany.
| | - Kai R Konrad
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany.
| |
Collapse
|
7
|
Barbosa-Caro JC, Wudick MM. Revisiting plant electric signaling: Challenging an old phenomenon with novel discoveries. CURRENT OPINION IN PLANT BIOLOGY 2024; 79:102528. [PMID: 38552341 DOI: 10.1016/j.pbi.2024.102528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 05/27/2024]
Abstract
Higher plants efficiently orchestrate rapid systemic responses to diverse environmental stimuli through electric signaling. This review explores the mechanisms underlying two main types of electric signals in plants, action potentials (APs) and slow wave potentials (SWPs), and how new discoveries challenge conventional neurophysiological paradigms traditionally forming their theoretical foundations. Animal APs are biophysically well-defined, whereas plant APs are often classified based on their shape, lacking thorough characterization. SWPs are depolarizing electric signals deviating from this shape, leading to an oversimplified classification of plant electric signals. Indeed, investigating the generation and propagation of plant APs and SWPs showcases a complex interplay of mechanisms that sustain self-propagating signals and internally propagating stimuli, resulting in membrane depolarization, cytosolic calcium increase, and alterations in reactive oxygen species and pH. A holistic understanding of plant electric signaling will rely on unraveling the network of ion-conducting proteins, signaling molecules, and mechanisms for signal generation and propagation.
Collapse
Affiliation(s)
- Juan Camilo Barbosa-Caro
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Molecular Physiology, 40225 Düsseldorf, Germany
| | - Michael M Wudick
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Molecular Physiology, 40225 Düsseldorf, Germany; Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Cluster of Excellence on Plant Sciences, 40225 Düsseldorf, Germany.
| |
Collapse
|
8
|
Li K, Grauschopf C, Hedrich R, Dreyer I, Konrad KR. K + and pH homeostasis in plant cells is controlled by a synchronized K + /H + antiport at the plasma and vacuolar membrane. THE NEW PHYTOLOGIST 2024; 241:1525-1542. [PMID: 38017688 DOI: 10.1111/nph.19436] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Stomatal movement involves ion transport across the plasma membrane (PM) and vacuolar membrane (VM) of guard cells. However, the coupling mechanisms of ion transporters in both membranes and their interplay with Ca2+ and pH changes are largely unclear. Here, we investigated transporter networks in tobacco guard cells and mesophyll cells using multiparametric live-cell ion imaging and computational simulations. K+ and anion fluxes at both, PM and VM, affected H+ and Ca2+ , as changes in extracellular KCl or KNO3 concentrations were accompanied by cytosolic and vacuolar pH shifts and changes in [Ca2+ ]cyt and the membrane potential. At both membranes, the K+ transporter networks mediated an antiport of K+ and H+ . By contrast, net transport of anions was accompanied by parallel H+ transport, with differences in transport capacity for chloride and nitrate. Guard and mesophyll cells exhibited similarities in K+ /H+ transport but cell type-specific differences in [H+ ]cyt and pH-dependent [Ca2+ ]cyt signals. Computational cell biology models explained mechanistically the properties of transporter networks and the coupling of transport across the PM and VM. Our integrated approach indicates fundamental principles of coupled ion transport at membrane sandwiches to control H+ /K+ homeostasis and points to transceptor-like Ca2+ /H+ -based ion signaling in plant cells.
Collapse
Affiliation(s)
- Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Christina Grauschopf
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Ingo Dreyer
- Faculty of Engineering, Center of Bioinformatics, Simulation and Modeling (CBSM), University of Talca, 3460000, Talca, Chile
| | - Kai R Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| |
Collapse
|
9
|
De Rosa A, McGaughey S, Magrath I, Byrt C. Molecular membrane separation: plants inspire new technologies. THE NEW PHYTOLOGIST 2023; 238:33-54. [PMID: 36683439 DOI: 10.1111/nph.18762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plants draw up their surrounding soil solution to gain water and nutrients required for growth, development and reproduction. Obtaining adequate water and nutrients involves taking up both desired and undesired elements from the soil solution and separating resources from waste. Desirable and undesirable elements in the soil solution can share similar chemical properties, such as size and charge. Plants use membrane separation mechanisms to distinguish between different molecules that have similar chemical properties. Membrane separation enables distribution or retention of resources and efflux or compartmentation of waste. Plants use specialised membrane separation mechanisms to adapt to challenging soil solution compositions and distinguish between resources and waste. Coordination and regulation of these mechanisms between different tissues, cell types and subcellular membranes supports plant nutrition, environmental stress tolerance and energy management. This review considers membrane separation mechanisms in plants that contribute to specialised separation processes and highlights mechanisms of interest for engineering plants with enhanced performance in challenging conditions and for inspiring the development of novel industrial membrane separation technologies. Knowledge gained from studying plant membrane separation mechanisms can be applied to developing precision separation technologies. Separation technologies are needed for harvesting resources from industrial wastes and transitioning to a circular green economy.
Collapse
Affiliation(s)
- Annamaria De Rosa
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Samantha McGaughey
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Isobel Magrath
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Caitlin Byrt
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| |
Collapse
|
10
|
Graus D, Li K, Rathje JM, Ding M, Krischke M, Müller MJ, Cuin TA, Al-Rasheid KAS, Scherzer S, Marten I, Konrad KR, Hedrich R. Tobacco leaf tissue rapidly detoxifies direct salt loads without activation of calcium and SOS signaling. THE NEW PHYTOLOGIST 2023; 237:217-231. [PMID: 36128659 DOI: 10.1111/nph.18501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Salt stress is a major abiotic stress, responsible for declining agricultural productivity. Roots are regarded as hubs for salt detoxification, however, leaf salt concentrations may exceed those of roots. How mature leaves manage acute sodium chloride (NaCl) stress is mostly unknown. To analyze the mechanisms for NaCl redistribution in leaves, salt was infiltrated into intact tobacco leaves. It initiated pronounced osmotically-driven leaf movements. Leaf downward movement caused by hydro-passive turgor loss reached a maximum within 2 h. Salt-driven cellular water release was accompanied by a transient change in membrane depolarization but not an increase in cytosolic calcium ion (Ca2+ ) level. Nonetheless, only half an hour later, the leaves had completely regained turgor. This recovery phase was characterized by an increase in mesophyll cell plasma membrane hydrogen ion (H+ ) pumping, a salt uptake-dependent cytosolic alkalization, and a return of the apoplast osmolality to pre-stress levels. Although, transcript numbers of abscisic acid- and Salt Overly Sensitive pathway elements remained unchanged, salt adaptation depended on the vacuolar H+ /Na+ -exchanger NHX1. Altogether, tobacco leaves can detoxify sodium ions (Na+ ) rapidly even under massive salt loads, based on pre-established posttranslational settings and NHX1 cation/H+ antiport activity. Unlike roots, signaling and processing of salt stress in tobacco leaves does not depend on Ca2+ signaling.
Collapse
Affiliation(s)
- Dorothea Graus
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Kunkun Li
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Jan M Rathje
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Meiqi Ding
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Markus Krischke
- Institute for Pharmaceutical Biology, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Martin J Müller
- Institute for Pharmaceutical Biology, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Tracey Ann Cuin
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tas., 7005, Australia
| | - Khaled A S Al-Rasheid
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Irene Marten
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Kai R Konrad
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, Julius von-Sachs Platz 2, D-97082, Würzburg, Germany
| |
Collapse
|
11
|
Dreyer I. Specialty grand challenge in plant biophysics and modeling. FRONTIERS IN PLANT SCIENCE 2022; 13:991526. [PMID: 36119613 PMCID: PMC9478854 DOI: 10.3389/fpls.2022.991526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
|