1
|
Antonioni A, Raho EM, Straudi S, Granieri E, Koch G, Fadiga L. The cerebellum and the Mirror Neuron System: A matter of inhibition? From neurophysiological evidence to neuromodulatory implications. A narrative review. Neurosci Biobehav Rev 2024; 164:105830. [PMID: 39069236 DOI: 10.1016/j.neubiorev.2024.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Mirror neurons show activity during both the execution (AE) and observation of actions (AO). The Mirror Neuron System (MNS) could be involved during motor imagery (MI) as well. Extensive research suggests that the cerebellum is interconnected with the MNS and may be critically involved in its activities. We gathered evidence on the cerebellum's role in MNS functions, both theoretically and experimentally. Evidence shows that the cerebellum plays a major role during AO and MI and that its lesions impair MNS functions likely because, by modulating the activity of cortical inhibitory interneurons with mirror properties, the cerebellum may contribute to visuomotor matching, which is fundamental for shaping mirror properties. Indeed, the cerebellum may strengthen sensory-motor patterns that minimise the discrepancy between predicted and actual outcome, both during AE and AO. Furthermore, through its connections with the hippocampus, the cerebellum might be involved in internal simulations of motor programs during MI. Finally, as cerebellar neuromodulation might improve its impact on MNS activity, we explored its potential neurophysiological and neurorehabilitation implications.
Collapse
Affiliation(s)
- Annibale Antonioni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy; Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara 44121, Italy.
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy
| | - Enrico Granieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy; Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome 00179, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy
| |
Collapse
|
2
|
Vescovo E, Cardellicchio P, Tomassini A, Fadiga L, D'Ausilio A. Excitatory/inhibitory motor balance reflects individual differences during joint action coordination. Eur J Neurosci 2024; 59:3403-3421. [PMID: 38666628 DOI: 10.1111/ejn.16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/07/2024] [Accepted: 04/06/2024] [Indexed: 06/15/2024]
Abstract
Joint action (JA) is a continuous process of motor co-regulation based on the integration of contextual (top-down) and kinematic (bottom-up) cues from partners. The fine equilibrium between excitation and inhibition in sensorimotor circuits is, thus, central to such a dynamic process of action selection and execution. In a bimanual task adapted to become a unimanual JA task, the participant held a bottle (JA), while a confederate had to reach and unscrew either that bottle or another stabilized by a mechanical clamp (No_JA). Prior knowledge was manipulated in each trial such that the participant knew (K) or not (No_K) the target bottle in advance. Online transcranial magnetic stimulation (TMS) was administered at action-relevant landmarks to explore corticospinal excitability (CSE) and inhibition (cortical silent period [cSP]). CSE was modulated early on before the action started if prior information was available. In contrast, cSP modulation emerged later during the reaching action, regardless of prior information. These two indexes could thus reflect the concurrent elaboration of contextual priors (top-down) and the online sampling of partner's kinematic cues (bottom-up). Furthermore, participants selected either one of two possible behavioural strategies, preferring early or late force exertion on the bottle. One translates into a reduced risk of motor coordination failure and the other into reduced metabolic expenditure. Each strategy was characterised by a specific excitatory/inhibitory profile. In conclusion, the study of excitatory/inhibitory balance paves the way for the neurophysiological determination of individual differences in the combination of top-down and bottom-up processing during JA coordination.
Collapse
Affiliation(s)
- Enrico Vescovo
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Pasquale Cardellicchio
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Laroche J, Tomassini A, Fadiga L, D'Ausilio A. Submovement interpersonal coupling is associated to audio-motor coordination performance. Sci Rep 2024; 14:4662. [PMID: 38409187 PMCID: PMC10897171 DOI: 10.1038/s41598-024-51629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Acting in concert with others, a key aspect of our social life, requires behavioral coordination between persons on multiple timescales. When zooming in on the kinematic properties of movements, it appears that small speed fluctuations, called submovements, are embedded within otherwise smooth end-point trajectories. Submovements, by occurring at a faster timescale than that of movements, offer a novel window upon the functional relationship between distinct motor timescales. In this regard, it has previously been shown that when partners visually synchronize their movements, they also coordinate the timing of their submovement by following an alternated pattern. However, it remains unclear whether the mechanisms behind submovement coordination are domain-general or specific to the visual modality, and whether they have relevance for interpersonal coordination also at the scale of whole movements. In a series of solo and dyadic tasks, we show that submovements are also present and coordinated across partners when sensorimotor interactions are mediated by auditory feedback only. Importantly, the accuracy of task-instructed interpersonal coordination at the movement level correlates with the strength of submovement coordination. These results demonstrate that submovement coordination is a potentially fundamental mechanism that participates in interpersonal motor coordination regardless of the sensory domain mediating the interaction.
Collapse
Affiliation(s)
- Julien Laroche
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy.
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy
- Sezione di Fisiologia, Dipartimento di Neuroscienze e Riabilitazione, Università di Ferrara, Ferrara, Italy
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy
- Sezione di Fisiologia, Dipartimento di Neuroscienze e Riabilitazione, Università di Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Arellano-Véliz NA, Jeronimus BF, Kunnen ES, Cox RFA. The interacting partner as the immediate environment: Personality, interpersonal dynamics, and bodily synchronization. J Pers 2024; 92:180-201. [PMID: 36825360 DOI: 10.1111/jopy.12828] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
OBJECTIVE In social interactions, humans tend to naturally synchronize their body movements. We investigated interpersonal synchronization in conversations and examined its relationship with personality differences and post-interaction appraisals. METHOD In a 15-minute semi-structured conversation, 56 previously-unfamiliar dyads introduced themselves, followed by self-disclosing and argumentative conversations. Their bodily movements were video-recorded in a standardized room (112 young adults, aged 18-33, mean = 20.54, SD = 2.74; 58% Dutch, 31% German, 11% other). Interpersonal bodily synchronization was estimated as (a) synchronization strength using Windowed Lagged Cross-Correlations and (b) Dynamic Organization (Determinism/Entropy/Laminarity/Mean Line) using Cross-Recurrence Quantification Analysis. Bodily synchronization was associated with differences in Agreeableness and Extraversion (IPIP-NEO-120) and post-conversational appraisals (affect/closeness/enjoyment) in mixed-effect models. RESULTS Agreeable participants exhibited higher complexity in bodily synchronization dynamics (higher Entropy) than disagreeable individuals, who also reported more negative affect afterward. Interpersonal synchronization was stronger among extroverts than among introverts and extroverts appraised conversations as more positive and enjoyable. Bodily synchronization strength and dynamic organization were related to the type of conversation (self-disclosing/argumentative). CONCLUSIONS Interpersonal dynamics were intimately connected to differences in Agreeableness and Extraversion, varied across situations, and these parameters affected how pleasant, close, and enjoyable each conversation felt.
Collapse
Affiliation(s)
| | - Bertus F Jeronimus
- Department of Psychology, University of Groningen, Groningen, The Netherlands
| | - E Saskia Kunnen
- Department of Psychology, University of Groningen, Groningen, The Netherlands
| | - Ralf F A Cox
- Department of Psychology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Emanuele M, D'Ausilio A, Koch G, Fadiga L, Tomassini A. Scale-invariant changes in corticospinal excitability reflect multiplexed oscillations in the motor output. J Physiol 2024; 602:205-222. [PMID: 38059677 DOI: 10.1113/jp284273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
In the absence of disease, humans produce smooth and accurate movement trajectories. Despite such 'macroscopic' aspect, the 'microscopic' structure of movements reveals recurrent (quasi-rhythmic) discontinuities. To date, it is unclear how the sensorimotor system contributes to the macroscopic and microscopic architecture of movement. Here, we investigated how corticospinal excitability changes in relation to microscopic fluctuations that are naturally embedded within larger macroscopic variations in motor output. Participants performed a visuomotor tracking task. In addition to the 0.25 Hz modulation that is required for task fulfilment (macroscopic scale), the motor output shows tiny but systematic fluctuations at ∼2 and 8 Hz (microscopic scales). We show that motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) during task performance are consistently modulated at all (time) scales. Surprisingly, MEP modulation covers a similar range at both micro- and macroscopic scales, even though the motor output differs by several orders of magnitude. Thus, corticospinal excitability finely maps the multiscale temporal patterning of the motor output, but it does so according to a principle of scale invariance. These results suggest that corticospinal excitability indexes a relatively abstract level of movement encoding that may reflect the hierarchical organisation of sensorimotor processes. KEY POINTS: Motor behaviour is organised on multiple (time)scales. Small but systematic ('microscopic') fluctuations are engrained in larger and slower ('macroscopic') variations in motor output, which are instrumental in deploying the desired motor plan. Corticospinal excitability is modulated in relation to motor fluctuations on both macroscopic and microscopic (time)scales. Corticospinal excitability obeys a principle of scale invariance, that is, it is modulated similarly at all (time)scales, possibly reflecting hierarchical mechanisms that optimise motor encoding.
Collapse
Affiliation(s)
- Marco Emanuele
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Computer Science, Western University, London, Ontario, Canada
| | - Alessandro D'Ausilio
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
- IRCSS Santa Lucia, Roma, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| |
Collapse
|
6
|
Colomer C, Dhamala M, Ganesh G, Lagarde J. Granger Geweke Causality reveals information exchange during physical interaction is modulated by task difficulty. Hum Mov Sci 2023; 92:103139. [PMID: 37703590 DOI: 10.1016/j.humov.2023.103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
The haptic sense is an important mode of communication during physical interactions, and it is known to enable humans to estimate key features of their partner's behavior. It is proposed that such estimations are based upon the exchange of information mediated by the interaction forces, resulting in role distribution and coordination between partners. In the present study, we examined whether the information exchange is functionally modified to adapt to the task, or whether it is a fixed process, leaving the adaptation to individual's behaviors. We analyzed the forces during an empirical dyadic interaction task using Granger-Geweke causality analysis, which allowed us to quantify the causal influence of each individual's forces on their partner's. The dynamics of relative phase were also examined. We observed an increase of inter-partner influence with an increase in the spatial accuracy required by the task, demonstrating an adaptation of information flow to the task. This increase of exchange with the spatial accuracy constraint was accompanied by an increase of errors and of the variability of the relative phase between forces. The influence was dominated by participants in a specific role, showing a clear role division as well as task division between the dyad partners. Moreover, the influence occurred in the [2.15-7] Hz frequency band, demonstrating its importance as a frequency band of interest during cooperation involving haptic interaction. Several interpretations are introduced, ranging from sub-division of motion control to phase-amplitude coupling.
Collapse
Affiliation(s)
- Clémentine Colomer
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, 700 Av. du Pic Saint-Loup, 34090 Montpellier, France.
| | - Mukesh Dhamala
- Department of Physics and Astronomy, Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA.
| | - Gowrishankar Ganesh
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), Univ. Montpellier, CNRS, 161 Rue Ada, 34095 Montpellier, France.
| | - Julien Lagarde
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, 700 Av. du Pic Saint-Loup, 34090 Montpellier, France.
| |
Collapse
|
7
|
Casartelli L, Maronati C, Cavallo A. From neural noise to co-adaptability: Rethinking the multifaceted architecture of motor variability. Phys Life Rev 2023; 47:245-263. [PMID: 37976727 DOI: 10.1016/j.plrev.2023.10.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
In the last decade, the source and the functional meaning of motor variability have attracted considerable attention in behavioral and brain sciences. This construct classically combined different levels of description, variable internal robustness or coherence, and multifaceted operational meanings. We provide here a comprehensive review of the literature with the primary aim of building a precise lexicon that goes beyond the generic and monolithic use of motor variability. In the pars destruens of the work, we model three domains of motor variability related to peculiar computational elements that influence fluctuations in motor outputs. Each domain is in turn characterized by multiple sub-domains. We begin with the domains of noise and differentiation. However, the main contribution of our model concerns the domain of adaptability, which refers to variation within the same exact motor representation. In particular, we use the terms learning and (social)fitting to specify the portions of motor variability that depend on our propensity to learn and on our largely constitutive propensity to be influenced by external factors. A particular focus is on motor variability in the context of the sub-domain named co-adaptability. Further groundbreaking challenges arise in the modeling of motor variability. Therefore, in a separate pars construens, we attempt to characterize these challenges, addressing both theoretical and experimental aspects as well as potential clinical implications for neurorehabilitation. All in all, our work suggests that motor variability is neither simply detrimental nor beneficial, and that studying its fluctuations can provide meaningful insights for future research.
Collapse
Affiliation(s)
- Luca Casartelli
- Theoretical and Cognitive Neuroscience Unit, Scientific Institute IRCCS E. MEDEA, Italy
| | - Camilla Maronati
- Move'n'Brains Lab, Department of Psychology, Università degli Studi di Torino, Italy
| | - Andrea Cavallo
- Move'n'Brains Lab, Department of Psychology, Università degli Studi di Torino, Italy; C'MoN Unit, Fondazione Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
8
|
D'Ausilio A, Tomassini A. Studying the hierarchy of actions from motor primitives: Comment on "An active inference model of hierarchical action understanding, learning and imitation". Phys Life Rev 2023; 47:63-65. [PMID: 37708816 DOI: 10.1016/j.plrev.2023.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Affiliation(s)
- A D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara, Italy; Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Ferrara, Italy.
| | - A Tomassini
- Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Nazzaro G, Emanuele M, Laroche J, Esposto C, Fadiga L, D'Ausilio A, Tomassini A. The microstructure of intra- and interpersonal coordination. Proc Biol Sci 2023; 290:20231576. [PMID: 37964525 PMCID: PMC10646454 DOI: 10.1098/rspb.2023.1576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Movements are naturally composed of submovements, i.e. recurrent speed pulses (2-3 Hz), possibly reflecting intermittent feedback-based motor adjustments. In visuomotor (unimanual) synchronization tasks, partners alternate submovements over time, indicating mutual coregulation. However, it is unclear whether submovement coordination is organized differently between and within individuals. Indeed, different types of information may be variably exploited for intrapersonal and interpersonal coordination. Participants performed a series of bimanual tasks alone or in pairs, with or without visual feedback (solo task only). We analysed the relative timing of submovements between their own hands or between their own hands and those of their partner. Distinct coordinative structures emerged at the submovement level depending on the relevance of visual feedback. Specifically, the relative timing of submovements (between partners/effectors) shifts from alternation to simultaneity and a mixture of both when coordination is achieved using vision (interpersonal), proprioception/efference-copy only (intrapersonal, without vision) or all information sources (intrapersonal, with vision), respectively. These results suggest that submovement coordination represents a behavioural proxy for the adaptive weighting of different sources of information within action-perception loops. In sum, the microstructure of movement reveals common principles governing the dynamics of sensorimotor control to achieve both intra- and interpersonal coordination.
Collapse
Affiliation(s)
- Giovanni Nazzaro
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Marco Emanuele
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Julien Laroche
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Chiara Esposto
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| |
Collapse
|
10
|
Xavier J, Johnson S, Cohen D. From child-peer similarity in imitative behavior to matched peer-mediated interventions in autism. Front Psychol 2023; 14:1173627. [PMID: 37599766 PMCID: PMC10433193 DOI: 10.3389/fpsyg.2023.1173627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023] Open
Abstract
Self-consciousness develops through a long process, from pre-reflexive consciousness relying on body perception, to "meta" self-awareness. It emerges from the imitative experience between children and their peers. This experience linked to the capacity to test structural similarities between oneself and others, is addressed according to the concept of interpersonal affordance. We hypothesize that the opportunity for co-actors to engage in a process of interpersonal coordination is underlined by their similarity in terms of morphological, behavioral and motor features. This experience can sustain the emergence of new affordances for objects for each co-actor, as well as new affordances in terms of joint actions. We apply this idea in the context of peer-mediated interventions (PMI) in autism spectrum disorder (ASD). We argue that, in PMI, an encounter between children with autism and similar peers would foster the opportunity to engage in a spontaneous process of interpersonal coordination. This process would enable the development of self-consciousness and the emergence of perception of interpersonal, self and other's affordances for children with autism. We conclude that metrics to assess morphological, behavioral and motor similarity should then be defined and used in future studies to test our hypothesis in children with autism versus TD children or between children with autism.
Collapse
Affiliation(s)
- Jean Xavier
- Department of Child and Adolescent Psychiatry, Henri Laborit Hospital Centre, Poitiers, France
- CNRS UMR 7295, Équipe CoCliCo, Cognition and Learning Research Center, Poitiers, France
| | - Simona Johnson
- Faculty of Medicine and Pharmacy, University of Poitiers, Poitiers, France
| | - David Cohen
- Department of Child and Adolescent Psychiatry, Reference Centre for Rare Psychiatric Diseases, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
- CNRS UMR 7222, Institute for Intelligent Systems and Robotics, Sorbonne Université, Paris, France
| |
Collapse
|
11
|
Torricelli F, Tomassini A, Pezzulo G, Pozzo T, Fadiga L, D'Ausilio A. Motor invariants in action execution and perception. Phys Life Rev 2023; 44:13-47. [PMID: 36462345 DOI: 10.1016/j.plrev.2022.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The nervous system is sensitive to statistical regularities of the external world and forms internal models of these regularities to predict environmental dynamics. Given the inherently social nature of human behavior, being capable of building reliable predictive models of others' actions may be essential for successful interaction. While social prediction might seem to be a daunting task, the study of human motor control has accumulated ample evidence that our movements follow a series of kinematic invariants, which can be used by observers to reduce their uncertainty during social exchanges. Here, we provide an overview of the most salient regularities that shape biological motion, examine the role of these invariants in recognizing others' actions, and speculate that anchoring socially-relevant perceptual decisions to such kinematic invariants provides a key computational advantage for inferring conspecifics' goals and intentions.
Collapse
Affiliation(s)
- Francesco Torricelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Thierry Pozzo
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alessandro D'Ausilio
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.
| |
Collapse
|
12
|
Interpersonal synchronization of spontaneously generated body movements. iScience 2023; 26:106104. [PMID: 36852275 PMCID: PMC9958360 DOI: 10.1016/j.isci.2023.106104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Interpersonal movement synchrony (IMS) is central to social behavior in several species. In humans, IMS is typically studied using structured tasks requiring participants to produce specific body movements. Instead, spontaneously generated (i.e., not instructed) movements have received less attention. To test whether spontaneous movements synchronize interpersonally, we recorded full-body kinematics from dyads of participants who were only asked to sit face-to-face and to look at each other. We manipulated interpersonal (i) visual contact and (ii) spatial proximity. We found that spontaneous movements synchronized across participants only when they could see each other and regardless of interpersonal spatial proximity. This synchronization emerged very rapidly and did not selectively entail homologous body parts (as in mimicry); rather, the synchrony generalized to nearly all possible combinations of body parts. Hence, spontaneous behavior alone can lead to IMS. More generally, our results highlight that IMS can be studied under natural and unconstrained conditions.
Collapse
|
13
|
Interacting humans use forces in specific frequencies to exchange information by touch. Sci Rep 2022; 12:15752. [PMID: 36130972 PMCID: PMC9492785 DOI: 10.1038/s41598-022-19500-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Object-mediated joint action is believed to be enabled by implicit information exchange between interacting individuals using subtle haptic signals within their interaction forces. The characteristics of these haptic signals have, however, remained unclear. Here we analyzed the interaction forces during an empirical dyadic interaction task using Granger–Geweke causality analysis, which allowed us to quantify the causal influence of each individual’s forces on their partner’s. We observed that the inter-partner influence was not the same at every frequency. Specifically, in the frequency band of [2.15–7] Hz, we observed inter-partner differences of causal influence that were invariant of the movement frequencies in the task and present only when information exchange was indispensable for task performance. Moreover, the inter-partner difference in this frequency band was observed to be correlated with the task performance by the dyad. Our results suggest that forces in the [2.15–7] Hz band constitute task related information exchange between individuals during physical interactions.
Collapse
|