1
|
Liu X, Yin B, Yang C, Wang J, Yang R, Wu S. Real-time monitoring of single-cell extracellular pH based on stretchable microelectrode array. Talanta 2025; 286:127453. [PMID: 39732102 DOI: 10.1016/j.talanta.2024.127453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/10/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
The study of cell mechanics was significant for understanding cellular physiological functions, the mechanisms of disease occurrence, and the development of novel therapeutic approaches. However, research on the mechanism of mechanical strain action at the single-cell level was relatively lacking. Herein, we developed a serpentine stretchable sensor array capable of exerting precise mechanical strain on cells and monitoring extracellular pH (pHe) changes at single cell level. The PANI sensor array based on the serpentine structure exhibited good electrochemical stability against mechanical deformation enabling accurate measurement of pHe in single-cell during stretching. The results showed that mechanical stimulation induced cells to undergo deformation, thereby promoting increased cell acid excretion. Both stretching and compressive deformation were able to promote the increase of cell acid excretion. This sensor served as a powerful tool for researching the effect of cellular mechanics on cell metabolism at the single-cell level.
Collapse
Affiliation(s)
- Xiaobo Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| | - Bing Yin
- School of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| | - Chao Yang
- School of Physics, Dalian University of Technology, Dalian, 116024, PR China
| | - Jiashi Wang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| | - Rongli Yang
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024, PR China; Department of Critical Care Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, PR China.
| | - Shuo Wu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, PR China.
| |
Collapse
|
2
|
Yu Y, Zhao X, Cheng Y, Shang G, Tang K, Wang Y, Peng X, Ou S, Hu Z. Fumonisin B1 Exerts Immunosuppressive Effects Through Cytoskeleton Remodeling and Function Attenuation of Mature Dendritic Cells. Int J Mol Sci 2025; 26:2876. [PMID: 40243458 PMCID: PMC11988462 DOI: 10.3390/ijms26072876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Fumonisin B1 (FB1) is one of the most toxic mycotoxins and is harmful to humans and animals due to its hepatotoxicity, immunotoxicity and carcinogenicity. However, the mechanism of its immunosuppressive effect is still under investigation. Dendritic cells (DCs) are the most potent professional antigen-presenting cells, and their differentiation, maturation and immunomodulatory functions are closely related to the immunotoxicity of certain mycotoxins. Migratory capacity is a prerequisite for mature DCs (mDCs) to move and present antigens in secondary lymphoid tissue, whereas the mechanical properties and cytoskeletal structure are critical for their migration and immune functions. Therefore, the effects of FB1 on the cell viability, mechanical characteristics, cytoskeletal structure and its binding proteins, migration, co-stimulatory molecules and the immune functions of mDCs were investigated to explore the potential mechanisms of immunotoxicity. The results showed that FB1 could impair the chemotactic migratory capability, the expression of co-stimulatory molecules and the ability of DCs to stimulate T cell proliferation. Further analyses elucidated that the mechanical properties of mDCs were changed, the cytoskeletal structures were reorganized and the expressions of cytoskeleton-binding proteins were regulated. In conclusion, the attenuated migration and immune functions of mDCs caused by FB1 may be related to their altered mechanical properties and cytoskeleton remodeling, which may be one of the action modes for FB1 to exert its immunosuppressive effect.
Collapse
Affiliation(s)
- Yanqin Yu
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (Y.Y.); (Y.C.); (G.S.); (K.T.); (Y.W.)
| | - Xue Zhao
- Guizhou Provincial Engineering Research Center for Smart Biomaterials, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China; (X.Z.); (X.P.)
| | - Yao Cheng
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (Y.Y.); (Y.C.); (G.S.); (K.T.); (Y.W.)
- Guizhou Provincial Engineering Research Center for Smart Biomaterials, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China; (X.Z.); (X.P.)
| | - Guofu Shang
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (Y.Y.); (Y.C.); (G.S.); (K.T.); (Y.W.)
| | - Kaiyi Tang
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (Y.Y.); (Y.C.); (G.S.); (K.T.); (Y.W.)
- Guizhou Provincial Engineering Research Center for Smart Biomaterials, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China; (X.Z.); (X.P.)
| | - Yun Wang
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (Y.Y.); (Y.C.); (G.S.); (K.T.); (Y.W.)
| | - Xiaoyan Peng
- Guizhou Provincial Engineering Research Center for Smart Biomaterials, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China; (X.Z.); (X.P.)
| | - Sha Ou
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (Y.Y.); (Y.C.); (G.S.); (K.T.); (Y.W.)
| | - Zuquan Hu
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550025, China; (Y.Y.); (Y.C.); (G.S.); (K.T.); (Y.W.)
- Guizhou Provincial Engineering Research Center for Smart Biomaterials, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, China; (X.Z.); (X.P.)
- Guizhou Key Laboratory of Microbio and Infectious Disease Prevention & Control, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
3
|
Zhao L, Gui Y, Deng X. Focus on mechano-immunology: new direction in cancer treatment. Int J Surg 2025; 111:2590-2602. [PMID: 39764598 DOI: 10.1097/js9.0000000000002224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/29/2024] [Indexed: 03/16/2025]
Abstract
The immune response is modulated by a diverse array of signals within the tissue microenvironment, encompassing biochemical factors, mechanical forces, and pressures from adjacent tissues. Furthermore, the extracellular matrix and its constituents significantly influence the function of immune cells. In the case of carcinogenesis, changes in the biophysical properties of tissues can impact the mechanical signals received by immune cells, and these signals c1an be translated into biochemical signals through mechano-transduction pathways. These mechano-transduction pathways have a profound impact on cellular functions, influencing processes such as cell activation, metabolism, proliferation, and migration, etc. Tissue mechanics may undergo temporal changes during the process of carcinogenesis, offering the potential for novel dynamic levels of immune regulation. Here, we review advances in mechanoimmunology in malignancy studies, focusing on how mechanosignals modulate the behaviors of immune cells at the tissue level, thereby triggering an immune response that ultimately influences the development and progression of malignant tumors. Additionally, we have also focused on the development of mechano-immunoengineering systems, with the help of which could help to further understand the response of tumor cells or immune cells to alterations in the microenvironment and may provide new research directions for overcoming immunotherapeutic resistance of malignant tumors.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, China
| | - Yajun Gui
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, China
| | - Xiangying Deng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, China
- Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Miller DM, Yadanapudi K, Rai V, Rai SN, Chen J, Frieboes HB, Masters A, McCallum A, Williams BJ. Untangling the web of glioblastoma treatment resistance using a multi-omic and multidisciplinary approach. Am J Med Sci 2023; 366:185-198. [PMID: 37330006 DOI: 10.1016/j.amjms.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/01/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023]
Abstract
Glioblastoma (GBM), the most common human brain tumor, has been notoriously resistant to treatment. As a result, the dismal overall survival of GBM patients has not changed over the past three decades. GBM has been stubbornly resistant to checkpoint inhibitor immunotherapies, which have been remarkably effective in the treatment of other tumors. It is clear that GBM resistance to therapy is multifactorial. Although therapeutic transport into brain tumors is inhibited by the blood brain barrier, there is evolving evidence that overcoming this barrier is not the predominant factor. GBMs generally have a low mutation burden, exist in an immunosuppressed environment and they are inherently resistant to immune stimulation, all of which contribute to treatment resistance. In this review, we evaluate the contribution of multi-omic approaches (genomic and metabolomic) along with analyzing immune cell populations and tumor biophysical characteristics to better understand and overcome GBM multifactorial resistance to treatment.
Collapse
Affiliation(s)
- Donald M Miller
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA.
| | - Kavitha Yadanapudi
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Veeresh Rai
- Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Shesh N Rai
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Biostatistics and Informatics Shared Resources, University of Cincinnati Cancer Center, Cincinnati, OH, USA; Cancer Data Science Center of University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph Chen
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, USA
| | - Hermann B Frieboes
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, USA; Center for Preventative Medicine, University of Louisville, Louisville, KY, USA
| | - Adrianna Masters
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Radiation Oncology, University of Louisville, Louisville, KY, USA
| | - Abigail McCallum
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| | - Brian J Williams
- Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| |
Collapse
|
5
|
Mattei F, Jolly MK. Interdisciplinary research in cancer and immunity employing biophysical approaches. iScience 2023; 26:106507. [PMID: 37250324 PMCID: PMC10214275 DOI: 10.1016/j.isci.2023.106507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Three leading scientists Fabrizio Mattei, Kandice Tanner, and Mohit Kumar Jolly working in different continents and in different areas of cancer and immunology came together for an iScience Special Issue focused on the biophysical aspect of the tumor-immune dynamics. In this backstory, the iScience editor discusses with Mattei and Jolly their thoughts about this topic, the current state of the field, the collection of articles in this Special Issue, and the future of the research in this area in the coming years, and personal advice to aspiring young minds.
Collapse
Affiliation(s)
- Fabrizio Mattei
- Tumor Immunology Unit, Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Minini M, Fouassier L. Cancer-Associated Fibroblasts and Extracellular Matrix: Therapeutical Strategies for Modulating the Cholangiocarcinoma Microenvironment. Curr Oncol 2023; 30:4185-4196. [PMID: 37185432 PMCID: PMC10137461 DOI: 10.3390/curroncol30040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
During the last decade, immunotherapy has radically changed perspectives on anti-tumor treatments. However, solid tumor treatment by immunotherapy has not met expectations. Indeed, poor clinical response to treatment has highlighted the need to understand and avoid immunotherapy resistance. Cholangiocarcinoma (CCA) is the second cause of hepatic cancer-related deaths because of drug inefficacy and chemo-resistance in a majority of patients. Thus, intense research is ongoing to better understand the mechanisms involved in the chemo-resistance processes. The tumor microenvironment (TME) may be involved in tumor therapy resistance by limiting drug access. Indeed, cells such as cancer-associated fibroblasts (CAFs) alter TME by producing in excess an aberrant extracellular matrix (ECM). Interestingly, CAFs are the dominant stromal component in CCA that secrete large amounts of stiff ECM. Stiff ECM could contribute to immune exclusion by limiting anti-tumor T-cells drop-in. Herein, we summarize features, functions, and interactions among CAFs, tumor-associated ECM, and immune cells in TME. Moreover, we discuss the strategies targeting CAFs and the remodeling of the ECM to improve immunotherapy and drug therapies.
Collapse
Affiliation(s)
- Mirko Minini
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, 75012 Paris, France
| | - Laura Fouassier
- Centre de Recherche Saint-Antoine, CRSA, Sorbonne Université, INSERM, 75012 Paris, France
- Association Pour L'étude des Cancers et Affections des Voies Biliaires (ACABi), 75012 Paris, France
| |
Collapse
|
7
|
Do Tumor Mechanical Stresses Promote Cancer Immune Escape? Cells 2022; 11:cells11233840. [PMID: 36497097 PMCID: PMC9740277 DOI: 10.3390/cells11233840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Immune evasion-a well-established cancer hallmark-is a major barrier to immunotherapy efficacy. While the molecular mechanisms and biological consequences underpinning immune evasion are largely known, the role of tissue mechanical stresses in these processes warrants further investigation. The tumor microenvironment (TME) features physical abnormalities (notably, increased fluid and solid pressures applied both inside and outside the TME) that drive cancer mechanopathologies. Strikingly, in response to these mechanical stresses, cancer cells upregulate canonical immune evasion mechanisms, including epithelial-mesenchymal transition (EMT) and autophagy. Consideration and characterization of the origins and consequences of tumor mechanical stresses in the TME may yield novel strategies to combat immunotherapy resistance. In this Perspective, we posit that tumor mechanical stresses-namely fluid shear and solid stresses-induce immune evasion by upregulating EMT and autophagy. In addition to exploring the basis for our hypothesis, we also identify explicit gaps in the field that need to be addressed in order to directly demonstrate the existence and importance of this biophysical relationship. Finally, we propose that reducing or neutralizing fluid shear stress and solid stress-induced cancer immune escape may improve immunotherapy outcomes.
Collapse
|
8
|
Abedini A, Rostami M, Banafshe HR, Rahimi-Nasrabadi M, SobhaniNasab A, Ganjali MR. Utility of Biogenic Iron and Its Bimetallic Nanocomposites for Biomedical Applications: A Review. Front Chem 2022; 10:893793. [PMID: 35844637 PMCID: PMC9283709 DOI: 10.3389/fchem.2022.893793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Nanotechnology mainly deals with the production and application of compounds with dimensions in nanoscale. Given their dimensions, these materials have considerable surface/volume ratios, and hence, specific characteristics. Nowadays, environmentally friendly procedures are being proposed for fabrication of Fe nanoparticles because a large amount of poisonous chemicals and unfavorable conditions are needed to prepare them. This work includes an inclusive overview on the economical and green procedures for the preparation of such nanoparticles (flower, fruits, tea, carbohydrates, and leaves). Pure and bimetallic iron nanoparticles, for instance, offer a high bandwidth and excitation binding energy and are applicable in different areas ranging from antibacterial, anticancer, and bioimaging agents to drug delivery systems. Preparation of nano-sized particles, such as those of Fe, requires the application of high quantities of toxic materials and harsh conditions, and naturally, there is a tendency to develop more facile and even green pathways (Sultana, Journal of Materials Science & Technology, 2013, 29, 795–800; Bushra et al., Journal of hazardous materials, 2014, 264, 481–489; Khan et al., Ind. Eng. Chem. Res., 2015, 54, 76–82). This article tends to provide an overview on the reports describing green and biological methods for the synthesis of Fe nanoparticles. The present review mainly highlights selenium nanoparticles in the biomedical domain. Specifically, this review will present detailed information on drug delivery, bioimaging, antibacterial, and anticancer activity. It will also focus on procedures for their green synthesis methods and properties that make them potential candidates for various biomedical applications. Finally, we provide a detailed future outlook.
Collapse
Affiliation(s)
- Ali Abedini
- Young Researchers and Elite club, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Hamid Reza Banafshe
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Freiberg, Germany
| | - Ali SobhaniNasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Ali SobhaniNasab,
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|