1
|
Bukulmez H, Dennis AT, Reese-Koc J, Sieg SF, Clagett B, Kleinsorge-Block S, Somoza-Palacios R, Singer N, Chance M, Highland KB, Emancipator SN. Trained mesenchymal stromal cell-based therapy HXB-319 for treating diffuse alveolar hemorrhage in a pristane-induced murine model. Stem Cells 2025; 43:sxae078. [PMID: 39560076 PMCID: PMC11878545 DOI: 10.1093/stmcls/sxae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024]
Abstract
INTRODUCTION Mesenchymal stromal cells (MSCs) can modulate immune responses and suppress inflammation in autoimmune diseases. Although their safety has been established in clinical trials, the efficacy of MSCs is inconsistent due to variability in potency among different preparations and limited specificity in targeting mechanisms driving autoimmune diseases. METHODS We utilized high-dimensional design of experiments methodology to identify factor combinations that modulate gene expression by MSCs to mitigate inflammation. This led to a novel MSC-based cell therapy, HXB-319. Its anti-inflammatory properties were validated in vitro by flow cytometry, RT-PCR, and mass spectrophotometry. To evaluate in vivo efficacy, we treated a diffuse alveolar hemorrhage (DAH) mouse model (C57Bl/6). Seven days post-DAH induction with pristane, mice received either MSCs or HXB-319 (2X106 cells, IP). On day 14, peritoneal lavage fluid (PLF) and lung tissue were collected for flow cytometry, histopathological examination, and mRNA. RESULTS HXB-319 increased gene expression levels of anti-inflammatory, angiogenic, and anti-fibrotic factors (eg, TSG-6, VEGF, and HGF). KEGG pathway analysis confirmed significant activation of relevant anti-inflammatory, angiogenic, and anti-fibrotic proteins, corroborating RT-PCR results. In the DAH model, HXB-319 significantly reduced lung inflammation and alveolar hemorrhage compared to MSC-treated and untreated DAH mice. HXB-319 treatment also significantly decreased neutrophils, plasmacytoid dendritic cells, and RORγT cells, increased FoxP3+ cells in PLF, and reversed alterations in mRNA encoding IL-6, IL-10, and TSG-6 in lung tissue compared to DAH mice. CONCLUSION HXB-319 effectively controls inflammation and prevents tissue damage in pristine-induced DAH, highlighting its therapeutic potential for autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Hulya Bukulmez
- Division of Pediatric Rheumatology, Department of Pediatrics, Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Adrienne T Dennis
- Division of Pediatric Rheumatology, Department of Pediatrics, Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Jane Reese-Koc
- Cellular Therapy Operations and Quality, National Center for Regenerative Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Scott F Sieg
- Immunology Flow Core, Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Brian Clagett
- Immunology Flow Core, Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Sarah Kleinsorge-Block
- Cellular Therapy Operations and Quality, National Center for Regenerative Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Rodrigo Somoza-Palacios
- Skeletal Research Center, Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Nora Singer
- Division of Rheumatology, Department of Internal Medicine, Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Mark Chance
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Kristin B Highland
- Department of Pulmonary/Critical Care, Rheumatic Lung Disease Program, Cleveland Clinic Foundation, Case Western Reserve University, Cleveland, OH, United States
| | - Steven N Emancipator
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
2
|
Simon CG, Bozenhardt EH, Celluzzi CM, Dobnik D, Grant ML, Lakshmipathy U, Nebel T, Peltier L, Ratcliffe A, Sherley JL, Stacey GN, Taghizadeh RR, Tan EHP, Vessillier S. Mechanism of action, potency and efficacy: considerations for cell therapies. J Transl Med 2024; 22:416. [PMID: 38698408 PMCID: PMC11067168 DOI: 10.1186/s12967-024-05179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
One of the most challenging aspects of developing advanced cell therapy products (CTPs) is defining the mechanism of action (MOA), potency and efficacy of the product. This perspective examines these concepts and presents helpful ways to think about them through the lens of metrology. A logical framework for thinking about MOA, potency and efficacy is presented that is consistent with the existing regulatory guidelines, but also accommodates what has been learned from the 27 US FDA-approved CTPs. Available information regarding MOA, potency and efficacy for the 27 FDA-approved CTPs is reviewed to provide background and perspective. Potency process and efficacy process charts are introduced to clarify and illustrate the relationships between six key concepts: MOA, potency, potency test, efficacy, efficacy endpoint and efficacy endpoint test. Careful consideration of the meaning of these terms makes it easier to discuss the challenges of correlating potency test results with clinical outcomes and to understand how the relationships between the concepts can be misunderstood during development and clinical trials. Examples of how a product can be "potent but not efficacious" or "not potent but efficacious" are presented. Two example applications of the framework compare how MOA is assessed in cell cultures, animal models and human clinical trials and reveals the challenge of establishing MOA in humans. Lastly, important considerations for the development of potency tests for a CTP are discussed. These perspectives can help product developers set appropriate expectations for understanding a product's MOA and potency, avoid unrealistic assumptions and improve communication among team members during the development of CTPs.
Collapse
Affiliation(s)
- Carl G Simon
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA.
| | - Erich H Bozenhardt
- United Therapeutics Corporation, Regenerative Medicine Operations, Research Triangle Park, NC, USA
| | - Christina M Celluzzi
- Association for the Advancement of Blood and Biotherapies (AABB), Bethesda, MD, USA
| | - David Dobnik
- Niba Labs, Ljubljana, Slovenia
- National Institute of Biology, Ljubljana, Slovenia
| | - Melanie L Grant
- Department of Pediatrics, Children's Healthcare of Atlanta, Marcus Center for Cellular and Gene Therapies, Correlative Studies Laboratory, Emory University School of Medicine, Atlanta, GA, USA
| | - Uma Lakshmipathy
- Pharma Services, Science and Technology, Thermo Fisher Scientific, San Diego, CA, USA
| | - Thiana Nebel
- Medical Education, Sports Medicine and Orthobiologics, Medical Sales Institute, San Diego, CA, USA
| | - Linda Peltier
- Cellular Therapy Lab, Research Institute of McGill University Health Center, Montreal, QC, Canada
| | | | | | - Glyn N Stacey
- International Stem Cell Banking Initiative, Barley, Herts, UK
- National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cells and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | | | - Eddie H P Tan
- Cell and Gene Therapy Facility, Health Sciences Authority, Singapore, Singapore
| | - Sandrine Vessillier
- Science, Research and Innovation Group, Biotherapeutics and Advanced Therapies Division, Medicines and Healthcare Products Regulatory Agency, South Mimms, Hertfordshire, UK
| |
Collapse
|
3
|
Primak A, Bozov K, Rubina K, Dzhauari S, Neyfeld E, Illarionova M, Semina E, Sheleg D, Tkachuk V, Karagyaur M. Morphogenetic theory of mental and cognitive disorders: the role of neurotrophic and guidance molecules. Front Mol Neurosci 2024; 17:1361764. [PMID: 38646100 PMCID: PMC11027769 DOI: 10.3389/fnmol.2024.1361764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/04/2024] [Indexed: 04/23/2024] Open
Abstract
Mental illness and cognitive disorders represent a serious problem for the modern society. Many studies indicate that mental disorders are polygenic and that impaired brain development may lay the ground for their manifestation. Neural tissue development is a complex and multistage process that involves a large number of distant and contact molecules. In this review, we have considered the key steps of brain morphogenesis, and the major molecule families involved in these process. The review provides many indications of the important contribution of the brain development process and correct functioning of certain genes to human mental health. To our knowledge, this comprehensive review is one of the first in this field. We suppose that this review may be useful to novice researchers and clinicians wishing to navigate the field.
Collapse
Affiliation(s)
- Alexandra Primak
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill Bozov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Stalik Dzhauari
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Elena Neyfeld
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Federal State Budgetary Educational Institution of the Higher Education “A.I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Maria Illarionova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitriy Sheleg
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Federal State Budgetary Educational Institution of the Higher Education “A.I. Yevdokimov Moscow State University of Medicine and Dentistry” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|