1
|
Santambrogio C, Toccafondi M, Donnici L, Pesce E, De Francesco R, Grifantini R, Ponzini E, Milanesi F, Fragai M, Nativi C, Roelens S, Grandori R, Francesconi O. Biomimetic Recognition of SARS-CoV-2 Receptor-Binding Domain N-Glycans by an Antiviral Synthetic Receptor. Chembiochem 2025; 26:e202500106. [PMID: 39982661 PMCID: PMC12002116 DOI: 10.1002/cbic.202500106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/22/2025]
Abstract
Recognition of glycans by simple synthetic receptors is a key issue in supramolecular chemistry, endowed with relevant implications in glycobiology and medicine. In this context, glycoproteins featuring N-glycans represent an important biological target, because they are often exploited by enveloped viruses in adhesion and infection processes. However, a direct evidence for their recognition by a synthetic receptor targeting N-glycans is still missing in the literature. Using a combination of glycoengineering and mass spectrometry techniques, we present here the direct evidence of biomimetic recognition of complex-type N-glycans exposed on the receptor-binding domain (RBD) of the wild-type spike protein of SARS-CoV-2 by a biologically active, synthetic receptor.
Collapse
Affiliation(s)
- Carlo Santambrogio
- Dipartimento di Biotecnologie e BioscienzeUniversità di Milano-BicoccaMilan20126Italy
| | - Mirco Toccafondi
- Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi'Milan20122Italy
| | - Lorena Donnici
- Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi'Milan20122Italy
| | - Elisa Pesce
- Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi'Milan20122Italy
- Dipartimento di Scienze Cliniche e di ComunitàUniversità degli Studi di Milano, Dipartimento di Eccellenza2023-2027MilanItaly
| | - Raffaele De Francesco
- Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi'Milan20122Italy
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanItaly
| | - Renata Grifantini
- Istituto Nazionale di Genetica Molecolare (INGM) ‘Romeo ed Enrica Invernizzi'Milan20122Italy
| | - Erika Ponzini
- Dipartimento di Scienza dei MaterialiUniversità di Milano-Bicocca20125MilanItaly
- Optics and Optometry Research Center (COMiB)Università di Milano-Bicocca20125MilanItaly
| | - Francesco Milanesi
- Dipartimento di Chimica “Ugo Schiff” DICUSUniversità degli Studi diFirenzeFirenzeItaly
| | - Marco Fragai
- Centro di Risonanze Magnetiche (CERM)Università degli Studi di FirenzeFirenzeItaly
| | - Cristina Nativi
- Dipartimento di Chimica “Ugo Schiff” DICUSUniversità degli Studi diFirenzeFirenzeItaly
| | - Stefano Roelens
- Dipartimento di Chimica “Ugo Schiff” DICUSUniversità degli Studi diFirenzeFirenzeItaly
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM)FirenzeItaly
| | - Rita Grandori
- Dipartimento di Biotecnologie e BioscienzeUniversità di Milano-BicoccaMilan20126Italy
- Institute for Advanced SimulationsForschungszentrum Juelich52428JuelichGermany
| | - Oscar Francesconi
- Dipartimento di Chimica “Ugo Schiff” DICUSUniversità degli Studi diFirenzeFirenzeItaly
| |
Collapse
|
2
|
Nakagawa Y, Fujii M, Ito N, Ojika M, Akase D, Aida M, Kinoshita T, Sakurai Y, Yasuda J, Igarashi Y, Ito Y. Molecular basis of N-glycan recognition by pradimicin a and its potential as a SARS-CoV-2 entry inhibitor. Bioorg Med Chem 2024; 105:117732. [PMID: 38643719 DOI: 10.1016/j.bmc.2024.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Virus entry inhibitors are emerging as an attractive class of therapeutics for the suppression of viral transmission. Naturally occurring pradimicin A (PRM-A) has received particular attention as the first-in-class entry inhibitor that targets N-glycans present on viral surface. Despite the uniqueness of its glycan-targeted antiviral activity, there is still limited knowledge regarding how PRM-A binds to viral N-glycans. Therefore, in this study, we performed binding analysis of PRM-A with synthetic oligosaccharides that reflect the structural motifs characteristic of viral N-glycans. Binding assays and molecular modeling collectively suggest that PRM-A preferentially binds to branched oligomannose motifs of N-glycans via simultaneous recognition of two mannose residues at the non-reducing ends. We also demonstrated, for the first time, that PRM-A can effectively inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in vitro. Significantly, the anti-SARS-CoV-2 effect of PRM-A is attenuated in the presence of the synthetic branched oligomannose, suggesting that the inhibition of SARS-CoV-2 infection is due to the interaction of PRM-A with the branched oligomannose-containing N-glycans. These data provide essential information needed to understand the antiviral mechanism of PRM-A and suggest that PRM-A could serve as a candidate SARS-CoV-2 entry inhibitor targeting N-glycans.
Collapse
Affiliation(s)
- Yu Nakagawa
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Masato Fujii
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Nanaka Ito
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Dai Akase
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misako Aida
- Office of Research and Academia-Government-Community Collaboration, Hiroshima University, 1-3-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8511, Japan
| | - Takaaki Kinoshita
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yasuteru Sakurai
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukishige Ito
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
3
|
Milanesi F, Roelens S, Francesconi O. Towards Biomimetic Recognition of Glycans by Synthetic Receptors. Chempluschem 2024; 89:e202300598. [PMID: 37942862 DOI: 10.1002/cplu.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Carbohydrates are abundant in Nature, where they are mostly assembled within glycans as free polysaccharides or conjugated to a variety of biological molecules such as proteins and lipids. Glycans exert several functions, including protein folding, stability, solubility, resistance to proteolysis, intracellular traffic, antigenicity, and recognition by carbohydrate-binding proteins. Interestingly, misregulation of their biosynthesis that leads to changes in glycan structures is frequently recognized as a mark of a disease state. Because of glycan ubiquity, carbohydrate binding agents (CBAs) targeting glycans can lead to a deeper understanding of their function and to the development of new diagnostic and prognostic strategies. Synthetic receptors selectively recognizing specific carbohydrates of biological interest have been developed over the past three decades. In addition to the success obtained in the effective recognition of monosaccharides, synthetic receptors recognizing more complex guests have also been developed, including di- and oligosaccharide fragments of glycans, shedding light on the structural and functional requirements necessary for an effective receptor. In this review, the most relevant achievements in molecular recognition of glycans and their fragments will be summarized, highlighting potentials and future perspectives of glycan-targeting synthetic receptors.
Collapse
Affiliation(s)
- Francesco Milanesi
- Department of Chemistry "Ugo Schiff", DICUS and INSTM, Università degli Studi di Firenze, Campus Sesto, 50019, Sesto Fiorentino, Firenze, Italy
| | - Stefano Roelens
- Department of Chemistry "Ugo Schiff", DICUS and INSTM, Università degli Studi di Firenze, Campus Sesto, 50019, Sesto Fiorentino, Firenze, Italy
| | - Oscar Francesconi
- Department of Chemistry "Ugo Schiff", DICUS and INSTM, Università degli Studi di Firenze, Campus Sesto, 50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
4
|
Milanesi F, Unione L, Ardá A, Nativi C, Jiménez-Barbero J, Roelens S, Francesconi O. Biomimetic Tweezers for N-Glycans: Selective Recognition of the Core GlcNAc 2 Disaccharide of the Sialylglycopeptide SGP. Chemistry 2023; 29:e202203591. [PMID: 36597924 DOI: 10.1002/chem.202203591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
In recent years, glycomics have shown how pervasive the role of carbohydrates in biological systems is and how chemical tools are essential to investigate glycan function and modulate carbohydrate-mediated processes. Biomimetic receptors for carbohydrates can carry out this task but, although significant affinities and selectivities toward simple saccharides have been achieved, targeting complex glycoconjugates remains a goal yet unattained. In this work we report the unprecedented recognition of a complex biantennary sialylglycopeptide (SGP) by a tweezers-shaped biomimetic receptor, which selectively binds to the core GlcNAc2 disaccharide of the N-glycan with an affinity of 170 μM. Because of the simple structure and the remarkable binding ability, this biomimetic receptor can represent a versatile tool for glycoscience, opening the way to useful applications.
Collapse
Affiliation(s)
- Francesco Milanesi
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy.,Magnetic Resonance Center CERM, University of Florence, Via L. Sacconi 6, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Luca Unione
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain
| | - Ana Ardá
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain
| | - Cristina Nativi
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain.,Department of Organic Chemistry, II Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940, Leioa, Spain.,Centro de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain
| | - Stefano Roelens
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Oscar Francesconi
- Department of Chemistry "Ugo Schiff" DICUS and INSTM, University of Florence, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|